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My research interests are centered at the intersection of three areas of combinatorics: design the-
ory, coding theory, and finite geometries. My dissertation, “Applications of finite geometries to
designs and codes,” addresses fundamental questions about these structures, including existence,
uniqueness, and growth. By understanding the structure and power of these designs and codes, I
am also able to produce excellent results in other fields, such as quantum error-correcting codes.

A t-(v, k, λ) design is a highly structured combinatorial object which
consists of a set of points and a collection of k-subsets of points called
blocks. Every t-subset of points must appear in exactly λ blocks. The
“geometric designs” – constructed from the points and d-dimensional
subspaces of a finite geometries (such as a projective or affine geom-
etry) – are common examples of designs. The incidence matrix of a
design gives rise to an error-correcting code: a vector subspace which
inherits many of the properties of the design. The famous “Fano
plane” is an example of a design derived from a finite geometry.

Designs and codes provide excellent opportunities to “hook” undergraduate students into research.
These closely related structures can be introduced in the context of vector spaces, finite fields,
geometries, graph theory, information theory, abstract algebra, and many other topics of interest
to upper-level students. Students interested in fields as broad as voting theory, geometry, deep-space
communications, or biological field experiments may be naturally drawn to designs and codes.

The motivating problem in my dissertation is Hamada’s conjecture, which proposes that the inci-
dence matrix of each geometric design has the unique minimal p-rank among all designs with the
same parameters. Hamada’s conjecture was inspired by the study of codes which admit majority-
logic decoding, a particularly simple and easy to implement decoding method. Indeed, Hamada’s
conjecture implies that the finite geometry codes are among those best-suited for such decoding.

In general, Hamada’s conjecture is an open question. The conjecture is known to be true for certain
families of parameters, but there are also sporadic counterexamples. Jungnickel and Tonchev [JT09]
found the first infinite family of counterexamples to Hamada’s conjecture, by “distorting” the blocks
of certain projective geometry designs. I proved a corresponding result for affine geometry designs,
also producing the first infinite family in this case [CJT11]. I generalized this construction to
produce an exponentially growing number of non-isomorphic designs with affine parameters, the
first time that such a result has been shown for affine geometry designs [CJT10]. I also proved
that the “distorted” designs (both affine and projective) retain many of the best properties of the
geometric designs.

The next natural steps in this area have to do with classification. My previous work opens many
questions, which I plan to continue pursuing: In which cases do counterexamples exist? What is
special about those parameter sets? Because Hamada’s conjecture is known to be true in many
cases, there is some distinction or method of classification which we have not yet discovered. All
known counterexamples share most of the best properties of geometric designs. Is this true in gen-
eral? Recent work of Jungnickel and Tonchev [JT] shows how a generalized concept of “dimension”
given powerful results. Many of these questions are well-suited to undergraduate research. Students
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may study the structure of known counterexamples, which encourages a deeper understanding of
fundamental combinatorial concepts. The generalized idea of “dimension” is brand new, and many
results are still waiting to be discovered. Undergraduates interested in mathematical programming
can search for new counterexamples, or exhaustively enumerate designs for small parameters.

In addition, designs form an excellent basis for better understanding seemingly unrelated fields
of study. In particular, I have studied several applications of designs to the construction and
analysis of quantum error-correcting codes. Entanglement-assisted quantum error-correcting codes
(or EAQECCs) are a large new category of quantum codes. They are especially interesting, because
they provide a way to construct quantum codes from any classical code. Previous work generally
produced examples of EAQECCs through random search, or by hand construction. Using the
structure of designs, I helped to provide the first general method which organized and systematized
the creation of EAQECCs with specified properties [FCV+10]. There are also many other types of
quantum codes, most of which can be constructed in highly combinatorial ways. As with EAQECCs,
the parameters and properties of these codes may be determined from the original finite geometries.
For example, I have constructed infinite families of q-ary quantum codes from designs related to
finite geometries [CT]. These provide an ever-expanding range of opportunities for further research.

The study of quantum information theory – specifically quantum error-correcting codes – is growing
quickly. New code constructions appear frequently. Many of these constructions are based around
assumptions or requirements which are fundamentally combinatorial. By understanding the power
and structure of designs, codes, and finite geometries, I am in a position to develop excellent new
examples of quantum codes in a rapidly expanding field. The links between discrete mathematics
and quantum codes give undergraduate researchers an opportunity to contribute to a cutting-edge
and exciting field of study.
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