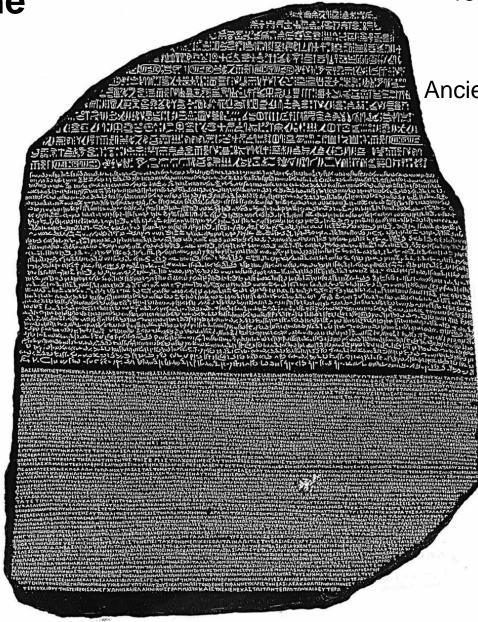
The Rosetta stone for cognitive and decision strategies

Mario Fifić

Grand Valley State University, Allendale, MI, USA Max Planck Institute for Human Development, Berlin

Jörg Rieskamp


University of Basel

SJDM Conference 2012, Minneapolis

Rosetta Stone

rediscovered in 1799

Ancient Egyptian hieroglyphs

Demotic script

Ancient Greek

Fast and Frugal Heuristics

- People often rely on fast and frugal heuristics for making judgments and decisions

Heuristics' characteristics:

- limited information search
- sequential processing of information

e.g. Gigerenzer & Gaissmaier, 2011, Annual Review of Psychology Todd & Gigerenzer, 2000, Behavioral and Brain Sciences

Bayesian Models of Decision Making

- Bayesian models can often describe people's judgments and decisions quite well

Psychological plausibility

- exhaustive information search
- parallel processing of information

e.g. Griffiths, Chater, Kemp, Perfors, Tenenbaum, 2010, Trends in Cognitive Sciences

Exemplar Models of Decision Making

- Similarity as a core principle for judgment and decision making

Psychological plausibility

- parallel processing of activating exemplars from memory
 sequential judgment process of retrieved

Peter Juslin exemplars

e.g. Juslin & Persson, 2002, Cognitive Science Bergert & Nosofsky, 2007, JEP:LMC

Research Question

How can we detect whether the cognitive process underlying a judgment or decision relies on

- **1. exhaustive vs. limited information search** (stopping rule or amount of information)
- **2. parallel vs. sequential processing of information** (processing order)

Stopping rule

order		Limited	Exhaustive
	Serial	TTB	WADD
Processing	Parallel	Horse Race	Bayes

٥

Research Question

If you decide to use Choice Preference

Stopping rule

der		Limited	Exhaustive
Processing order	Serial	TTB	WADD
Proces	Parallel	Horse Race	Bayes

Stopping rule

Stopping rule

Stopping rule

der		Limited	Exhaustive
cessing ord	Serial	TTB	WADD
Proces	Parallel	Horse Race	Bayes

Research Question

If you decide to use mean Reaction Times

Mimicking Problem

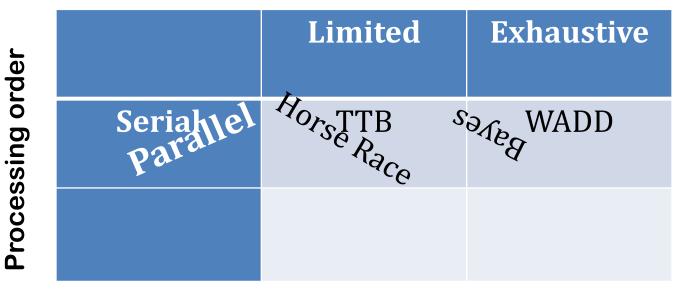
- It is impossible to distinguish between *serial* and *parallel* processing only on examining mean response times

- Models assuming parallel processing of information can also predict an increase of response time as a function of the number of processed cues

> Townsend & Ashby, 1983, *The stochastic modeling of elementary* psychological processes

Stopping rule

der		Limited	Exhaustive
Processing order	Serial	TTB	WADD
Proces	Parallel`	Horse Race	Bayes


Using simple Reaction Time

Stopping rule

order		Limited	Exhaustive
ssing or	Seriahlel Parallel	TTB	WADD
Processing		Horse Race	Bayes

Using simple Reaction Time

Stopping rule

Using simple Reaction Time

Solution: Systems factorial technology (SFT)

Antecedents

- Donders (1868), Subtraction method, pure insertion
- Sternberg Additive factor method (1969)
- Development of mental networks (Schweickert, 1978, 1982), Townsend & Schweickert's trichotomy method (1985, '89), Schweickert, Georgini and Dzhafarov (2000).
- Townsend et al stochastic modeling theory (1984, 83, 95).

