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42 R Graphics

a more flexible basis for developing interactive plots (currently only for the
Windows graphics device). This function captures key stroke events as well

as mouse events and allows more general event handlers to be written as R
functions.

Several add-on graphics packages provide additional interactive capabilities.
The tcltk package provides a general facility for building GUI components
and this can be used to create interactive graphics. Some of the tcltk de-
mos and the dynamicGraph package(4] provide examples of this approach.
The Rggobi package[33] and the iPlots package[62] provide an alternative
approach by linking R to other graphics software applications that have so-
phisticated interactive features, such as brushing and linking plots[14][58].

Chapter summary

The traditional graphics system has functions to produce the stan-
dard statistical plots such as histograms, scatterplots, barplots, and
piecharts. There are also functions for producing higher-dimensional
plots such as 3D surfaces and contour plots and more specialized or
modern plots such as dotplots, dendrograms, and mosaicplots. In most
cases, the functions provide a number of arguments to allow the user
to control the details of the plot, such as the widths of the boxes in
a boxplot. There are a standard set of arguments for controlling the
appearance of the plot (colors, fonts, line types, etc.) and the labels
and axes on a plot, but these are not all available for all types of plots.

Kei Y
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Chapter preview

It is very often the case that a high-level plotting function does not
produce exactly the final result that is desired. This chapter describes
low-level traditional functions that are useful for controlling the fine
details of a plot and for adding further output to a plot (e.g., adding
descriptive labels).

In order to utilise these low-level functions effectively, this chapter also
includes a description of the regions and coordinate systems that are
used to locate the output from low-level functions. For example, there
is a description of which function to use to draw text in the margins of
a plot as opposed to drawing text in the data region (where the data
symbols are plotted). There is also a discussion of ways to arrange
several plots together on a single page.

Sometimes it is not possible to achieve a final result by modifying an
existing high-level plot. In such cases, the user might need to create a
plot using only low-level functions. This case is also addressed in this
chapter together with some discussion of how to write a new graphics
function for other people to use.

It is often the case that the default or standard output from a high-level
function is not exactly what the user requires, particularly when producing
graphics for publication. Various aspects of the output often need to be mod-
ified or completely replaced. This chapter describes the various ways in which
the output from a traditional graphics high-level function can be customized
and extended. .
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bt R Graphics

The real power of the traditional graphics system lies in the ability to control
many aspects of the appearance of a plot, to add extra output to a plot, and

even to build a plot from scratch in order to produce precisely the right final
output.

Section 3.1 introduces important concepts of drawing regions, coordinate sys-
tems, and graphics state that are required for properly working with tradi-
tional graphics at a lower level. Section 3.2 describes how to control aspects
of output such as colors, fonts, line styles, and plotting symbols, and Section
3.3 addresses the problem of placing several plots on the same page. Section
3.4 describes how to customize a plot by adding extra output and Section 3.5
looks at ways to produce entirely new types of plots.

3.1 The traditional graphics model in more detail

In order to explain some of the facilities for customizing plots, it is necessary
to describe more about the model underlying traditional graphics plots.

3.1.1 Plotting regions

In the base graphics system, every page is split up into three main regions: the
outer margins, the current figure region, and the current plot region. Figure
3.1 shows these regions when there is only one figure on the page and Figure
3.2 shows the regions when there are multiple figures on the page.

The region obtained by removing the outer margins from the device is called
the inner region. When there is only one figure, this usually corresponds to the

figure region, but when there are multiple figures the inner region corresponds
to the union of all figure regions.

The area outside the plot region, but inside the figure region is referred to
as the figure margins. A typical high-level function draws data symbols and
lines within the plot region and axes and labels in the figure margins or outer

margins (see Section 3.4 for information on the functions used to draw output
in the different regions).

The size and location of the different regions is controlled either via the par()
function, or using special functions for arranging plots (see Section 3.3). Spec-
ifying an arrangement of the regions does not usually affect the current plot
as the settings only come into effect when the next plot is started.
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Outer margin 1

Figure 3.1 |
The plot regions in traditional graphics. The outer margins, figure region, and plot
region, when there is a single plot on the page.
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Figure 3.2

Z:.:.mv:w figure regions in traditional graphics. The outer margins, current figure
region, and current plot region, when there are multiple plots on the page.
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Figure 3.3

The user coordinate system in the plot region. Locations within this coordinate
system are relative to the scales on the plot axes.

Coordinate systems

Each plotting region has one or more coordinate systems associated with it.
Drawing in a region occurs relative to the relevant coordinate system. The
coordinate system in the plot region, referred to as “user coordinates.” is
probably the easiest to understand as it simply corresponds to the range of
values on the axes of the plot (see Figure 3.3). The drawing of data symbols,
lines, text, and so on in the plot region is relative to this user coordinate

system.

The scales on the axes of a plot are often set up automatically by R, but it is
possible to control them explicitly via x1im and ylim arguments to high-level
plotting functions (see Section 2.2.1) or via the usr argument to the par ()
function (see Section 3.4.7).
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The figure margins contain the next most commonly-used coordinate systems.
The coordinate systems in these margins are a combination of x- or y-ranges
(like user coordinates) and lines of text away from the boundary of the plot
region. Figure 3.4 shows two of the four figure margin coordinate systems.
Axes are drawn in the figure margins using these coordinate systems.

There is a further set of “normalized” coordinate systems available for the
figure margins in which the x- and y-ranges are replaced with a range from 0
to 1. In other words, it is possible to specify locations along the axes as a pro-
portion of the total axis length. Axis labels and plot titles are drawn relative
to this coordinate system. All of these figure margin coordinate systems are

created implicitly from the arrangement of the figure margins and the setting
of the user coordinate system:. |

The outer margins have similar sets of coordinate systems, but locations along
the boundary of the inner region can only be specified in normalized coordi-
nates (always relative to the extent of the complete outer margin). Figure 3.5
shows two of the four outer margin coordinate systems.

Sections 3.4.3 and 3.4.5 describe functions that produce output relative to
these margin coordinate systems.

3.1.2 The traditional graphics state

The traditional graphics system maintains a graphics “state” for each graphics
device. Whenever output is drawn, the graphics state is consulted to deter-

mine where it should be drawn, what color it should be, what fonts to use for
text, and so on.

The graphics state consists of a large number of settings. Some of these
settings describe the size and placement of the plot regions and coordinate
systems described above. Some settings describe the general appearance of
graphical output (the colors and line types that are used to draw lines, the
fonts that are used to draw text, etc). Some settings describe aspects of the
output device (c.g., the physical size of the device and the current clipping
region).

Tables 3.1 to 3.3 together provide a list of all of the graphics state settings and
a very brief indication of their meaning. Most of the settings are described in
detail in Sections 3.2 and 3.3.

The main function used to access the graphics state is the par() function.
Simply typing par() will result in a complete listing of the current graphics
state. A specific state setting can be queried by supplying specific setting
names as arguments to par(). The following code (page 52) queries the
current state of the col and 1ty settings.
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H
| Current Plot
i X mmx
x:_JS J
Olines 7 Figure |
Margin
. 1
3 lines — |
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Figure
Margin Current Plot |
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Figure 3.4 . | e
Figure margin coordinate systems. The typical coordinate systems for figure margin

L (top plot) and figure margin 2 (bottom plot). Locations E#Em these coordinate
systems are a combination of position along the axis scale and distance away from

the axis in multiples of lines of text.
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:
Table 3.1
High-level traditional graphics state settings. This set of graphics state
settings can be queried and set via the par() function and can be used
R TR e as arguments to other graphics functions (e.g., plot() or lines()). Each
| - 0 .,. setting is described in more detail in the relevant Section.
| P “ Wil
| | “ | | Setting Description Section
LN e adj justification of text 3.2.3
| [ | & ann draw plot labels and titles? 8:2:8
| | & | || bg “background” color 3:2.1
m T S e bty type of box drawn by box () 3.2.5
mu _ 1 cex size of text (multiplier) 3.2.3
‘ | cex.axis  size of axis tick labels 323
0 lines — _H cex.lab  size of axis labels 3.2.3
cex.main  size of plot title 3.2.3
Outer _Sm.«@m: 1 _, cex.sub size of plot sub-title 3.2.3
Alfldaa o . | col color of lines and data symbols 3i2.1
oS | col.axis color of axis tick labels 3.2.1
i S col.lab color of axis labels 3:2:1
col.main  color of plot title 3.2.1
col.sub color of plot sub-title 3.2.1
fg “foreground” color 3.2.1
W S— e | A font font face (bold, italic) for text 8:2:3
SRR | T font.axis font face for axis tick labels 3.2.3
T e by font.lab font face for axis labels 3.2.3
| {5 4 | | font.main font face for plot title 3.2.3
Outer ) jors) gl font.sub font face for plot sub-title 3.2.3
Margin ~10t ! & Plot 2 m | gamma gamma correction for colors 8.9:1
5 “_ | | L lab number of ticks on axes 3.2.5
| | | | »_ las rotation of text in margins 8.2.3
S = = — 1ty line type (solid, dashed) 3.2.2
| | lwd line width 3.2.2
_ P ] mgp placement of axis ticks and tick labels 3:2.5
3lines 0 lines pch data symbol type 3.2.4
srt rotation of text in plot region 3:2:8
tck length of axis ticks (relative to plot size) 3.2.5
tcl length of axis ticks (relative to text size) 3.2.5
tmag size of plot title (relative to other labels) 3.2.3
type type of plot (points, lines, both) 3.2.4
¢ xaxp number of ticks on x-axis 3.2.5
Figure w.m Xaxs calculation of scale range on x-axis 3.2.5
Outer margin coordinate systems. The typical coordinate systems for outer margin xaxt x-axis style (standard, none) 3.2.5
1 (top plot) and outer margin 2 (bottom plot). Locations within these coordinate xpd clipping region 3.2.7
systems are a combination of a proportion along the inner region and distance away yaxp number of ticks on y-axis 3.2.5
from the inner region in multiples of lines of text. ) yaxs calculation of scale range on y-axis 3.2.5
yaxt y-axis style (standard, none) 3.2.5
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> par(c("col", "1lty"))

$col
[1] "black"

$lty
{1] "solid"

M.Hwo meC. function can be used to modify traditional graphics state settings
; y specifying a value via an argument with the appropriate setting name. The
ollowing code sets new values for the col and 1ty settings.

> par(col="red", 1lty="dashed")

.«/..Hoa.m@mzm traditional graphics state settings via par () has a persistent effect
mozﬁmm specified in this way will hold until a different setting is m@oommma.
Settings may also be temporarily modified by specifying a new value in w
call to a graphics function such as plot() or lines(). The following cod

demonstrates this idea. First of all, the line type is permanently mm%cmgm
par (), then a plot is drawn and the lines drawn between data points in dEm
plot are dashed. Next, a plot is drawn with a temporary line type settin

of 1ty="solid" and the lines in this plot are solid. When the third plot M

drawn, the permanent line tv ;
T ype mmﬂgbm of 1tyv="dashed" i :
the lines are again dashed. y ed" is back in effect so

> y <~ rnorm(20)
> par(lty="dashed")
> plot(y, type="1") # line is dashed

> plot(y, type="1", 1ty="so0lid") # line is solid
> plot(y, type="1") # line is dashed

O,:Jw some Om.ﬁum graphics state settings can be set temporarily in calls to
graphics functions. For example, the mfrow setting may not be set in this way

and can only b . PR - : :
=y y be set using par(). These “low level settings are listed in Table

A mwwm% mm.a of graphics state settings cannot be set at all and can only be
mgzmw ie %mE.m par(). For example, there is no function to allow the user to
odify the size of the current device (after the device has been created), but

its size (in inches) may be obtain i

§ ed usin ar("din"), S K
settings are listed in Table 3.3. 2 $E1 These ficad only
Changes to the traditional graphics state only

device. affect the current graphics
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Table 3.2

Low-level traditional graphics state settings. This set of graphics
state settings can be queried and set via the par() function. Each

setting is described in more detail in the relevant Section.

Setting Description Section
ask prompt user before new page? 3.2.8
family font family for text 3:2.3
fig location of figure region (normalized) 3.2.6
fin size of figure region (inches) 3.2.6
lend line end style 322
lheight line spacing (multiplier) 3123
1ljoin line join style 3.2.2
lmitre line mitre limit 3.2.2
mai size of figure margins (inches) 3.2.6
mar size of figure margins (lines of text) 3.2.6
mex line spacing in margins 3.2.6
mfcol number of figures on a page 3.3.1
mfg which figure is used next 3.3.1
mfrow number of figures on a page 3.3.1
new has a new plot been started? 3.2.8
oma size of outer margins (lines of text) 3.2.6
omd location of inner region (normalized) 3.2.6
omi size of outer margins (inches) 3.2.6
pin size of plot region (inches) 3.2.6
plt location of plot region (normalized) 3.2.6
ps size of text (points) 3.2.3
pty aspect ratio of plot region 3.2.6
usr range of scales on axes 3.4.7
xlog logarithmic scale on x-axis? 3.2.5
ylog logarithmic scale on y-axis? 3.2.5
Table 3.3

Read-only traditional graphics state settings. This set of graphics
state settings can only be queried (via the par() function). Each

setting is described in more detail in the relevant Section.

