A Processing Ghost in a Tank Machine

Mario Fifić

Grand Valley State University Michigan

Air Force Research Laboratory, November, 2013

Pred polazak na zadatak: avion F-84G, ev. broj 10602, sa

Research Perspectives

Mario Fifić

Grand Valley State University, MI

 My research interests center on developing a process-tracing approach that allows for precise determination of the fundamental properties of the mental processes that underlie cognitive actions.

Theoretical advances

Psychological Review 2010, Vol. 117, No. 2, 309-348 © 2010 American Psychological Association 0033-295X/10/\$12.00 DOI: 10.1037/a0018526

Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

Mario Fific
Max Planck Institute for Human Development

Daniel R. Little and Robert M. Nosofsky Indiana University, Bloomington

A magnifying glass on human cognition

Journal of Experimental Psychology: Learning, Memory, and Cognition 2010, Vol. 36, No. 5, 1290–1313 © 2010 American Psychological Association 0278-7393/10/\$12.00 DOI: 10.1037/a002012:

Information-Processing Alternatives to Holistic Perception: Identifying the Mechanisms of Secondary-Level Holism Within a Categorization Paradigm

Mario Fifić
Max Planck Institute for Human Development

James T. Townsend Indiana University Bloomington

The applications

9

Assessment of Mental Architecture in Clinical/Cognitive Research

James T. Townsend and Mario Fifić

Indiana University

Richard W. J. Neufeld University of Western Ontario

Part III: Methods for Tracing Physiological, Neurological, and Other Concomitants of Cognitive Processes		
6	Analyzing Response Times to Understand Decision Processes	143
	Wolfgang Gaissmaier, Mario Fific, and Jörg Rieskamp	

Motivation

Understanding mind's cognitive mechanism

Understanding the brain's neural mechanisms

 Assessment of individuals with application in Clinical, Personality, Developmental Psychology

Stopping Rule Selection (SRS) Theory Applied to Deferred Decision Making

Mario Fifić

Grand Valley State University

Marcus Buckmann

Max Planck Institute for Human Development, Center for Adaptive Behavior and Cognition, Berlin

A Processing Ghost in a Tank Machine

Mario Fifić

Grand Valley State University Michigan

Working memory (WM) under consideration

- Processing order
- Capacity status
- Subdivision by modalities
- Dual or one system
- Status of mental representations & resource allocation

Resource allocation models of WM

- The <u>discrete-slot model</u> proposes that WM operates on the **ALL-OR-NONE** principle: holding only highresolution item representations stored in a limited number of memory slots.
 - The slots+averaging model is variant of the discrete-slot model assuming that more than one slot could be allocated to a single item representation
- the <u>variable-resources</u> model WM operates on the ALL-GET-SOME principle: a pool of limited resources is dynamically allocated across a set of memorized items representations.

Lim f(x) n->Infinity

Why status of mental representations?

- Resource allocation.
- If representations are ALL-OR-NONE, and the system's capacity is limited, then when there is information overload an operator must guess.
- Sophisticated guessing?
- Neural system's implications.

Resource allocation in model of WM

Evidence supporting Discrete Slots Model

- Zhang & Luck 2008
- Cowan (2001) The magical number 4 in short-term memory
- Rouder, Morey, Cowan, Zwilling, Morey, & Pratte (2008).
- Donkin, Nosofsky, Gold, & Shiffrin, (in press 2013).

Evidence supporting the Variable-resource model

- van den Berg, R., Shin, H., Chou, W.C., George, R., & Ma, W.J.
 (2012)
- Bays & Husain (2008)

van den Berg, et al. (2012). Appendix..

ments $\mathbf{x} = (x_1, \dots, x_N)$ and $\mathbf{y} = (y_1, \dots, y_N)$, we use a Bayesianobserver model. The Bayesian observer computes a probability distribution over the location of the change, $p(L \mid \mathbf{x}, \mathbf{y})$, and then reports the location with the highest probability. The posterior distribution over L is proportional to the joint distribution, $p(\mathbf{x}, \mathbf{y}, L)$, which in turn is evaluated as an integral over the remaining variables, namely Δ , θ , and φ ,

$$\begin{split} p\left(\mathbf{x}, \mathbf{y}, L\right) &= \iiint p(\mathbf{x}, \mathbf{y}, \theta, \varphi, \Delta, L) d\Delta d\theta d\varphi \\ &= \iiint p(L) p(\Delta) p(\theta) p(\varphi \mid L, \theta) p(\mathbf{x} \mid \theta) p(\mathbf{y} \mid \varphi) d\Delta d\theta d\varphi, \end{split}$$

where in going from the first to the second line we have used the structure of the generative model in Fig. S1B. Substituting distributions and evaluating the integral over φ gives