Validation and extensions of SFT

- Detection (Townsend & Nozawa, 1995)
- Visual and memory search tasks

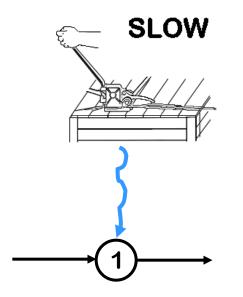
Face perception

Classification

(Wenger & Townsend, 2001; Townsend & Fific, 2004; Fific, Townsend & Eidels, 2008; Sung. 2008: Egeth & Dagenbach, 1991; Wenger & Townsend, 2006) (Fific & Towsnend, 2010; Ingvalson & Wenger, 2005; Fific, 2006) (Nosfosky & Little, 2011; Fific, Little, & Nosofsky, 2010;

Fific, Nosofsky & Townsend, 2008; Eidels, Townsend, & Pomerantz, 2008)

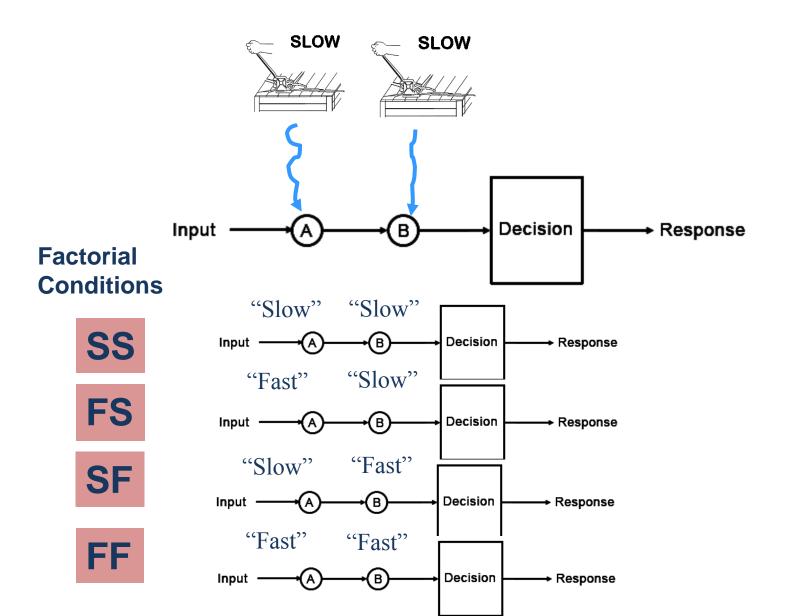
Global-local perception (Johnson, Blaha, Houpt, Townsend, 2009)


The task: Probabilistic Inference

Inference:Which of two objects has
valuea higher criterionvalueCues:Probabilistically related
to the criterion

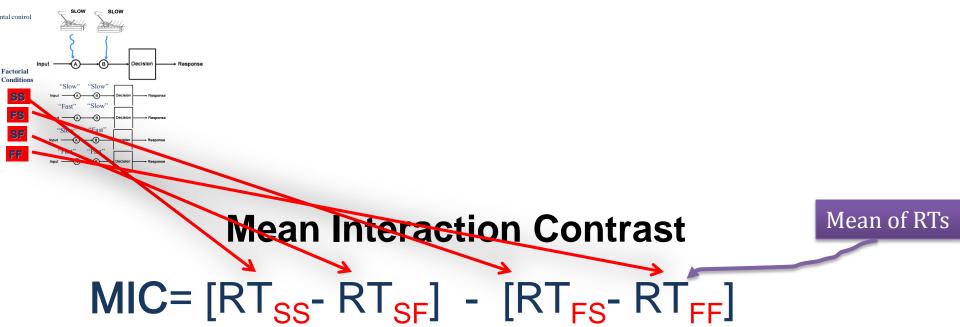
Essence of SFT

- Selective manipulation of speed of a certain process of interest


Mental Process

Manipulating Processing of Cues

Double Factorial Paradigm



Inference Strategies

- different inference strategies should lead to different patterns of reaction time data