Setting Description Section
cin size of a character (inches) 3.4.7
cra size of a character (“pixels”) 3.4.7
CXy size of a character (user coordinates) 3.4.7
din size of graphics device (inches) 3.4.7

N
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3.2 Controlling the appearance of plots

This section is concerned with the appearance of plots, which means the colors,
line types, fonts and so on that are used to draw a plot. As described in Section
3.1.2, these features are controlled via traditional graphics state settings and
values are specified for the settings either with a call to the par() function
Or as arguments to a specific graphics function such as plot(). For example,
there is a setting called col to control the color of output (see the next section)
This can be set permanently using par () with an expression of the form

par(col="red")

which will affect all subsequent graphical output. Alternatively, the setting

can be specified as an argument to a high-level function using an expression
like

plot(..., col="red")

which means that the setting will affect the output just for, that plot. Finally,

the setting can be used as an argument to a low-level function, as in the
expression .

lines(..., col="red")

which shows that the setting can be used to control the appearance of a single
piece of graphical output.

There are many individual settings that affect the appearance of a plot, but
they can be grouped in terms of what aspects of a plot the settings affect.
Fach of the following sections details a particular group of settings, including
a description of the role of individual settings and descriptions of what con-
stitutes valid values for each setting. There are sections on: specifying colors;
how to control the appearance of lines, text, data symbols, and axes; how to
control the size and location of the various plotting regions; clipping (only
drawing output on certain parts of the page); and specifying what should
happen when a high-level function is called to start a new plot.

The appearance of plots is also affected by the location and size of the plotting
regions, but this is dealt with separately in Section 3.3.

This section is not meant to be read from start to end as it is very detailed.
This section should be used as a reference tool to access the relevant subsec-

1Cs )
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tions as they are required to learn about controlling a particular aspect of a
plot.

3.2.1 Colors

There are three main color settings in the traditional graphics state: col. fg,
and bg.

The col setting is the most commonly used. The primary use mm. to meoowmﬂ
the color of data symbols, lines, text, and so on ﬁ:@a are .aﬂ.mé: in % :..u. v..o
region. Unfortunately, when specified via a graphics function, the mmoQ %m”
vary. For example, a standard scatterplot meoacoom by the plot() m:soMO

éw: use col for coloring data symbols and lines, but the barplot () ..c:o .:_u:
will use col for filling the contents of its bars. In the rect() Ewosob, the
col argument provides the color to fill the rectangle and there 5. mmu .Uowﬂmw
argument specific to rect () that gives the color to Q.m:w the bor S o ._5
rectangle. The effect of col on graphical output .%més in the margins M S0
varies. It does not affect the color of axes and axis EU&P U.E._ it aomm. af .ooﬁ_
the output from the mtext () function. There are specific settings for m.mmnssw
axes, labels, titles, and sub-titles called col.axis, col.lab, col.main, an _

col.sub.

The £g setting is primarily intended for specifying the color of axes and roam.:.w
on plots. There is some overlap between this and the specific col.axis,
col.main, etc. settings described above.

The bg setting is primarily intended to specify the color wm the Um‘o_wpm,ﬂ.oﬂ.u.ﬂ%
for base graphics output. This color is used _x.u fill ﬁrm. mi.:.m. page. 4 s wi ﬂ
the col setting, when bg is specified in a graphics function it om:.rm:.a a quite
different meaning. For example, the plot () and wogdm.C function use .cmuﬁo
specify the color for the interior of the data m%B,ooF which can have different
colors on the border (pch values 21 to 25; see Section 3.2.4).

There is also a gamma setting that controls the gamma correction for a &o%om.
On most devices this can only be set once when the device is first opened.

Specifying colors

The easiest way to specify a color in R is simply to use the color’s :m:_wo#. Huo.w.
example, "red" can be used to specify that graphical output mrocwmn. He ~?
very bright) red. R understands a fairly large set o~... color names aow to be
exact); type colors() (or colours()) to see a full list of known names.

It is also possible to specify colors using one of the standard oo_ou.-mcmmm _mo.,
scriptions. For example, the rgb() function allows a color to be specified as
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a Red-Green-Blue (RGB) triplet of intensities. Using this function, the color
red is specified as rgb(1, 0, 0) (i.e., as much red as possible, no blue, and

no green). The function col2rgb() can be used to see the RGB values for a
particular color name.

An alternative way to provide an RGB color specification is to provide a
string of the form "#RRGGBB", where each of the pairs RR, GG, BB consist of
two hexadecimal digits giving a value in the range zero (00) to 255 (FF). In
this specification, the color red is given as "#FF0000".

There is also an hsv() function for specifying a color as a Hue-Saturation-
Value (HSV) triplet. The terminology of color spaces is fraught, but roughly
speaking: hue corresponds to a position on the rainbow, from red (0),
through orange, yellow, green, blue, indigo, to violet (1); saturation deter-
mines whether the color is dull or bright: and value determines whether the
color is light or dark. The HSV specification for the (very bright) color red is

hsv(0, 1, 1). The function rgb2hsv() converts a color specification from
RGB to HSV.

There is also a convertColor() function for converting colors between dif-
ferent color spaces, including the CIELAB and CIELUV color spaces[46], in
which a unit distance represents a perceptually constant change in color. The
hel () function allows colors to be specified directly as polar coordinates within
CIELUYV (as a hue, chroma, and luminance triplet). This is like a perceptually
uniform version of HSV.* Ross Ihaka’s colorspace package[31] provides an
alternative set of functions for generating, converting, and combining colors
in a sophisticated manner in a wide variety of color spaces.

One final way to specify a color is simply as an integer index into a predefined
set of colors. The predefined set of colors can be viewed and modified using

the palette() function. In the default palette, red is specified as the integer
2

Semitransparent colors

All R colors are stored with an alpha transparency channel. An alpha value of
0 means fully transparent and an alpha value of 1T means fully opaque. When
an alpha value is not specified, the color is opaque.

The function rgb() can be used to specify a color with an alpha transparency

“The hel() function is only available from R version 2.1.0.

TThe maximum alpha value depends on the method being used to specify a color. When
a color is specified via rgb(), the user can decide what the maximal value should be (it

defaults to 1). When a color is specified as a string beginning with a "#", the maximum
value is "FF".
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Table 3.4

Functions to generate color sets. R functions that can be used to generate coher-
ent sets of colors

Name Description

Colors vary from red through orange, yellow,
green, blue, and indigo, to violet.

heat.colors() Colors vary from white, through orange, to red.
terrain.colors() Colors vary from white, through brown, to green.
Colors vary from white, through brown then green,

to blue. .
Colors vary from light blue, through white, to light

magenta.
grey() or gray() A set of shades of grey.

rainbow()

topo.colors()

cm.colors()

channel (e.g., rgb(1, 0, 0, 0.5) specifies a semitransparent red), or & color
can be specified as a string beginning with a "#" and mn.vzoémn.m F, m_mrm _wmx-
adecimal digits. In the latter case, the last two roxm&meﬂ.& digits mvoo&. mw
alpha value in the range 0 to 255 (e.g., "#FF000080" specifies a semitranspar-

ent red).

A color may also be specified as NA, which is usually interpreted as ?zu_”
transparent (i.e., nothing is drawn). The special color name "transparent

can also be used to specify full transparency:.

Only the PDF and Quartz devices support semitransparent colors. On all
oﬁ_rmw devices, semitransparent colors are rendered as fully transparent.

Color sets

More than one color is often required within a single plot .msa in such cases .;
can be difficult to select colors that are aesthetically pleasing or are related in
some way (e.g., a set of colors in which the brightness of 26. colors aoﬁ.om.mmm in
regular steps). Table 3.4 lists some functions that R E,oﬁ.mmm for genel ating
sets of colors. The output of the expression example(rainbow) ?.o«,ﬁmm a
nice visual summary of the color sets generated by several of these functions.

Each of the functions in Table 3.4 selects a set of mowow.m by taking Smm_mw
steps along a path through the HSV color space. This can produce oow.owu sets
that do not appear to vary smoothly. A perceptually constant color space
makes it easier to generate sets of colors with even perceptual steps between
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them or a set of colors that do not vary on a particular perceptual dimension.
For example, the following code generates six colors from the CIELUV color
space that vary regularly in terms of hue, but are all equally bright (the chroma

component is fixed at 50) and all equally light (the luminance component is
fixed at 60).

> hcl(seq(0, 360, length=7) [-7], 50, 60)

[1] "#C87ABA" "#ACSCLE" "#6BOD59" "#00A396" "#5F96C2"
[6] "#B37EBE"

The RColorBrewer package [47] provides color palettes from Cynthia Brewer’s
ColorBrewer tool[27]. The ColorBrewer color sets have been carefully selected

by a color expert and include distinct palettes for representing nominal and
ordinal categories.

The functions colorRamp() and colorRampPalette() can be used to inter-

polate a new color set from an existing set of colors (e.g., create additional
colors from within a ColorBrewer palette).*

Device Dependency of Color Specifications

R stores colors internally as RGB triplets. The final appearance of a color
can vary considerably when it is viewed on a screen, or printed on paper, or

displayed through a projector as it depends on the physical characteristics of
the screen, printer ink, or projector.

Fill patterns

In some cases (e.g., when printing in black and white), it is difficult to make
use of different colors to distinguish between different elements of a plot. Using
different levels of grey can be effective, but another option is to make use of
some sort of fill pattern, such as cross-hatching. These should be used with
caution because it is very easy to create visual effects that are distracting.

Nevertheless, some journals actively encourage their use, so the facility has
some purpose.

In R, there is only limited support for fill patterns and they can only be
applied to rectangles and polygons (and only within the traditional graphics

“The functions colorRamp(), colorRampPalette(), and convertColor() are not avail-

able before R version 2.1.0, but some color ramp functionality is available in the hexbin
package[10], which is part of the BioConductor project.

|
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system). It is possible to fill a rectangle or polygon with a m.mﬁ of lines &.mnén
at a certain angle, with a specific separation between the lines. A density

argument controls the separation between the lines (in terms of lines per inch)
and an angle mmmcEmE controls the angle of the lines (in terms of aom..wo@m
anti-clockwise from 3 o’clock). Examples of the use of fill patterns are given

in Figures 2.4, 3.20, and their associated code.

These settings can only be controlled via arguments to the ms:oao.sm rect (),
polygon(), hist (), barplot (), pie(), and legend() (and not via par()).

3.2.2 Lines

There are five graphics state settings for controlling @6 appearance of lines.
The 1ty setting describes the type of line to draw Amoﬁ._n_., dashed, aogmmr. ok
the 1wd setting describes the width of lines, and the 1join, lend, and lmitre
settings control how the ends and corners in lines are drawn (see below).

The scope of these settings again differs depending on the mw%Eom ?sos.os
being called. For example, for standard scatterplots, the mwgsm only mEu:o,m
to lines drawn within the plot region. In order to affect the lines drawn as .@Sﬂ
of the axes, the 1ty setting must be passed directly to the axis() function.

Specifying line widths

The width of lines is specified by a simple numeric .,ﬂmE.oa e.g., H.san.w. Hg
interpretation of this value depends on what sort of ao,.:om the line is being
drawn on. In other words, the physical width of the line may .Um. Qm,wnm:ﬁ
when the line is drawn on a computer screen compared to when H..n is 9..58&
on a sheet of paper. On a computer screen, a line .&%r .0». 1 will typically
mean one pixel. For PostScript and PDF output, a line width of 1 produces
a line 0.75 points wide. The default value is 1.

Specifying line types

R graphics supports a fixed set of predefined line Sﬁ.mm, éEo.: can be mvmm_mo.a
by name, such as "solid" or "dashed", or as w: Ew@mﬁ Eamx. (see m.;msuw
3.6). In addition, it is possible to specify customized line ﬁéo.m via a string o
digits. In this case, each digit is a hexadecimal value that .E%.omﬁmm a number
of “units” to draw either a line or a gap. Odd digits mnmo&, 5.5 Esm.ﬁ:m w:a.
even digits specify gap lengths. For example, a n_oﬂoa line is specified by
1ty="13", which means draw a line of length one E.i then a gap of length
three units. A unit corresponds to the current line width, S0 the y.mm::. scales
with line width, but is device-dependent. Up to four such line-gap pairs can
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be specified. Figure 3.6 shows the available predefined line types and some
examples of customized line types.

