

I'm thinking of a number* from 0 to 7.

You can ask me yes-or-no questions to find it.

* A whole number. No *π* here, MathPathogens!

I'm thinking of a number^{*} from 0 to 999,999.

You can ask me yes-or-no questions to find it.

* A whole number. No π here, MathPathogens!

Responder: Secretly chooses a whole number:

Questioner: Asks yes-or-no questions.

Responder: Secretly chooses a whole number:

Questioner: Asks yes-or-no questions.

Can always phrase the questions as:

"Is your number in {list of numbers}?"

Examples:

A sample game

Responder: Chooses 4 (out of 0–7) Start: {0, 1, 2, 3, 4, 5, 6, 7}

interactive / on-line

bisection

$\text{``Yes"} \leftrightarrow 1, \qquad \text{``No"} \leftrightarrow 0$

We'll determine the number from the answer vector.

So, each number must have a different vector.

Choose a number in $\{0, 1, 2, 3, 4, 5, 6, 7\}$

Remember your answers, in order:

Choose a number in $\{0, 1, 2, 3, 4, 5, 6, 7\}$

Remember your answers, in order:

- Is your number in {4, 5, 6, 7}?
- Is your number in {2, 3, 6, 7}?
- Is your number in {1, 3, 5, 7}?

Choose a number in $\{0, 1, 2, 3, 4, 5, 6, 7\}$

Remember your answers, in order:

- Is your number in {4, 5, 6, 7}?
- Is your number in {2, 3, 6, 7}?
- Is your number in {1,3,5,7}?

Now let me guess...

How did I do this trick? By changing my viewpoint.

Viewpoint #1: More clever bisection

How did I do this trick? By changing my viewpoint.

Viewpoint #1: More clever bisection **Responder:** Chooses 4 (out of 0 - 7) Start: $\{0, 1, 2, 3, 4, 5, 6, 7\}$ **Q:** "Is your number in $\{4, 5, 6, 7\}$?" $\{0, 1, 2, 3, 4, 5, 6, 7\}$ **Q:** "Is your number in $\{2, 3, 6, 7\}$?" $\{0, 1, 2, 3, 4, 5, 6, 7\}$ **Q:** "Is your number in $\{1, 3, 5, 7\}$?" $\{0, 1, 2, 3, 4, 5, 6, 7\}$

0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

It doesn't matter which vectors go with each number

0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

It doesn't matter which vectors go with each number

0	1	1	1
1	1	0	1
2	0	1	1
3	0	0	0
4	1	0	0
5	1	1	0
6	0	0	1
7	0	1	0

It doesn't matter *which* vectors go with each number as long as they are **distinct**

0	1	1	1
1	1	1	1
2	0	0	1
3	0	0	1
4	1	0	0
5	1	0	0
6	1	0	1
7	1	0	1

It doesn't matter *which* vectors go with each number as long as they are **distinct**

Big questions:

What is the minimum number of questions *required*, no matter what number I choose?

Is online or offline better?

What if I Lie?

How can we handle one lie?

0 0 0 0 1 0 0 1

The Responder said:

How can we handle one lie?

0 0 0 0 1 0 1 1

The Responder said:

How can we handle one lie?

0000 1111

The Responder said:

To fix one mistake:

Every pair of response vectors must differ in at least 3 places.

"Fix" by choosing the response vector *closest* to the Responder's answers.

To fix **one** mistake:

Every pair of response vectors must have **Hamming distance** at least 3.

"Fix" by choosing the response vector *closest* to the Responder's answers.

Repetition works for more than 2 options.

0	1	1	1	1	0
1	1	1	0	0	1
2	0	0	1	1	1
3	0	0	0	0	0
	1	0	0	0	0

Is your number in $\{0, 1\}$?

Is your number in $\{0, 1\}$?

Is your number in $\{0, 2\}$?

Is your number in $\{0, 2\}$?

Is your number in $\{1, 2\}$?

An error-correcting code with minimum distance 3:

Error-correcting codes are used in:

- *Transmissions*: Wifi, USB, digital TV, cell phones, satellites, GPS
- Storage: Flash drives, hard disks, cloud storage
- Computations: Quantum computers
- Guessing games!

We know the "best" games that can...

- ... fix 1 mistake (online or offline)
- . . . fix 2 or 3 mistakes (online only!)

Things we don't know:

• "Best" anything with 4 or more lies.

Other interesting variations:

- Questions have costs how cheap can you be?
- Allow more than just "yes" or "no".
- Guess an interval of *real numbers*.

1010100011011011000111000 7010010100101010101 1101010011010 Interested?

10110100101 Take Guessing Games in Week 3!

Questions? {5,6,7.8¹2 {5,6,7,8}? {2,3,6,7}? {1,3,5,7}?

- $\{8, 9, 10, 11, 12, 13, 14, 15\}$?
- $\{4, 5, 6, 7, 12, 13, 14, 15\}$?
- $\{2, 3, 6, 7, 10, 11, 14, 15\}$?
- {1, 3, 5, 7, 9, 11, 13, 15 }?
- $\{1, 2, 4, 7, 9, 10, 12, 15\}$?
- {1, 2, 5, 6, 8, 11, 12, 15 }?
 {1, 3, 4, 6, 8, 10, 13, 15 }?