$$p(\mathbf{x}, \mathbf{y}, L) = \frac{1}{N} \left(\frac{1}{2\pi}\right)^{N+1} \int \prod_{i=1}^{N} \left(\int p(x_i \mid \theta_i) p(y_i \mid \varphi_i = \theta_i + \Delta \delta_{L,i})\right) d\Delta,$$
[S16]

where $\delta_{L,i} = 1$ when L = i and 0 otherwise. Because we are interested only in the dependence on L, we can freely divide by the L-independent product $\prod_{i=1}^{N} (\int p(x_i | \theta_i) p(y_i | \varphi_i = \theta_i))$, leaving only integrals pertaining to the Lth location:

$$p(\mathbf{x}, \mathbf{y}, L) \propto \frac{\iint p(x_L | \theta_L) p(y_i | \varphi_L = \theta_L + \Delta) d\theta_L d\Delta}{\int p(x_L | \theta_L) p(y_L | \varphi_L = \theta_L)}$$
 [S17]

that is among the encoded ones. In analogy to Eq. S16, this probability is

$$(L \operatorname{encoded}) p(\mathbf{x}, \mathbf{y}, L) = \frac{1}{N} \left(\frac{1}{2\pi}\right)^{K+1}$$

 $\times \int \prod_{i=1}^{K} \left(\int p(x_i \mid \theta_i) p(y_i \mid \varphi_i = \theta_i + \Delta \delta_{L,i})\right) d\Delta.$ [S19]

Now we evaluate the joint probability of x, y and that the change occurred at a location L that is not among the encoded ones. This probability is equal to

(L not encoded)
$$p(\mathbf{x}, \mathbf{y}, L) = \iint p(\mathbf{x}, \mathbf{y}, \theta, \varphi, L) d\theta d\varphi$$

$$= \iint p(L) p(\theta) p(\varphi | L, \theta) p(\mathbf{x} | \theta) p(\mathbf{y} | \varphi) d\theta d\varphi$$

$$= \frac{1}{N} \left(\frac{1}{2\pi}\right)^{K} \prod_{i=1}^{K} \left(\int p(x_{i} | \theta_{i}) p(y_{i} | \varphi_{i} = \theta_{i})\right).$$
 [S20]

As one would expect, this probability does not depend on L. Because we are interested only in the location L for which $p(\mathbf{x}, \mathbf{y}, L)$ is largest (i.e., the argmax), we divide both Eqs. S19 and S20 by Eq. S20. Then, in analogy to Eq. S17, we have to take the argmax of

$$\begin{cases}
(L \text{ encoded}) & \frac{1}{2\pi} \frac{\iint p(x_L | \theta_L) p(y_i | \varphi_L = \theta_L + \Delta) d\theta_L d\Delta}{\int p(x_L | \theta_L) p(y_L | \varphi_L = \theta_L)} = \frac{1}{2\pi \int p(x_L | \theta_L) p(y_L | \varphi_L = \theta_L)} \\
(L \text{ not encoded}) & 1.
\end{cases}$$

Unresolved question(s) (what's under the all-or-none carpet)

- (1) We argue that the above research advances have been downplaying the experimental approaches to directly manipulate the allocation of resources across item representations held by WM.
- Our study showed that, when instructed, subjects adaptively allocated a limited amount of resources and shared them across memorized item representations.

Unresolved question(s) (what's under the carpet)

• (2) The exact mechanism of resource allocation has not been specified.

Specific Research Questions

☐ How are the resources allocated in WM? (Half-Half rule)

■What is the status of mental representations in WM?

How are the capacity resources allocated? Attentional gating function in STM

How are the capacity resources distributed?

The Half-Half Optimal Rule

 The optimal solution for allocation of a limited amount of resources: one Half of resources should be allocated to memorized items and another Half to a target.

$$\begin{split} & \underset{\mathsf{Target}}{\operatorname{arg}} \max [\sum_{i}^{\text{N-1}} \mathsf{Target} \cdot \mathsf{Item}_{i}] \\ & \sum_{i}^{\text{N-1}} \mathsf{Target} \cdot \mathsf{Item}_{i} = \mathsf{Target} \sum_{i}^{\text{N-1}} \mathsf{Item}_{i} = \mathsf{Target} (\mathsf{TotalCap} \, \mathsf{acity} \cdot \mathsf{Target}) = \\ & \mathsf{Target} \cdot \mathsf{TotalCap} \, \mathsf{acity} \cdot \mathsf{Target}^{2} \\ & \frac{d}{d\mathsf{Target}} [\mathsf{Target} \cdot \mathsf{TotalCap} \, \mathsf{acity} \cdot \mathsf{Target}^{2}] = \mathsf{TotalCap} \, \mathsf{acity} \cdot 2 \cdot \mathsf{Target} \\ & \mathsf{TotalCap} \, \mathsf{acity} \cdot 2 \cdot \mathsf{Target} = 0 \\ & \mathsf{Target} = \frac{1}{2} \mathsf{TotalCap} \, \mathsf{acity} \end{split}$$

The Target Locking Hypothesis

 Implication for non-optimal strategies, after the Half-Half rule —>

Attentional gating should aim to allocate more capacity resources to the target than to memorized items.