Specifying line ends and joins

When drawing thick lines, it becomes important to select the style that is
used to draw corners (joins) in the line and the ends of the line. R provides
three styles for both cases: there is an lend setting to control line ends, which
can be "round" or flat (with two variations on flat, "square" or "butt"); and
there is an 1join setting to control line joins, which can be "mitre" (pointy),
"round", or "bevel". The differences are most easily demonstrated visually
(see Figure 3.7).

When the line join style is "mitre", the join style will automatically be con-
verted to "bevel" if the angle at the join is too small. This is to avoid
excessively pointy joins. The point at which the automatic conversion occurs
is controlled by a setting called Imitre, which specifies the ratio of the length
of the mitre divided by the line width. The default value is 10, which means
that the conversion occurs for Joins where the angle is less than 11 degrees.
Other standard values are 2, which means that conversion occurs at angles less
than 60 degrees, and 1 .414, which means that conversion occurs for angles
less than 90 degrees. The minimum mitre limit value is 1.

These settings can only be specified via par() (not as arguments to high-
level or low-level graphics functions) and not all devices will respect them
(especially the line mitre limit),

It is important to remember that line join styles influence the corners on
rectangles and polygons as well as joins in lines.

3.2.3 Text

There are a large number of traditional graphics state settings for controlling
the appearance of text. The size of text is controlled via ps and cex; the font
1s controlled via font and family; the justification of text is controlled via
adj; and the angle of rotation is controlled via srt.

There is also an ann setting, which indicates whether titles and axis labels
should be drawn on a plot. This is intended to apply to high-level functions,
but is not guaranteed to work with all such functions (especially functions
from add-on graphics packages). There are examples of the use of ann as an
argument to high-level plotting functions in Section 3:4.
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Integer Sample line String

Predefined
0 "blank”

"solid"
"dashed"
"dotted"
‘dotdash”
"longdash”
"twodash"”

4 SN ¢ GES ¢ G 4 TER ¢ TEe 4 Ww ¢ e
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'431313"
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Figure 3.6

Predefined and custom line types. Line type may be specified as a predefined ._:ﬁ.mmmﬁ..,
as a predefined string name, or as a string of hexadecimal characters specifying a

custom line type.




Figure 3.7

Line join and line ending styles. Three thick lines have been drawn through the
same three points (indicated by black circles), but with different line end and line
join styles. The black line was drawn first with "square" ends and "mitre" joins;
the dark grey line was drawn on top of the black line with "round" ends and "round"

joins; and the light grey line was drawn on top of that with "butt" ends and "bevel"
joins,

Justification of text

The adj setting is a value from 0 to 1 indicating the horizontal justification

of text strings (0 means left-justified, 1 means right-justified and a value of
0.5 centers text).

The meaning of the adj setting depends on whether text is being drawn in
the plot region, in the figure margins, or in the outer margins. In the plot
region, the justification is relative to the (x, y) location at which the text
is being drawn. In this context, it is also possible to specify two values for
the setting and the second value is taken as a vertical justification for the
text. Furthermore, non-finite values (NA, NaN, or Inf) may be specified for
the justification and this is taken to mean “exact” centering. There is only
a difference between a justification value of 0.5 and a non-finite justification
value for vertical justification. In this case, a setting of 0.5 means text is
vertically centered based on the height of the text above the text baseline
(i.e., ignoring “descenders” like the tail on a “y”). A non-finite value means
that text is vertically centered based on the full height of the text (including

descenders). Figure 3.8 shows how various adj settings affect the alignment
of text in the plot region.

In the figure margins and outer margins, the meaning of the adj setting

Lo poos ponm 00

S(NA 1) C(NA-05)  CINA-NA) c(NA,.0)

| L 0.5.-0
| c(0'5, 1) c(0570.5)  C(05NA) % N_WL

“ | 1,0y |

| TIPS

Figure 3.8 : . . % :
.../_M:Eo:e of text in the plot region. The adj graphical setting may be given two

values, c(hjust, vjust), where hjust specifies roamo:ﬁ.& u.cmamowﬂuowmwwa MMMM,MMMWMM
ifies vertical justification. Each piece of text in e_x.w 9@@.38 is justi o _8&. bt
grey cross to represent the effect of the 8:23% adj setting. The vertical adju

for NA is subtly different from the vertical adjustment for 0.5.
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depends on the las setting. When margin text is parallel to the axis, adj
specifies both the location and the justification of the text. For example, a
value of 0 means that the text is left-justified and that the text is located at
the left end of the margin. When text is perpendicular to the axis, the adj
setting only affects justification. Furthermore, the adj setting only affects

“horizontal” justification (justification in the reading direction) for text in the
margins.

Rotating text

The srt setting specifies a rotation angle anti-clockwise from the positive x-
axis, in degrees (not radians). This will only affect text drawn in the plot

region (text drawn by the text() function). Text can be drawn at any angle
within the plot region.

In the figure and outer margins, text may only be drawn at angles that are
multiples of 90°, and this angle is controlled by the las setting. A value of
O means text is always drawn parallel to the relevant axis (i.e., horizontal in
margins 1 and 3, and vertical in margins 2 and 4). A value of 1 means text is
always horizontal, 2 means text is always perpendicular to the relevant axis,

and 3 means text is always vertical. This setting interacts with or overrides
the adj and srt settings.

Text size

The size of text is ultimately a numerical value specifying the size of the font
in “points.” The font size is controlled by two settings: ps specifies an absolute
font size setting (e.g., ps=9), and cex specifies a multiplicative modifier (e.g.,
cex=1.5). The final font size specification is simply fontsize * cex. On
some devices, the font size that is specified will not be honored exactly. For
example, when drawing in an X11 window with bitmap fonts, there are only
a finite set of font sizes available and this set will vary depending on which

fonts are installed. For the PostScript and PDF formats, font sizes should be
accurate,

As with specifying color, the scope of a cex setting can vary depending on
where it is given. When cex is specified via par(), it affects most text.
However, when cex is specified via plot(), it only affects the size of data
symbols. There are special settings for controlling the size of text that is drawn
as axis tick labels (cex.axis), text that is drawn as axis labels (cex.lab),
text in the title (cex.main), and text in the sub-title (cex.sub). Finally, there

is a tmag setting for controlling the amount to magnify title text relative to
other plot labels.
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escape sequence, "\n"

The spacing bet

tiplier applied to the . | y
mwumowmmmvaozzm-mvmoma text. This setting can only be specified via par().

Specifying an exact font may S .
awiowu.\mcmamo. A font is usually part of a font “family” (e.g. Helvetica or

Courier) and is a particular “face” within that family (e.g., bold or &aanv..
It is also possible to specify things like the font format (e.g., TrueType or

Multi-line text

It is possible to draw text that spans several lines, by inserting a new line

within a piece of text, as in the following example.
?

nfirst line\nsecond line"

ween lines is controlled by the 1height setting, which ww.m mul-
natural height of a line of text. For example, 1height=2

Specifying fonts

involve several pieces of information and is very

Computer Modern), the font encoding (e.g., ISO Latin 1), and even the font
foundry or designer (e.g., Adobe or Sun Microsystems).

In R graphics, it is possible to specify the font face and a mos.a family. On
some devices, the latter can include extra details such as encoding,.

The font face is specified via the font mmgz.m as an integer AHmEm w._m.v mwos_..m
the possible values). As with color and text size, .“&m font m.ogzm mmm Hmm om y
to text drawn in the plot region. There are ma%ﬁos& mmﬁcbmm specifica %dwz,
axes (font.axis), labels (font .1ab), and titles (font.main and font.sub).

Every graphics device establishes a default font family, ﬂ.&wo.r is cm:@:u.. a
sans serif font such as Helvetica or Arial. A new font family is specified via

4 1 :.
the family setting using a device-independent name. The names am.wbmm.,.
"serif". "mono", and "symbol" are available for the most common device

and provide a sans serif font, a serif font, a monospaced font, and a symbol
font respectively (see Table 3.6).

. . . . : —
Figure 3.9 demonstrates the 16 basic font family and face combinations.

The device-independent font name is mapped to a mw,\.woo-a.%osami moﬁ.. mms.mw
ily by individual devices. These mappings can be Soa&ma.m:a new osa
names and mappings defined using functions such as postscriptFont () an

postscriptFonts ().

i tScript.
*Windows. X11, Quartz, PDF, and Pos il
tThe fact that there is a font specification provided for all mam_awa. Mm, :Mr.ovﬂ.w*owmH H_MMM
; i 4 ailable. There can be significant diiiere
mean that a matching font will always be avai : . , |
Vm.o?.mms o?an.».:sm systems and locales in terms of which fonts are installed by default.
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Table 3.5

Possible font face specifications in traditional graphics. The font face must
be specified as an integer, usually between 1 and 4. The special value 5
indicates that a symbol font should be used. The range of valid font faces
varies for different Hershey fonts, but the maximum valid value is usually
4 or less. When the font family is "HersheySerif", there are a number of
special font faces available.

Integer Description
1 Roman or upright face
2 Bold face
3 Slanted or italic face
4 Bold and slanted face
5 Symbol

For the HersheySerif font famaly
5 Cyrillic font
6 Slanted Cyrillic font
7 Japanese characters

Table 3.6

Device-independent and Hershey font families that are distributed
with R. A font family is specified as a string

Name Description

Device-independent fonts

"serif" Serif variable-width font
"sans" Sans-serif variable-width font
"mono" Mono-spaced “typewriter” font
"symbol" Symbol font

Hershey fonts

"HersheySerif" Serif variable-width font
"HersheySans" Sans-serif variable-width font
"HersheyScript" Serif “handwriting” font
"HersheyGothicEnglish" Qothic script font
"HersheyGothicGerman" Gothic script font
"HersheyGothicItalian" Gothic script font
"HersheySymbol" Serif symbol font
"HersheySansSymbol" Sans-serif symbol font
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doAy=YovoV

dovi=Il

family="mono"

font=1l

family="serif"

font=1

family="sans"

font=1

Figure 3.9

thP?ﬂ_\N{t.O(O{

dovt=2

family="mono"

font=2

family=""serif"'

font=2

family="sans"
font=2

o Ay=vuovoV

dovt=3

family="mono"

font=3

family="serif"

font=3

family="sans"
font=3
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doAy="povov
dovt=4

family="mono"

font=4

family=""serif""
font=4

family="sans"
font=4

Font families and font faces. The appearance of the base wmxnmo.: mosw. family mzn”
font face combinations that are available for X11, PDF, PostScript, Windows, anc

Quartz graphics devices (the output shown is for the PostScript device).
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The Hershey outline fonts[1] are also distributed with R and are available for
all output formats. The names to use with the family setting to obtain the

different Hershey fonts are shown in Table 3.6. See the on-line help page for
Hershey for more information on Hershey fonts.

The family setting can only be specified via par() (not as an argument to a
high-level plotting function).

Locales

From R version 2.1.0, there is support for multi-byte locales, such as UTF-8
locales and East Asian locales (Chinese, Japanese, and Korean). This means
that strings can be specified in R that contain characters outside of the ISO
Latin 1 character set that R was restricted to prior to version 2.1.0. Such
characters cannot be produced within graphical output on all devices.

As long as the appropriate fonts are available, it should be possible to produce
characters outside of the ISO Latin 1 set for X11, Windows, and Quartz

devices, but PostScript and PDF output can only be produced for ISO Latin
1 characters.

3.2.4 Data symbols

R provides a fixed set of 26 data symbols for plotting and the choice of data
symbol is controlled by the pch setting. This can be an integer value to select
one of the fixed set of data symbols, or a single character (see Figure 3.10).
Some of the predefined data symbols (pch between 21 and 25) allow a fill color
separate from the border color, with the bg setting controlling the fill color
in these cases. If pch is a character then that letter is used as the plotting
symbol. The character "." is treated as a special case and the device attempts

to draw a very small dot (see, for example, the scatterplot matrix in Figure
200

The size of the data symbols is linked to the size of text and is affected by the

cex setting. If the data symbol is a character, the size will also be affected by
the ps setting.

The type setting controls how data is represented in a plot. A value of "p"
means that data symbols are drawn at each (x, y) location. The value "1"
means that the (x, y) locations are connected by lines. A value of "b" means
that both data symbols and lines are drawn. The type setting may also have
the value "o", which means that data symbols are “over-plotted” on lines (with
the value "b", the lines stop short of each data symbol). It is also possible
to specify the value "h", which means that vertical lines are drawn from the

) yL
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X-axis to the (x, y) locations (the appearance is like a barplot with very
thin bars). Two further values, "s" and ngw mean that (x, y) locations are
joined in a city-block fashion with lineg going horizontally then vertically (or

vertically then horizontally) between cach data location. Finally, the value
"n" means that nothing is drawn at al].

Figure 3.11 shows simple examples of the different plot types. This setting is

most often specified within a call to a high-level function (e.g., plot()) rathep
than via par ().

3.2.5 Axes

By default, the traditional graphics system produces axes with sensible labels
and tick marks at sensible locations. If the axis does not look right, there are
a number of graphical state settings specifically for controlling aspects such as
the number of tick marks and the positioning of labels. These are described
below. If none of these gives the desired result, the user may have to resort
to drawing the axis explicitly using the axis () function (see Section 3.4.5),

The lab setting in the traditional graphics state is used to control the number
of tick marks on the axes. The setting is only used as a starting point for the
algorithm R uses to determine sensible tick locations so the final number of
tick marks that are drawn could easily differ from this specification. The
setting takes two values: the first specifies the number of tick marks on the
x-axis and the second specifies the number of tick marks on the y-axis.

The xaxp and yaxp settings also relate to the number and location of the tick
marks on the axes of a plot. This setting is almost always calculated by R
for each new plot so user settings are usually overridden (see Section 3.4.5 for
an exception to this rule). In other words, it only makes sense to query this
setting for its current value. The settings consist of three values: the first two
specify the location of the left-most and right-most tick-marks (bottom and
top tick-marks for the y-axis), and the third valye specifies how many intervals
there are between tick marks. When a log transformation is in effect for an
axis, the three values have a different meaning altogether (see the on-line help
page for par()).

The mgp setting controls the distance that the components of the axes are
drawn away from the edge of the plot region. There are three values repre-
senting the positioning of the overall axis label, the tick mark labels, and the
lines for the ticks. The values are in terms of lines of text away from the edges

of the plot region. The default value is ¢ (3, 1, 0). Figure 3.12 gives an
example of different mgp settings.
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The top-left plot demonstrates the default axis settings for
right plot shows the effect of specifying an “internal” axis range
left plot shows the effects of specifying different positions
rent lengths for the tick marks.
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specifies the length of tick marks as a fraction of the height of a line of text.
The sign dictates the direction of the tick marks — a negative value draws
tick marks outside the plot region and a positive value draws tick marks inside
the plot region. The tck setting specifies tick mark lengths as a fraction of
the smaller of the physical width or height of the plotting region, but it is
only used if its value is not NA (and it is NA by default). Figure 3.12 gives an

example of different tcl settings.

The xaxs and yaxs settings control the “style” of the axes of a plot. By
default, the setting is "r", which means that R calculates the range of values
on the axis to be wider than the range of the data being plotted (so that data
symbols do not collide with the boundaries of the plot region). It is possible
to make the range of values on the axis exactly match the range of values in
the data, by specifying the value "i". This can be useful if the range of values
on the axes are being explicitly controlled via x1im or ylim arguments to a
function. Figure 3.12 gives an example of different xaxs settings.

The xaxt and yaxt settings control the “type” of axes. The default value,
"s", means that the axis is drawn. Specifying a value of "n" means that the
axis is not drawn.

The xlog and ylog settings control the transformation of values on the axes.
The default value is FALSE, which means that the axes are linear and values
are not transformed. If this value is TRUE then a logarithmic transformation
is applied to any values on the relevant dimension in the plot region. This
also affects the calculation of tick mark locations on the axes.

When data of a special nature are being plotted (e.g., time series data), some
of these settings may not apply (and may not have any sensible interpretation).

The bty setting is not strictly to do with axes, but it controls the output
of the box() function, which is most commonly used in conjunction with
drawing axes. This function draws a bounding box around the edges of the
plot region (by default). The bty setting controls the type of box that the
box() function draws. The value can be "n", which means that no box is
drawn, or it can be one of "o", "1", "7", "¢", "u", or "]", which means that
the box drawn resembles the corresponding uppercase character. For example,
bty="c" means that the bottom, left, and top borders will be drawn, but the
right border will not be drawn.

In addition to these graphics state settings, many high-level plotting functions,
e.g., plot (), provide arguments x1im and ylim to control the range of the
scale on the axes. Section 2.2.2 has an example.
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3.2.6 Plotting regions

As described in Section 3.1.1, the tradition

different regions on the graphics device. This section describes how to control
the size and layout of these regions using graphics state settings. Figure 3.13

shows a diagram of some of the settings that affect the widths and horizonta]
placement of the regions.

al graphics system defines several

Outer margins

By default, there are no outer margins on a page. Outer margins can be
specified using the oma graphics state setting. This consists of four values for
the four margins in the order (bottom, left, top, right) and values are
interpreted as lines of text (a value of 1 provides space for one line of text
in the margin). The margins can also be specified in inches using omi or in
normalized device coordinates (i.e., as a proportion of the device region) using

omd. In the latter case, the margins are specified in the order (left s Tight
bottom, top).

Figure regions

By default, the figure region is calculated from the settings for the outer
margins, and the number of figures on the page. The figure region can be
specified explicitly using either the fig setting or the fin state setting. The
figsetting specifies the location, (left, right, bottom, top), of the figure
region where each value is a proportion of the “inner” region (the page less
the outer margins). The fin setting specifies the size, (width, height), of

the figure region in inches and the resulting figure region is centered within
the inner region.

Figure margins

The figure margins can be controlled using the mar state setting. This consists
of four values for the four margins in the order (bottom, left , top, right)
where each value represents a number of lines of text. The default is ¢ (b

4, 4, 2) + 0.1. The margins may also be specified in terms of inches using
mai.

The mex setting controls the size of a “line” in the margins. This does not
affect the size of text drawn in the margins, but is used to multiply the size
of text to determine the height of one line of text in the margins.

i . 75
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Plot regions

By Qﬂ.m:? the plot region is calculated from the figure region less the figure
margins. The location and size of the plot region may be controlled explicitly
using :Hm.vu.a, Pin, or pty settings. The Plt setting allows the user to specify
the _o.om.aos of the plot region, (left, right, bottom, top), where omow
<.mEm. 18 a proportion of current figure region. The pin setting specifies the
size of the plot region, (width, height), in terms of inches. The pty settin

controls how much of the available space (figure region less figure EE.@E%
that the plot region occupies. The default value is "m", which means nrmm the
plot region occupies all of the available space. A value of "s" means that the
v_o.e region will take up as much of the available space as possible, but it muyst
be “square” (i.e., its physical width will be the same as its physical height) \

*

3.2.7 Clipping

Traditional graphics output is usually clipped to the plot region. This means
that any output that would appear outside the plot region is not drawn. For
m.xEE&P in the default behavior, data symbols for (x, y) locations which
lie outside the plot region are not drawn. Traditional graphics functions that
draw in the margins clip output to the current figure region or to the device
Section 3.4 has information about which functions draw in which regions. .

It can be useful to override the default clipping region. For example, this

Is necessary to draw a legend outside the plot region using the legend ()
function.

The Smm:_wozm__ clipping region is controlled via the xpd setting. Clipping can
occur either to the whole device (an xpd value of NA), to the current figure

m.mmmos (a value of TRUE), or to the current plot region (a value of FALSE, which
is the default). ,

3.2.8 Moving to a new plot

As described in Section 2.1, high-level graphics functions usually start a new

plot. Hv@.o. are traditional graphics state settings that control exactly when
and how this happens, c

The ask setting controls whether the user is prompted before the graphics
system starts a new page of output. It is useful for viewing multiple pages of
output (e.g., the output from example (boxplot)) that otherwise flick by too
fast to view properly. If the ask setting is TRUE then the user is E.ouw@ﬁoa
before a new page of output is begun.
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The new setting controls whether a function that starts a new plot will move
on to the next figure region (possibly a new page). Every plot sets the value
to FALSE so that the next plot will move on by default, but if this setting has
the value TRUE then a new plot does not move on to the next figure region.
This can be used to overlay several plots on the same figure (Section 3.4.7 has

an example).

3.3 Arranging multiple plots

There are a number of ways to produce multiple plots on a single page.

The number of plots on a page, and their placement on the page, can be
controlled directly by specifying traditional graphics state settings using the
par () function, or through a higher-level interface provided by the layout ()
function. The split.screen() function (and associated functions) provide
vet another approach where a figure region can itself be treated as a complete
page to split into further figure and plot regions.

These three approaches are mutually incompatible. For example, a call to the
layout () function will override any previous mfrow and mfcol settings. Also,

some high-level functions (e.g., coplot()) call layout () or par() themselves
to create a plot arrangement, which means that the output from such functions

cannot be arranged with other plots on a page.

3.3.1 Using the traditional graphics state

The number of figure regions on a page can be controlled via the mfrow and
mfcol graphics state settings. Both of these consist of two values indicating
a number of rows, nr, and a number of columns, ne; these settings result in

nr X nc figure regions of equal size.

The top-left figure region is used first. If the setting is made via mfrow then
the figure regions along the top row are used next from left to right, until that
row is full. After that, figure regions are used in the next row down, from
left to right, and so on. When all rows are full, a new page is started. For
example, the following code creates six figure regions on the page, arranged
in three rows and two columns and the regions are used in the order shown

in Figure 3.14a.

> par (mfrow=c(3, 2))
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If the setting is made via mf col, figure regions are used by column instead of
by row.

The order in which figure regions are used can be controlled by using the mfg
setting to specify the next figure region. This setting consists of two values
that indicate the row and column of the next figure to use.

3.3.2 Layouts

3
The layout () function provides an alternative to the mfrow and mfcol set- 3 4! 4

tings. The primary difference is that the layout () function allows the creation
of multiple figure regions of unequal sizes.

J
The simple idea underlying the layout () function is that it divides the inner 5 .m -

region of the page into a number of rows and columns, but the heights of rows
and the widths of columns can be independently controlled, and a figure can AUV
occupy more than one row or more than one column.* Amv

The first argument (and the only required argument) to the layout () function i TR
is a matrix. The number of rows and columns in the matrix determines the | 4
number of rows and columns in the layout. i

The contents of the matrix are integer values that determine which rows and 1 | 1
columns each figure will occupy. The following layout specification is identical
to par (mfrow=c(3, 2)).

> layout(matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, ncol=2))

e
|
)
‘

It may be easier to imagine the arrangement of figure regions if the matrix -
is specified using cbind() or rbind( ). The code below repeats the previous (d)
example, but uses rbind () to specify the layout matrix. on

> layout (rbind(c(1, 2),
(3, 4):
T i 14 . g m
m:m:ﬂm mWo layouts. (a) A layout that is identical to par (mfrow=c(3, mvw.a.rﬁwv:wwmw s
moﬁﬂov mxomg. the mmcwom are used in the reverse order. (c) A layout wi
as (a) e

The function layout.show () may be helpful for visualizing the figure regions heights. (d) same as (c) except the layout widths and heights “respect” each
row nei 3

that are created. The following code creates a figure visualizing the layout
created in the previous example (see Figure 3.14a). other.

> layout.show(6)

*The underlying concept of a “layout”[43] is also implemented, in a slightly different
and more general way, in the grid graphics system (see Section’ 5.5.6)
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The contents of the layout matrix determine the order in which the resulting
figure regions will be used. The mo:oaism code creates a layout with exactly

the same rows and columns as the Previous one, but the figure regions will be
used in the reverse order (see Figure 3.14b),

> Hm%ozdﬁwdwbaﬁoﬁm. 5),
c(4, 3),
c (2021

By default, all row heights are the same and all column widths are the same
size and the available inner region is divided up equally. The heights argy-
ments can be used to specify that certain TOWSs are given a greater portion
of the available height (for all of what follows, the widths argument works
analogously for column widths). When the available height is divided up, the
proportion of the available height given to each row is determined by dividing
the row heights by the sum of the row heights. For example, in the following
layout there are two rows and one column. The top row is given two-thirds
of the available height (2/(2 + 1)) and the bottom row IS given one third
(1/(2+1)). Figure 3.14¢ shows the resulting layout.

> Hm%ocdasmdwwxﬁnﬁp. 2. heights=c(2, 1))

In the examples so far, the division of row heights has been completely in-
dependent of the division of column widths. The widths and heights can be
forced to correspond as well so that, for example, a height of 1 corresponds
to the same physical distance as a width of 1. This allows control over the
this correspondence. The following code is the same as the previous example
except that the respect argument is set to TRUE (see Figure 3.14d).