The model

The Exemplar-Based STM Retrieval Model EBRW and the Item-Target Product Rule

Capacity
Distributed via
Attentional Gating

N = number of items stored in STM + Target

Item Capacity (Target Capacity) = $f(N) = -\frac{2 \text{ (Intercept} \cdot N - TotalCap)}{N (1+N)}$

Assuming limited capacity = $\int_{N} f(N, Intercept)$ = TotalCap

Distance

$$d_{ij} = \left[\sum_{k=1}^{K} w_k | x_{ik} - x_{jk}|^r \right]^{\frac{1}{r}},$$

 d_{ij} = fixed value distance (free paramter)

 $d_{ij} = 0$, on positive match

Activation*

 $s_{ij} = \exp(-c \cdot d_{ij}) \cdot \text{Item Capacity}_{i} \times \text{Target Capacity}_{j}$

 $\sum s_{i,old}$

pacity via Attentional Gating

EBRW

Stepping Probability

> Random Walk

e.g. Nosofsky, Little ,Donkin, & Fific, 2011

New Method

The attention-to-position paradigm

- Rapid short-term memory paradigm
- Focal set: To pay special attention to certain item positions in the memorized list, called a "focal set". This means that if a target item was a member of a focal set, a response decision had to be extremely fast, and accurate
- Peripheral set: The rest items not contained in a focal set.

New Method The attention-to-position paradigm

 To prevent interference of extraneous variables with the process of resource allocation the subjects were instructed to pronounce each item in a set, without accentuation, and with a monotonic prosody

 Two measures: mean response time (RT) and accuracy.

The data

- This is a typical RT pattern observed in the STM research, the primacy and recency
- (1) Equal-precision
- (2) ALL-OR-NONE
- (3) The decay-representation WM model
- (4) Fluid-resource model
- (5) Slots+averaging model

The data

- This is a typical pattern observed in the STM research, the primacy and recency
- (1) Equal-precision
- (2) ALL-OR-NONE
- (3) Decay-representation WM model
- (4) Fluid-resource model
- (5) Slots+averaging model

Implications

- A discontinuous serial position effect -> Dual WM systems
- The principle of resource conservation-> Strictly fixed capacity

The data – further validation of resource allocation

Comparison

The proposed resource allocation model: The Tilted Water Tank

Model fitting: the linear distribution function of resource allocation

Estimated Capacity Allocations

variable-resources model

How many boxes?

- Conduct data fitting of the EBRW model that can freely allocate fixed amount of resources across memorized items, including the parameter which defines a number of possible memory slots (boxes).
- In other words: find the number of possible resource allocation units (slots, boxes) that maximizes the goodness of fit of the model for resource allocation.

How many boxes?

	Free re mode	source parameter-EBRW	
Params	All Fast	First Three	Last Three
	0.050	2 202	4.6
С	0.959	2.383	1.6
acrit	2.52	3.556	11.378
bcrit	3.936	43.592	17.164
scale	44.706	4.576	1.901
mu	175.816	137.859	256.035
listbase	0.175	0.261	0.42
dscale	2.705	0.979	0.65
m1	0.145	0.161	0.128
m2	0.131	0.166	0.131
m3	0.132	$mi = 1$ 0.167 $\sum_{i=1}^{mi} mi$	$i=1 \qquad 0.128 \qquad \sum mi=1$
m4	0.161	0.170	0.176 2^{m}
m5	0.201	0.172	0.208
m6	0.231	0.164	0.229
boxes	801	670	711

Conclusions

	New method for testing WM, attention by instruction
	Support for the variable-resources model WM, all-get-some
	Falsification of all-or-none approaches, discrete representations
	We specified a likely mechanism of resource allocation (Target locking) and provided rationale
	The ghost is likely to reside in a tilted tank!
Fu	rther Implications:
Fu	rther Implications:
	Linear distribution function of resources could serve as a proxy to the Attentional Gating mechanism.
	Falsification of Dual system WM view: the last item position advantage
	A joint fit of mean RT and choice probabilities.[EBRW]
	A STM capacity resources are strictly limited (the conservation of resources principle)

Free allocation of fixed capacity model