> layout (matrix(c(1, 2)), heights=c(2, 1),
respect=TRUE)

It is also possible to specify heights of rows and widths of columns in absolute
terms. The lcm() function can be used to specify heights and widths for a
layout in terms of centimeters. The following code is the same as the previous
example, except that a third, empty, region is created to provide a vertical
gap of 0.5cm between the two figures (see Figure 3.15a). The 0 in the first
matrix argument means that no figure will ever occupy that region.

> Hm%ocaﬁswﬁHHxAOAH. 05 299
heights=c(2, lem(0.5), 1),
respect=TRUE)
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This next piece of code demonstrates that a figure may occupy more than one
row or column in the layout. This extends the previous example by adding a
second column and creating a figure region that occupies both columns of the

bottom row. In the matrix argument, the value 2 appears in both columns of
row 3 (see Figure 3.15b).

> layout(rbind(c(1, 3),
{0,500,
c(2.02)),
heights=c(2, 1lcm(0.5), 1),
respect=TRUE)

Finally, it is possible to specify that only certain rows and columns should
respect each other’s heights/widths. This is done by specifying a matrix for
the respect argument. In the following code, the previous example is modified
by specifying that only the first column and the last row should respect each
other’s widths/heights. In this case, the effect is to ensure that the width of
figure region 1 is the same as the height of figure region 2, but the width of
figure region 3 is free to expand to the available width (see Figure 3.15¢).

> layout (rbind(c(1, 3),
¢(0, 9),
C(2,e2095
heights=c(2, 1cm(0.5), 1),
respect=rbind(c(0, 0),
el 0)%
cld; 0))1)

3.3.3 The split-screen approach

The split.screen() function provides yet another way to divide the page
into a number of figure regions. The first argument, figs, is either two
values specifying a number of rows and columns of figures (i.e., like the
mfrow setting), or a matrix containing a figure region location, (left, right,
bottom, top), on each row (i.e., like a fig setting on each TOowW ).

Having established figure regions in this manner, a figure region is used by
calling the screen() function to select a region. This means that the order
in which figures are used is completely under the user’s control, and it is
possible to reuse a figure region, though there are dangers in doing so (the
on-line help for split.screen() discusses this some more). The function
erase.screen() can be used to clear a defined screen and close.screen()
can be used to remove one or more screen definitions.

An even more useful feature of this approach is that each figure region can
itself be divided up by a further call to split.screen(). This allows complex
arrangements of plots to be created.

The downside to this approach is that it does not fit very nicely with the
underlying traditional graphics system model (see Section .WS The recom-
mended way to achieve complex arrangements of plots is via the layout ()
function (see Section 3.3.2) or by using the grid graphics system (see Part :.v“
possibly in combination with traditional high-level functions (see Appendix
B).

3.4 Annotating plots

Sometimes it is not enough to be able to modify the default output from
high-level functions and in many situations, further graphical output must be
added to achieve the desired result (see, for example, Figure 1.3). R graphics
in general is fundamentally oriented to supporting the annotation of plots —
the ability to add graphical output to an existing plot. In particular, the
regions and coordinate systems used in the construction of a plot are also
available for adding further output to the plot. For example, it is possible to
position a text label relative to the scales on the axes of a plot.

3.4.1 Annotating the plot region

Most graphics functions that add output to an existing plot, add the output
to the plot region, relative to the user coordinate system.

Graphical primitives

This section describes the graphics functions that provide the most basic
graphics output (lines, rectangles, text, etc).

The most common use of this facility is to plot additional sets of data within
a plot. The lines () function draws lines between (x, y) locations, and the
points() function draws data symbols at (x, y) locations. The following
code demonstrates a common situation where three different sets of y-values.
recorded at the same set of x-values, are plotted together on the same plot
(see the top-left plot in Figure 3.16).
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Figure 3.16

>:.=o83:m the plot region of a traditional graphics plot. The top-left plot shows
points m.:& extra lines being added to an initial line plot. The top-right plot shows
text being added to an initial scatterplot. The bottom-left plot shows a dashed

H.monm:m_w and a polygon being added to an initial scatterplot. Axes and labels have
been omitted from the plots in order to avoid clutter.
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First some data are generated, consisting of one set of x values and three sets
of y values, and the first set of y values are plotted as a grey line (type="1"
and col="grey").

oox <= i)

> y <- matrix(sort(rnorm(30)), ncol=3)

> plot(x, y[,1], ylim=range(y), ann=FALSE, axes=FALSE,
d%@m"=H=~ 00H":®H®%:v

> box(col="grey")

Now a set of points are added for the first set of y values, then lines and points
are added for the other two sets of y values.

points(x, y[,1])

lines(x, y(,2], col="grey")
points(x, y[,2], pch=2)
lines(x, y[,3], col="grey")
points(x, y[,3], pch=3)

N NN N N

The lines() function typically draws a single line through many points
(though NA values in the (x, y) locations will create breaks in the line). An
alternative is provided by the segments () function, which will draw several
different straight lines between pairs of end points.

It is also possible to draw text at (x, y) locations. This is useful for labeling
data locations, particularly using the pos argument to offset the text so that
it does not overlay any data symbols. The following code creates a diagram
demonstrating the use of text () (see the top-right plot in Figure 3.16). Again,
some data are created and (grey) data symbols are plotted at the (x, y)
locations.

> 3 et Sl (- NS e 1Yy

P (TR

> plot(x, y, ann=FALSE, axes=FALSE, col="grey", pch=16)
> points(3, 3, col="grey", pch=16)

> box(col="grey")

Now some text labels are added, with each one offset in a different way from
the (x, y) location. Notice that the arguments to text () may be vectors so
that several pieces of text are drawn by the one function call.

> text(x, y, c¢("bottom", "left", "top", "right"), pos=1:4)
> text(3,. 3, "overlay")
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There are also the functions rect () and polygon () for drawing rectangles and
polygons. The arguments to rect () may be vectors, in which case multiple
rectangles are drawn. Multiple polygons may be drawn using polygon()
by inserting an NA value between each set of polygon vertexes. R will draw
sell-intersecting polygons, but does not handle polygons with holes. For both

rect () and polygon(), the col argument specifies the color to fill the interior
of the shape and the argument border controls the color of the line around

the boundary of the shape. The following code demonstrates the use of these
functions. First, data are generated and plotted (as grey circles).

> x <= rnorm(100)
> y <= rnorm(100)
> plot(x, y, ann=FALSE, axes=FALSE, col="grey")
> box(col="grey")

Now we draw a dashed bounding box for the data using rect () and a solid

convex hull using polygon() (and chull() to calculate the hull; see the
bottom-left plot of Figure 3.16).

> rect(min(x), min(y), max(x), max(y), lty="dashed")
> hull <- chull(x, y)

> polygon(x[hull], y[hull])

Like the plot () function, the text(), lines (), and points() functions are
generic. This means that they have flexible interfaces for specifying (x, y)
locations, or they produce different output when given objects of a particular
class in the x argument. For example, both lines(), and points() will
accept formulae for specifying the (x, y) locations and the 1ines() function
will behave sensibly when given a ts (time series) object to draw.

As a parallel to the matplot () function (see page 29), there are functions

matpoints() and matlines() specifically for adding lines and data symbols
to a plot given x or y as matrices.

Graphical utilities

In addition to the low-level graphical primitives of the previous section, there

are a number of utility functions that provide a set of slightly more complex
shapes.

The grid() function adds a series of grid lines to a plot. This is simply a
series of line segments, but the default appearance (light grey and dotted) is
suited to the purpose of providing visual cues to the viewer without interfering
with the primary data symbols.
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abline() & arrows()
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Figure 3.17 M .
Zomum examples of annotating the plot region of a traditional graphics plot. The

left-hand plot shows a line of best fit (plus a text label and m.:.oév vmm:m added to
an initial scatterplot. The right-hand plot shows a series of ticks being added as a

rug plot on an initial histogram.

The abline() function provides a number of oo:<$.zo=n ways to add a line
(or lines) to a plot. The line(s) can be mwmowmma. 9?.9. by a mr%m.mba T
axis intercept, or as a series of x-locations for vertical :Sm.m or uﬁ-_oomﬁgo:.m mou.
horizontal lines. The function will also accept the ooom.mﬂm:ﬁm m.noE a _E.o.&
regression analysis (even as an 1m object), thereby providing a simple way to
add a line of best fit to a scatterplot.

The arrows () function draws line segments and augments SSE with simple
arrowheads at either end. The following code annotates a basic scatterplot

with a line and arrows (see the left plot of Figure 3.17).

First, some data are generated and plotted.

> x <- runif (20, 1, 10)
> y <~ x + rnorm(20) .
> plot(x, y, ann=FALSE, axes=FALSE, col="grey", pch=16)

> box(col="grey")

Now a line of best fit is drawn through the data using abline() and a text
label and arrow are added using text () and arrows ().
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> Imfit <- lm(y ~ x)

> abline(Imfit)

> arrows(5, 8, 7, predict (Imfit, data.frame(x=7)),
length=0.1)

> text(5, 8, "Line of best fit", pos=2)

The box () function draws a rectangle around the boundary of the plot region.
The which argument makes it possible to draw the rectangle around the cur-
rent figure region, inner region, or outer region instead. The box () function
has been used in each of the examples in this section.

The rug() function produces a “rug” plot along one of the axes, which consists
of a series of tick marks representing data locations. This can be useful to
represent an additional one-dimensional plot of data (e.g., in combination
with a density curve). The following code uses this function to annotate a
histogram (see the right plot of Figure 3.17).

> y <= rnorm(50)

> hist(y, main="", xlab="", ylab="" axes=FALSE,
border="grey", col="light grey")

> box(col="grey")

> rug(y, ticksize=0.02)

3.4.2 Missing values and non-finite values

R has special values representing missing observations (NA) and non-finite
values (NalN and Inf). Most traditional graphics functions allow such values
within (x, y) locations and handle them by not drawing the relevant location.
For drawing data symbols or text, this means the relevant data, symbol or piece
of text will not be drawn. For drawing lines, this means that lines to or from
the relevant location are not drawn; a gap is created in the line. For drawing
rectangles, an entire rectangle will not be drawn if any of the four boundary
locations are missing or non-finite.

Polygons are a slightly more complex case. For drawing polygons, a missing
or non-finite value in x or y is interpreted as the end of one polygon and the
start of another. Figure 3.18 shows an example. On the left, a polygon is
drawn through 12 locations evenly spaced around a circle. On the right, the

first, fifth, and ninth locations have been set to NA so the output is split into
three separate polygons.

Missing or non-finite values can also be specified for some traditional graphics
state settings. For example, if a color setting is missing or non-finite then
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Figure 3.18 :

Drawing polygons using the polygon() function. On the left, a m.::m_m polygon
(dodecagon) is produced from multiple (x, y) locations. On the right, the first,
fifth, and ninth values have been set to NA, which splits the output into three separate

polygons,

nothing is drawn (this is a brute-force way to specify a completely transparent
color). Similarly, specifying a missing value or non-finite value for cex means
that the relevant data symbol or piece of text is not drawn.

3.4.3 Annotating the margins

There are only two functions that produce output in the figure or cuter mar-
gins, relative to the margin coordinate systems (Section 3.1.1).

The mtext () function draws text at any location in any of the mairgins. The
outer argument controls whether output goes in the figure or outer margins.
The side argument determines which margin to draw in: 1 means the bottom
margin, 2 means the left margin, 3 means the top margin, and 4 means the

right margin.

Text is drawn a number of lines of text away from the edges of the plot region
for figure margins, or a number of lines away from the edges of the inzer region
for outer margins. In the figure margins, the location of the text along the
margin can be specified relative to the user coordinates on the relevant m.xwm
using the at argument. In some cases it is possible to specify the So.m:o.:
as a proportion of the length of the margin using the adj argument. U:ﬁ. this
is dependent on the value of the las state setting. For certain las settings.
the adj argument instead controls the justification of the text relative to a
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position chosen by the las argument. Often, a trial-and-error approach is
required to achieve the desired result,.

The title() function is essentially a specialized version of mtext(). It is

more convenient for producing a few specific types of output, but much less
flexible than mtext (). This function can be used to produce a main title for
a plot (in the top figure margin), axis labels (in the left and bottom figure
margins), and a sub-title for a plot (in the bottom margin below the x-axis
label). The output from this function is heavily influenced by various graphics
state settings, such as cex.main and col.main (for the size and color of the
title).

With a little extra effort, it is also possible to produce graphical output in
the figure or outer margins using the functions that normally draw in the plot
region (e.g., points () and lines()). In order to do this, the clipping region of
the plot must first be set using the xpd state setting (see Section 3.2.7). This
approach is not very convenient because the functions are drawing relative
to user coordinates rather than locations relative to the margin coordinate
~systems. Nevertheless, it can sometimes be useful.

The following code demonstrates the use of mtext () and a simple application
of using lines() outside the plot region for drawing what appears to be a
rectangle extending across two plots (see Figure 3.19).*

First of all, the mfrow setting is used to set up an arrangement of two figure
regions, one above the other. The clipping region is set to the entire device
using xpd=NA.

> y1 <= rnorm(100)
> y2 <- rnorm(100)

> par (mfrow=c(2, 1), xpd=NA)

The first data set is plotted as a time series on the top plot and a label is
added at the left end of figure margin 3. In addition, thick grey lines are drawn
to represent the top of the rectangle that deliberately extend well below the
bottom of the plot.

*This example was motivated by a question to R-help on December 14 2004 with subject:
“drawing a rectangle through multiple plots”.
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Figure 3.19 .
Annotating the margins of a traditional graphics plot. Text has been added in

margin 3 of the top plot and in margins 1 and 3 in the bottom plot. Thick grey
lines have been added to both plots (and overlapped so that it appears to be a single
rectangle across the plots).
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> plot(yl, type="1", axes=FALSE,
xlab="" vau_.m..nuq..":_..Em.u..d.ﬂ::v

> box(col="grey")

> mtext("Left end of margin", adj=0, side=3)

> lines(x=c(20, 20, 40, 40), y=c(-7, max(y1), max(yl), -7),
1lwd=3, col="grey")

The second data set is plotted as a time series in the bottom plot, a label is
added to this plot at the right end of figure margin 3, and another label is
drawn beneath the x-location 30 in figure margin 1. Finally, thick grey lines
are drawn to represent the bottom of the rectangle that deliberately extend
above the plot. These lines overlap the lines drawn with respect to the top
plot to create the impression of a single rectangle traversing both plots.

> plot(y2, type="1", axes=FALSE,
%Hmﬁﬁl_:v vﬁ_..m.d..unu::uB.m.u..UH::v
box(col="grey")
mtext ("Right end of margin", adj=1, side=3)
mtext("Label below x=30", at=30, side=1)
lines(x=c(20, 20, 40, 40), y=c(7, min(y2), min(y2), 7),
lwd=3, col="grey")

vV V V V

3.4.4 Legends

The traditional graphics system provides the legend () function for adding a
legend or key to a plot. The legend is usually drawn within the plot region,
and is located relative to user coordinates. The function has many arguments,
which allow for a great deal of flexibility in the specification of the contents

and layout of the legend. The following code demonstrates a couple of typical
uses.

The first example shows a scatterplot with a legend to relate group names to
different symbols (see the top plot in Figure 3.20).

> with(iris,
plot(Sepal.Length, Sepal.Width,
pch=as.numeric(Species), cex=1.2))
> legend(6.1, 4.4, c("setosa", "versicolor", "virginica"),
cex=1.5, pch=1:3)

The next example shows a barplot with a legend to relate group names to
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Figure 3.20

Some simple legends. Legends can be added to any kind of plot and can relate text
labels to different symbols or different fill colors or patterns.
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different fill patterns (see the bottom plot in Figure 3.20).*

> barplot(VADeaths([1:2,], angle=c(45, 135), density=20,
col="grey", names=c("RM", "RF", "UM", "UF"))
> legend (0.4, 38, c("55-59" "50-64") , cex=1.5,

angle = c(135, 45), density = 20, £ill = "grey")

It should be noted that it is entirely the responsibility of the user to ensure
that the legend corresponds to the plot. There is no automatic checking that
data symbols in the legend match those in the plot, or that the labels in the
legend have any correspondence with the data.

Some high-level functions draw their own legend specific to their purpose (e.g.,
filled.contour()).

3.4.5 Axes

In most cases, the axes that are automatically generated by the traditional
graphics system will be sufficient for a plot. This is true even when the data
being plotted on an axis are non-numeric. For example, the axes of a boxplot
or barplot are labeled appropriately using group names,

Section 3.2.5 describes ways in which the default appearance of automatically-
generated axes can be modified, but it is more often the case that the user

needs to inhibit the production of the automatic axis and draw a customized
axis using the axis () function.

The first step is to inhibit the default axes. Most high-level functions should
provide an axes argument which, when set to FALSE, indicates that the high-

level function should not draw axes. Specifying the traditional graphics setting
xaxt="n" (or yaxt="n") may also do the trick.

The axis() function can draw axes on any side of a plot (chosen by the
side argument), and the user can specify the location along the axis of tick
marks and the text to use for tick labels (using the at and labels arguments
respectively). The following code demonstrates a simple example of a plot
where the automatic axes are inhibited and custom axes are drawn, including
a “secondary” y-axis on the right side of the plot (see Figure 3.21).

First of all, some temperature data are generated and an empty plot is created
with no data symbols and no axes.

*The data for the scatterplot are from the iris data set (see page 29) and the data for
the histogram are from the VADeaths data set (see page 3).
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Figure 3.21

Customizing axes. An initial plot is drawn with a y-scale in am%.mmm omi_mm.,_.m.amm then
| , . ] ] ! it. The x-axis is drawn
. 18 i rith a scale in degrees Fahrenhei
a secondary y-axis is drawn w . it s s
using special text labels, rather than the default numeric locations of the tick m:
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> U L ()
P e opunA (2. 02 200)
> par(mar=c(4, 4, 2, 4))

> plot(x, y, type="n", xlim=c(0.5, 2.5), ylim=c(-10, 110),
axes=FALSE, ann=FALSE)

Next, the main y-axis is drawn with specific tick locations to represent the
Centigrade scale.

> axis(2, at=seq(0, 100, 20))
> mtext ("Temperature (Centigrade)", side=2, line=3)

Now the bottom axis is drawn with special labels and a secondary y-axis is
drawn to represent the Fahrenheit scale.

> axis(1, at=1:2, labels=c("Treatment 1", "Treatment 2191

> axis(4, at=seq(0, 100, 20), labels=seq(0, 100, 20)%*9/5 + 32)
> mtext ("Temperature (Fahrenheit)", side=4, line=3)

> box ()

Finally, some thermometer-like symbols are drawn to represent the actual
temperatures.

> segments(x, 0, x, 100, 1wd=20, col="dark grey®)
> segments(x, 0, x, 100, lwd=16, col="white")
> segments(x, 0, x, y, lwd=16, col="light grey")

The axis() function is not generic., but there are special alternative func-
tions for plotting time related data. The functions axis.Date() and
axis.POSIXct () take an object containing dates and produce an axis with
appropriate labels representing times, days, months, and years (e.g., 10: 15,
Jan 12 or 1995), |

In some cases, it may be useful to draw tick marks at the locations that the
default axis would use, but with different labels. The axTicks() function
can be used to calculate these default locations. This function is also useful
for enforcing an xaxp (or yaxp) graphics state setting. If these settings are
specified via par (), they usually have no effect because the traditional graph-
ics system almost always calculates the settings itself. The user can choose
these settings by passing them as arguments to axTicks (), then passing the
resulting locations via the at argument to axis().
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3.4.6 Mathematical formulae

Any R graphics function that draws text should accept both a normal string,
e.g., "some text", and an R expression, which is typically the result of a call
to the expression() function. If an expression is specified as the text to draw,
then it is interpreted as a mathematical formula and is formatted appropri-
ately. This section provides some simple examples of what can be achieved.
For a complete description of the available features, type help(plotmath) or
demo (plotmath) in an R session.”

When an R expression is provided as text to draw in graphical output, the
expression is evaluated to produce a mathematical formula. This evaluation
is very different from the normal evaluation of R expressions: certain names
are interpreted as special mathematical symbols, e.g., alpha is interpreted as
the Greek symbol «; certain mathematical operators are interpreted as literal
symbols, e.g., a + is interpreted as a plus sign symbol; and certain functions are
interpreted as mathematical operators, e.g., sum(x, i==1, n) is interpreted
as Y ., x. Figure 3.22 shows some examples of expressions and the output
that they create.

In some situations, for example, when calling graphics functions from within
a loop, or when calling graphics functions from within another function, the
expression representing the mathematical formula must be constructed using
values within variables as well as literal symbols and constants. A variable
name within an expression will be treated as a literal symbol (i.e., the variable
name will be drawn, not the value within the variable). The solution in such
cases is to use the substitute() function to produce an expression. The
following code shows the use of substitute() to produce a label where the

year is stored in a variable.

> myfunction <- function(year) {
text (0.5, 0.5, substitute(paste("Temperature (",
degree, "C) in ", year),

list (year=year)))

The mathematical annotation feature makes use of information about the
dimensions of individual characters to perform the formatting of the formula.
For some output formats, such information is not available, so mathematical
formulae cannot be produced. However, mathematical formulae are supported
on the major screen devices (X11, Windows, and Quartz) and information

*Further information can also be obtained from an article in the Journal of Computa-
tional and Graphical Statistics{45].
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Temperature (°C) in 2003

expression(paste ("Temperature (", degree, "C) in 2003"))
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expression(bar(x) == sum(frac(x(i], n), i==1, n))

A
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zi =X} +Y}
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Figure 3.22

Mathematical formulae in plots. For each example, the output is shown in a serif

font, and below that, in a typewriter font, is the R expression required to produce
the output.
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for the standard Adobe Type 1 fonts is distributed with R so mathematical
formulae should always be available for PostScript and PDF output.

3.4.7 Coordinate systems

The traditional graphics system provides a number of coordinate systems for
conveniently locating graphical output (see Section 3.1.1). Graphical output
in the plot region is automatically positioned relative to the scales on the axes
and text in the figure margins is placed in terms of a number of lines away
from the edge of the plot (i.e., a scale that naturally corresponds to the size
of the text).

It is also possible to locate output according to other coordinate systems
that are not automatically supplied, but a little more work is required by the
user. The basic principle is that the traditional graphics state can be queried
to determine features of existing coordinate systems, then new coordinate
systems can be calculated from this information.

The par function

As well as being used to enforce new graphics state settings, the function
par() can also be used to query current graphics state settings. The most
useful settings are: din, fin, and pin, which reflect the current size, (width,
height), of the graphics device, figure region, and plot region, in inches: and
usr, which reflects the current user coordinate system (i.e., the ranges on the
axes). The values of usr are in the order (xmin, xmax, ymin, ymax). When
a scale has a logarithmic transformation, the values are (10"xmin, 10" xmax,
10"ymin, 10" ymax).

There are also settings that reflect the size, (width, height), of a “standard”
character. The setting cin gives the size in inches, cra in “rasters” or pixels,
and cxy in “user coordinates.” However, these values are not very useful
because they only refer to a cex value of 1 (i.e., they ignore the current
cex setting) and they only refer to the ps value when the current graphics
device was first opened. Of more use are the strheight () function and the
strwidth() function. These calculate the height and width of a given piece
of text in inches, or in terms of user coordinates, or as a proportion of the
current figure region (taking into account the current cex and ps settings).

The following code demonstrates a simple example of making use of cus-
tomized coordinates where a ruler is drawn showing centimeter units (see
Figure 3.23).

A blank plot region is set up first and calculations are performed to establish
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Figure 3.23

Custom coordinate systems. The lines and text are drawn relative to real physical

centimeters (rather than the default coordinate system defined by the scales on plot
axes).

the relationship between user coordinates in the plot and physical centime-
ters.”

> plot(0:1, 0:1, type="n", axes=FALSE, ann=FALSE)
> usr <- par("usr")

> pin <- par("pin")

> xem <= diff(usr([1:2])/(pin[1]*2.54)

> yem <- diff(usr([3:4])/(pin[2]%2.54)

Now drawing can occur with positions expressed in terms of centimeters. First
of all a “drop shadow” is drawn to give a three-dimensional effect by drawing

a grey rectangle offset by 2mm from the main ruler. The call to par () makes

sure that the grey rectangle is not clipped to the plotting region (see Section
3.2.7).

> par(xpd=NA)

> rect(0 + 0.2*xcm, 0 - 0.2*ycm,
1 + 0.2%xcm, 1 - 0.2*ycm,
col="grey", border=NA)

The ruler itself is drawn with a call to rect () to draw the edges of the ruler,
a call to segments () to draw the scale, and calls to text () to label the scale.

. "R graphics relies on a graphics device providing accurate information on the physical
size of the natural units on the device (e.g., the physical size of pixels on a computer mommm:v.
:..m. graphics device does not give accurate information, when R attempts to draw output
with an physical size (e.g., a line 1 inch long), it may not appear with the exact physical
size on the device. The physical size of output for PostScript and PDF files should always
be correct, but small inaccuracies may occur when specifying output with an physical size
(such as inches) on screen devices such as Windows and X11 windows.
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> rect(0, 0, 1, 1, col="white")
> segments(seq(1l, 8, 0.1)*xcm, O,

seq(1, 8, 0.1)*xcm,

c(rep(c(0.5, rep(0.25, 4),

0.35, rep(0.25, 4)),
7), 0.5)*ycm)

> text(1:8*xcm, 0.6*ycm, 0:7, adj=c(0.5, 0))
> text(8.2*xcm, 0.6xycm, "cm", adj=c(0, (0))

There are utility functions, xinch() and yinch (), for performing the inches-
to-user coordinates transformation (plus xyincth () for converting a location
in one step and cm() for converting inches to cemtimeters).

One problem with performing coordinate transiformations like these is that
the locations and sizes being drawn have no memory of how they were cal-
culated. They are specified as locations and dinmensions in user coordinates.
This means that if the device is resized (so that tlhe relationship between phys-
ical dimensions and user coordinates changes), tlhe locations and sizes will no
longer have their intended meaning. If, in the @above example, the device is
resized, the ruler will no longer accurately repreesent centimeter units. This
problem will also occur if output is copied from one device to another device
that has different physical dimensions. The legend () function performs cal-
culations like these when arranging the componemts of a legend and its output
is affected by device resizes and copying betweem devices.*

Overlaying output

It is sometimes useful to plot two data sets on t:he same plot where the data
sets share a common x-variable, but have very dlifferent y-scales. This can be
achieved in at least two ways. One approach is s;simply to use par (new=TRUE)
to overlay two distinct plots on top of each other- (care must be taken to avoid
conflicting axes overwriting each other). Anotther approach is to explicitly
reset the usr state setting before plotting a secomnd set of data. The following
code demonstrates both approaches to produce exactly the same result (see
the top plot of Figure 3.24).

The data are yearly numbers of drunkenness-rela:ted arrests™ and mean annual
temperature in New Haven, Connecticut from 1912 to 1971. The temperature

*It is possible to work around these problems in R verrsion 2.1.0 and above by using the
recordGraphics () function, although this function shoulld be used with extreme care.
"These data were obtained from “Crime Statistics amd Department Demographics” on

the New Haven Police Department Web Site:
http://www.cityofnewhaven.com/police/html/stats/crrime/yearly/1863-1920.htm

-
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data are available as the data set nhtemp in the datasets package. There are
only arrests data for the first 9 years.

> drunkenness <~ ts(c(3875, 4846, 5128, 5773, 7327,
6688, 56582, 3473, 3186,

rep(NA, 51)),
start=1912, end=1971)

The first approach is to draw a plot of the drunkenness data, call
par (new=TRUE), then draw a complete second plot of the temperature data on
top of the first plot. The second plot does not draw default axes (axes=FALSE),
but uses the axis () function to draw a secondary y-axis to represent the tem-

perature scale.

par (mar=c(5, 6, 2, 4))

plot (drunkenness, lwd=3, col="grey", ann=FALSE, las=2)
mtext ("Drunkenness\nRelated Arrests", side=2, line=3.5)
par (new=TRUE)

plot (nhtemp, ann=FALSE, axes=FALSE)

mtext ("Temperature (F)", side=4, line=3)

title("Using par(new=TRUE)")

axis(4)

N e RN SNIEENAC NI N NN

The second approach draws only one plot (for the drunkenness data). The
user coordinate system is then redefined by specifying a new usr setting and
the second “plot” is produced simply using lines(). Again, a secondary axis
is drawn using the axis () function.

par(mar=c(5, 6, 2, 4))

plot (drunkenness, lwd=3, col="grey", =FALSE, las=2)
mtext ("Drunkenness\nRelated Arrests", side=2, line=3.5)
usr <- par("usr") :
par(usr=c(usr[1:2], 47.6, 54.9))

lines (nhtemp)

mtext ("Temperature (F)", side=4, line=3)

title("Using par(usr=...)")

axis(4)

N N NS NS N NN N N

Some high-level functions (e.g., symbols() and contour()) provide an argu-
ment called add which. if set to TRUE, will add the function output to the
current plot, rather than starting a new plot. The following code shows the
symbols () function being used to annotate a basic scatterplot (see the bot-
tom plot of Figure 3.24). The data used in this example are from the trees

data set (see page 35).



e R Graphics

Finally, a horizontal line is drawn to indicate the y-value cut-off, and axes are
added to the plot (see the bottom-right plot of Figure 3.25).

> abline (h=hline,col="grey")
> box()

> axis(1)

> axis(2)

3.4.8 Bitmap images

The R graphics engine has no internal support for drawing bitmaps. Despite
this, bitmap images can be represented by drawing a rectangle for each pixel

in the image. A convenient interface for this approach is provided by functions
in the pixmap package[8].

The plot in Figure 3.26 shows an example of what can be achieved using the
functions in the pixmap package. This plot shows the relationship between the
time of day that every second low tide occurred and the phase of the moon,
for the port of Auckland, New Zealand in February 2005. The addlogo()
function has been used to add a bitmap of the moon as a dramatic backdrop
for the main plot (the code is not shown, but it is available on the web site
for this book). This approach is most appropriate for producing images on
screen or in some sort of bitmap format such as PNG. When used for creating
vector formats such as PostScript and PDF, the file size grows very rapidly

with the size of the bitmap (e.g., the PostScript file for the printed version of
Figure 3.26 is more than S5MBY).

3.4.9 Special cases

Some high-level functions are a little more difficult to annotate than others
because the plotting regions that they set up either are not immediately ob-
vious, or are not available after the function has run. This section describes

a number of high-level functions where additional knowledge is required to
perform annotations.

Obscure scales on axes

It is not immediately obvious how to add extra annotation to a barplot or a

boxplot in traditional R graphics because the scale on the categorical axis is
not obvious.

The difficulty with the barplot () function is that because the scale on the
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>am5m a bitmap to a plot. A plot with a bitmap of the moon as a back-

drop, added using the pixmap package. The ZSE:.U is a e.mmsw Mm the .WHMX..EAM
north pole assembled from images taken by 25. Galileo mvmooogmr:oo:_ MN” e
NASA (image #: PIA00130). The data on low tides and vrmmom. o, H./..:.w .ENoz L
Auckland in February 2005 were obtained from Land Information New Zeale

(http://hydro.linz.govt.nz).
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X-axis is not labelled at all by default. the numeric scale is not obvious (and
calling par ("usr") is not much help because the scale that the function sets
up is not intuitive either). In order to add annotations sensibly to a barplot
1t is necessary to capture the value returned by the function. This return
value gives the x-locations of the mid-points of each bar that the function has

drawn. These midpoints can then be used to locate annotations relative to
the bars in the plot.

The code below shows an example of adding extra horizontal reference lines
to the bars of a barplot. The mid-points of the bars are saved to a variable
called midpts, then locations are calculated from those mid-points (and the
original counts) to draw horizontal white line segments within each bar using
the segments () function (see the left plot of Figure 3.27).

>y <~ sample(1:10)

> midpts <- barplot(y, col=" light grey")

> width <- diff(midpts([1:2])/4

> left <- rep(midpts, y - 1) - width

> right <- rep(midpts, y - 1) + width

> heights <- unlist (apply (matrix(y, ncol=10),

2, seq)) [-cumsum(y)]

> segments(left, heights, right, heights,

col="white")

The boxplot () function is similar to the barplot () function in that the x-
scale is typically labelled with category names so the numeric scale is not obvi-
ous from looking at the plot. Fortunately, the scale set up by the boxplot ()
function is much more intuitive. The individual boxplots are drawn at x-
locations 1:1, where n is the number of boxplots being drawn.

The following code provides a simple example of annotating boxplots to add
a Jittered dotplot of individual data points on top of the boxplots. This
provides a detailed view of the data as well as showing the main features via
the boxplot. It is also a useful way to show how interesting features of the
data, such as small clusters of points, can be hidden by a boxplot. In this
example, the jittered data are centered upon the x-locations 1:2 to correspond
to the centers of the relevant boxplots (see the right plot of Figure 3.27).*

*The data used in this example are from the ToothGrowth data set (see page 3).
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Special-case annotations. Some examples of functions where annotation requires
special care. In the barplot at left, the value returned by the barplot() function is

used to add horizontal white lines within the bars. Jittered points mam.mm_amm to mwo
boxplot (right) using the knowledge that the ith box is located at position 7 on the

X-axis.

> with(ToothGrowth,

; boxplot(len ~ supp, border="grey",
col="light grey", boxwex=0.5)
points(jitter(rep(1:2, each=30), 0.5),
; unlist(split(len, supp)),
cex=0.5, pch=16)

})

Functions that draw several plots

The pairs() function is an example of a Emr-_ma_.& m::oaoz. that ﬂ?wﬁ.m M.SMM
than one plot. This function draws a matrix of mom.ﬁ.m.wH.Eoﬁm. Such func wo .
tend to save the traditional graphics state before 9.@25@...8:.%.2 QMHH .H,..osH .9.
layout () to arrange the individual plots, and restore the S“ma_so:m M_WSMVMEM
state once all of the individual plots have been drawn. H.Fm Emwsm M_.S i Mm
not possible to annotate any of the plots 9.@4: by the pairs O E.Mo _._c:, w%i
the function has completed drawing. The regions and coordinate mu_unEw ﬁmﬂ

the function set up to draw the individual plots wm&o Uow: S:.oé:. aw 8 wo
only way to annotate the output from such functions is by way of “pane

functions.
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The pairs() function has a number of arguments that allow the user to
specify a function: panel, diag.panel, upper.panel, lower.panel, and
text.panel. The functions specified via these arguments are run as each

individual plot is drawn. In this way, the panel function has access to the plot
regions that are set up for each individual plot.

The filled.contour() function and the coplot() function have the same

problem as pairs (), as the legends that they draw are actually separate plots.
Again, they allow annotation via panel function arguments,

The following code demonstrates a simple use of a panel function with the
coplot () function. The main conditioning plot shows the locations of earth-
quakes in the Pacific Ocean near Fiji since 1964,* available as the quakes
data set in the datasets package. There are multiple panels, each of which
shows the earthquakes that occurred at a particular range of depths. A panel
function is specified via the panel argument to add maps of Fiji and New
Zealand to each panel of coplot () output (see Figure 3.28).

The panel function first calls the rect() function to overlay a white back-
ground and hide the default grid lines. Next, the panel function calls the
points () function to draw the points that would normally be drawn, but uses
a custom plotting symbol (a very small dot). The map() function is called to
draw the maps of Fiji and the top of the North Island of New Zealand, and
the text () function is used to add country names. The map is drawn using
the map () function from the maps package.

> library(maps)
> coplot(lat ~ long | depth, data = quakes, number=4,
panel=function(x, y, ...) {
usr <- par("usr")
rect (usr([1], usr (3], usr[2], usr[4], col="white")
map ("world2", regions=c("New Zealand", "Fiji"),
add=TRUE, lwd=0.1, fill=TRUE, col="grey")
text (180, -13, o b L adj=1, cex=0.7)
text (170, -35, "NZ", cex=0.7)
points(x, y, pch=",")
b

There is a predefined panel function called panel.smooth(), which draws
points and then adds a smoothed line through the points.

"The data were obtained from the Harvard PRIM-H project, who obtained it from Dr.
John Woodhouse, Dept. of Geophysics, Harvard University.

1Lt
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3D plots

[t is possible to annotate a plot produced using the persp() function, but it
is more difficult than for most other high-level functions. The important step
s to acquire the transformation matrix that the persp() function returns.
This can be used to transform 3D locations into 2D locations that can be
given to the standard annotation functions such as 1ines () and text (). The

persp() function also has an add argument, which allows multiple persp()
plots to be over-plotted.

The following code demonstrates annotation of persp() output to add an

indication of the summit and access roads to a plot of the Maunga Whau
volcano in Auckland New Zealand (see Figure 3.29).*

The first step is to draw the volcano itself and record the 3D transformation
matrix in the variable trans.

> z <= 2 * volcano

> x <= 10 * (1:nrow(z))

>y <= 10 * (1:ncol(z))

> trans <- persp(x, y, z, theta = 135, phi = 30,
scale = FALSE, ltheta = -120,
box = FALSE)

> box(col="grey", lwd=1)

Now a function is defined that uses the transformation matrix to convert 3D
locations into 2D locations relative to the existing plot

> trans3d <- function(x,y,z,pmat) {
tmat <- cbind(x,y,z,1)%*% pmat
tmat[,1:2] / tmat[,4]
}

The next code makes use of the transformation function to draw a dot at the
summit of the volcano and a text label above that.

> summit <- trans3d(x[20], y[31], max(z), trans)

> points(summit[1], summit (2], pch=16)

> summitlabel <- trans3d(x[20], y([31], max(z) + 50, trans)
> text(summitlabel[1], summitlabel[2], "Summit")

*The data are from the volcano data set (see page 35) and from the volcano.accessRoad
volcano.upDownRoad volcano.summitRoad data sets from the RGraphics package.
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Finally, the transformation function is also used to draw lines representing
the roads that provide access to the summit of the volcano.

> drawRoad <- function(x, y, z, trans) {
road <- trans3d(x, y, z, trans)
lines(road(,1], road[,2], lwd=5)
lines(road[,1], road[,2], lwd=3, col="grey")
i
> with(volcano.summitRoad,
drawRoad(srx, sry, srz, trans))
> with(volcano.upDownRoad,
{
clipudx <- udx
clipudx [udx < 230 & udy < 300 |
udx < 150 & udy > 300] <- NA
drawRoad(clipudx, udy, udz, trans)
})
> with(volcano.accessRoad,
drawRoad(arx, ary, arz, trans))

This example does demonstrate one of the limitations for annotating persp ()
output, namely that there is no support for automatically hiding output that
should not be seen. For example, the drawing of the upDownRoad has been
manually clipped (see the lines involving the variable clipudx) in order to
avoid drawing the part of the road that should be obscured because it is
behind the main cone of the volcano.

ALY O TR T AR

3.5 Creating new plots

There are cases where no existing plot provides a sensible starting point for
creating the final plot that the user requires. This section describes how to
construct a new plot entirely from scratch for such cases.

The plot.new() function is the most basic starting point for producing a
traditional graphics plot (the frame () function is equivalent). This function
sets up the various plotting regions described in Section 3.1.1 and sets both
the x-scale and y-scale to (0, 1).* The regions that are set up depend on the

"The actual scale setup depends on the current settings for xaxs and yaxs. With the
default settings, the scales are (—0.04, 1.04).
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current graphics state settings.

The plot.window() function resets the scales in the user coordinate system,
given x- and y-ranges via the arguments x1im and ylim, and the plot.xy ()
function draws data symbols and lines between locations within the plot re-
gion.

3.5.1 A simple plot from scratch

In order to demonstrate the use of these functions, the following code produces
the simple scatterplot in Figure 1.1 from scratch.

> plot.new()

> plot.window(range (pressure$temperature),
range (pressure$pressure) )

> plot.xy(pressure, type="p")

> box()

> axis(1)

> axis(2)

The output could be produced by the simple expression plot (pressure), but
it shows that the steps in building a plot are available as separate functions
as well, which allows the user to have fine control over the construction of a
plot.

3.5.2 A more complex plot from scratch

This section describes a slightly more complex example of creating a plot from
scratch. The final goal is represented in Figure 3.30 and the steps involved
are described below.,

This first bit of code generates some data to plot.

> groups <- c("cows", "sheep", "horses",
"elephants", "giraffes")

> males <- sample(1:10, 5)

> females <- sample(1:10, 5)

There are several ways that the plot could be created. For this example, it
will be created as a single plot. The labels to the left of the plot will be drawn
in the margins of the plot, but everything else will be drawn inside the plot
region. This next bit of code sets up the figure margins so that there is enough
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Figure 3.30

A back-to-back barplot from scratch. This demonstrates the use of lower-level plot-
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room for the labels in the left margin, but all other margins are nice and small
(to avoid lots of empty space around the plot).

> par(mar=c(0.5, 5, 0.5, 1))

Inside the plot region there are seven different rows of output to draw: the
five main pairs of bars, the x-axis, and the legend at the bottom. The axis will
be drawn at a y-location of 0, the main bars at the y-locations 1:5, and the
legend at -1. The following code starts the plot and sets up the appropriate
y-scale and x-scale.

> plot.new()
> plot.window(xlim=c(-10, 10), ylim=c(-1.5, 5.5))

This next bit of code assigns some useful values to variables, including the
x-locations of tick-marks on the x-axis, the y-locations of the main bars, and
a value representing half the height of the bars.

> ticks <- seq(-10, 10, 5)
> yiCe 108
=)D

Now some drawing can occur. This next code draws the main part of the piot.
Everything is drawn using calls to the low-level functions such as lines ( )
segments (), mtext(), and axis(). In particular, the main bars are just
rectangles produced using rect (). Notice that the x-axis is drawn within the

plot region (pos=0).

lines(rep(0, 2), c(-1.5, 5.5), col="grey")
segments(-10, y, 10, y, lty="dotted")
rect(-males, y-h, 0, y+h, col="dark grey")
rect(0, y-h, females, y+h, col="light grey")
mtext (groups, at=y, adj=1, side=2, las=2)
par(cex.axis=0.5, mex=0.5)

axis(1, at=ticks, labels=abs(ticks), pos=0)

NCEENG SN N N e N

The final step is to produce the legend at the bottom of the plot. Again, this
1s just a series of calls to low-level functions, although the bars are sized using
strwidth() to ensure that they contain the labels.
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> tw <- H.m*mdwzwadrﬁzmmamwmm=v

> rect(-tw, -1-h, 0, =1+h, col="dark grey")
> rect(0, -1-h, tw, -1+h, col="light grey")
> text (0, -1, "males", pos=2)

> text (0, -1, "females", pos=4)

This example is particularly customized to the data set involved. It could
be made much more general by replacing some constants with variable values
(e.g., instead of using 5 because there are five groups in the data set, the code
could have a variable numGroups). If more than one such plot needs to be

made, it makes good sense to also wrap the code within a function. That task
is discussed in the next section.

3.5.3 Writing traditional graphics functions

Having made the effort to construct a plot from scratch, it is usually worth-
while encapsulating the calls within a new function and possibly even making
It available for others to use. This section briefly describes some of the things

to consider when creating a new graphics function built on the traditional
graphics system functions.

There are many advantages to developing new
graphics system (see Part IT) rather than using

7 contains a more complete discussion of the iss
graphics functions,

graphics functions in the grid
traditional graphics. Chapter
ues involved in developing new

Helper functions

There are some helper functions that do no dr

awing, but are used by the
predefined high-level plots to do some of the wor

k in setting up a plot.

The xy.coords() function is useful for
new function to be flexibly specified (]
can be left unspecified and x can be a
takes x and y arguments and cr

y-values, and sensible labels for
funetion.

allowing x and y arguments to your
ust like the plot () function where y
data.frame, and so on). This function
cates a standard object containing x-value,
the axes. There is also an Xyz.coords()

If your plotting function generates multiple sub-plots, the n2mfrow() function

may be helpful to generate a sensible number of rows and columns of plots,
based on the total number of plots to fit on a page.

Another set of useful helper functions are those that calculate values to plot
from the raw data (but do no actual drawing). Examples of these sorts of
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. : s () used by boxplot () to generate m<o-bcﬂ,sm~..
Hﬁ%ﬁﬂﬂwomnwowmwwwmwmmwm% vama by contour() to mmzoamem WOsmw:mM w%.oﬁw
nclass.Sturges(), nclass.scott (), m.sa bopmmm.MUC z.moﬁmwwwpmc ol
generate the number of intervals for a histogram; m.:. .oo.. Hw N
W% coplot() to generate ranges of values for conditioning a dat

panels.

Some high-level functions invisibly 8”2:5 this sort of Emow.wsmm_omw MMM.A VHMM“.
example, boxplot () returns the combined wmmc:m from do.xm, 0 M e
all of the boxplots that it produces and hist () returns in A.vzsum Hr A
intervals that it creates including the number of data values in eac i3

Argument lists

A common technique when writing a ﬁ.m&ﬁm:.& %.%Eom.ﬁwoﬁwz Hm.ﬁwgwwﬁ
vide an ellipsis argument (. ..) instead of 5959_..& mu.m@r?.u oggn M:,mw_. .
(such as col and 1ty). This allows users to mvoe.@ any mgﬁw mm Emﬁ Eﬂm
col="red" and 1ty="dashed") and the new function can pass t oawm 1 HmEm
on to the traditional graphics functions that n.ro new ?:Q:QM oﬁm M:m 5
avoids having to specify all individual m.ﬂmﬁm mwg:mm as arguments oz.%ﬁgmm
function. Some care must be taken with this 3@&550 Umomcmw mo.s b
different graphics functions Eﬂmw?“_w.n the mmwsmmmwmmwoﬁmowawew vmww Lﬁmﬂ M e

4 . setting is a good example; 2). In :
MWMWMMMHMMWMQMMME,% to mem mrm individual mw.mv:mo.m state mowﬁ.:gm..mm mﬁw MM
gument and explicitly pass it on only to other graphics calls that will accep
it and respond to it in the desired manner.

Sometimes it is useful for a graphics function to mm:coemﬁo.q wu&w.ﬂw MWM
current graphics state settings. For mx.wBEm“ a new plot may M ME %oﬁo”,mqwoz
xpd setting to be NA in order to draw lines and .ﬂmxﬁ oﬁm_a.o o_ H.o. p e MS&
In such cases, it is polite for the graphics function to w.mﬁw.n e.._m g1 mav mc.H . ﬂnma_
settings at the end of the function so gpﬁ. users do zwﬁ m,ma a Mmm W g om agm..
A standard technique is to put the following expressions at t mwma o
new function to restore the graphics state to the settings that existed b

the function was called.

opar <- par(no.readonly=TRUE)
on.exit (par(opar))

Care should be taken to ensure that a new graphics ?Moaw: Mm_w% :o_ﬂ..ua,m %M
: : i a little complicate
"Opri . ate settings (e.g., ann). This can be a li
appropriate graphics sta . SR
: it i ssary to be aware of the possibility
o implement because it is necessary . . o
Wmmw Hmmmrﬁ specify a setting in the call to the function and that such a wﬁm_:.m
should override m_uo main graphics state setting. The standard approach is
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to name the state setting explicitly as an argument to the graphics function
and provide the permanent state setting as a default value. See the new
graphics function template below for an example of this technique using the
ann argument. An additional complication is that now there is a state setting
that will not be part of the ... argument, so the state setting must be
explicitly passed on to any other functions that might make use of it.

Another good technique is to provide arguments that users are used to seeing
in other graphics functions — the main, sub, x1im, and ylim arguments are
good examples of this sort of thing — and a new graphics function should
be able to handle missing and non-finite values. The functions is.na(),
is.finite(), and na.omit () may be useful for this purpose.

Plot methods

If a new function is for use with a particular type of data, then it is convenient
for users if the function is provided as a method for the generic plot () func-
tion. This allows users to simply call the new function by calling plot(x),
where x is an object of the relevant class.

A graphics function template

The code in Figure 3.31 is a simple shell that combines some of the basic
guidelines from this section. This is just a simplified version of the default
plot () method. It is far from complete and will not gracefully accept all
possible inputs (especially via the ... argument), but it could be used as the
starting template for writing a new traditional graphics function.
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plot.newclass <-
function(x, y=NULL,
BWMU“: 1 g mcU"._ 1 >
x1im=NULL, ylim=NULL,
axes=TRUE, ann=par("ann"),
col=par("col"),
SO
Xy <- xy.coords(x, y)
9 if (is.null(xlim))
10 xlim <- range(xy$x[is.finite(xy$x)])
11 if (is.null(ylim))
12 ylim <- range(xy$y[is.finite(xy$y)])
13  opar <- par(no.readonly=TRUE)
i4  on.exit(par(opar))
156  plot.new()
16  plot.window(xlim, ylim, ...)
17  points(xy$x, xy$y, col=col, ...)
18" d1f (axes)'{

QO N b W N -

19 axis(1)

20 axis(2)

21 box ()

2%k

28  1f.(ann)

24 title(main=main, sub=sub,

25 xlab=xy$xlab, ylab=xy$ylab, ...)
26 }

Figure 3.31
A graphics function template. This code provides a starting point for producing a
new graphics function for others to use.
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Chapter summanry

High-level traditional graphics functions produce complete plots and
low-level traditional graphics functions add output to existing plots,
There are low-level functions for producing simple output such as lines,
rectangles, text, and polygons and also functions for producing more
complex output such as axes and legends.

The traditional graphics system creates several regions for drawing the
various components of a plot: a plot region for drawing data symbols
and lines, figure margins for axes and labels, and so on. Each low-level
graphics function produces output in a particular drawing region and
most work in the plot region.

There is a traditional graphics system state that consists of settings to
control the appearance of output and the arrangement of the drawing
regions. There are settings for controlling color, fonts, line styles, data
symbol style, and the style of axes. There are several mechanisms for
arranging multiple plots on a single page.

It is straightforward to create a complete plot using only low-level
graphics functions. This makes it possible to produce a completely

new type of plot. It is also possible for the user to define an entirely
new graphies function,
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