The Statistics: MIC

DOUBLE FACTORIAL PARADIGM

ואנגאוכר צהחאזוגאונה/ האיזוגאיצר האיזיאצוויא אלוב ייזבאני איז ארע האיד בחוידה אדיניאן איז איזין איזיאניאן דריק איזיין

Co	ognitive strategies	SFT dia	agnostic to	ols	Der	cision str	ategies
Mental Architecture	Architecture flow diagram	MIC Mean RT Signature	ANOVA	міс	Information Search	Processing Order	Decision strategy
A Serial Self-terminating B	Input CUE Decision Response	e (su) L (us) SF FF F L Cue 1	Cue 1 ** Cue 2 Cue 1 x Cue 2	=0	Limited	Serial	ттв
Serial Exhaustive		Mean RT (ms)	Cue 1 ** Cue 2 ** Cue 1 x Cue 2	=0	Exhaustive	Serial	WADD, TTB(2)
C Parallel Self-terminating (First–terminating)	Input Input Input Input	L Cue 1 H SS SF F F F F F F F F F F F F F F F F F	Cue 1 ** Cue 2 ** Cue 1 x Cue 2 **	>0	Limited	Parallel	Horse Race
D Parallel Exhaustive	Input Input Input CUE	Rean RT (ms) Rean RT (ms) RE RE RE RE RE RE RE RE RE RE RE RE RE	Cue 1 ** Cue 2 ** Cue 1 x Cue 2 **	<0	Exhaustive	Parallel	Naïve Bayes

Experimental Test

Learning Phase

- two environments: Compensatory and Non-compensatory
- 40 participants
- 3 independent cues
- validities: 71%; 70%; 68% vs. 80%; 59%; 53%)
- 3 sessions with a minimum of 200 trials with outcome feedback

Test Phase

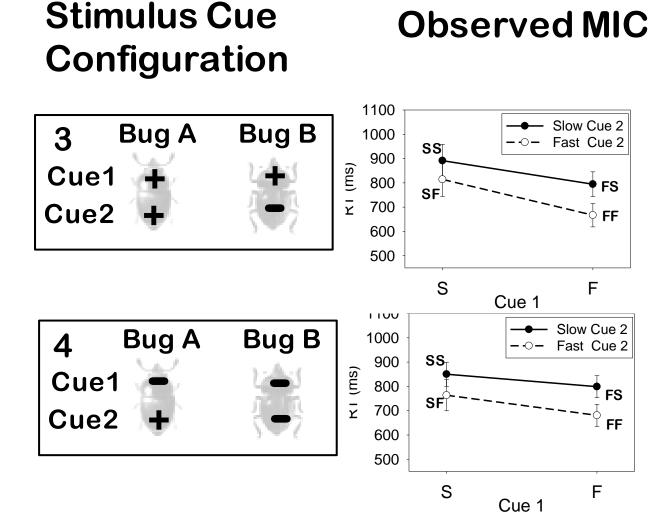
- only two cues were factorially manipulated
- no feedback

In terms of the processing component

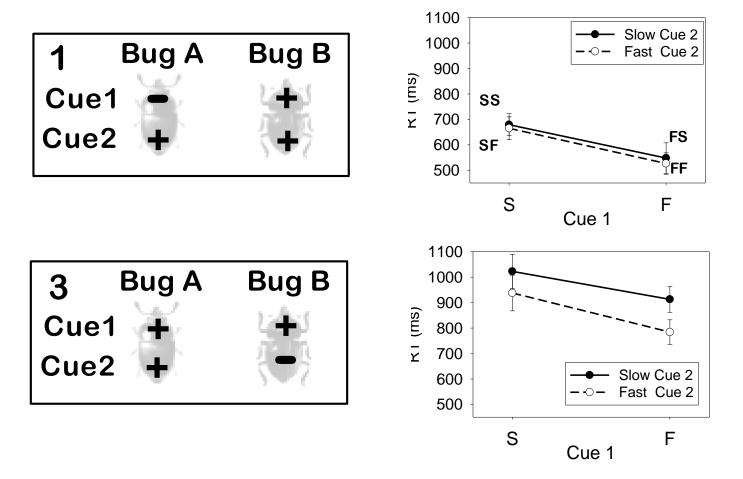
Compensatory environment	Non-Compensatory environment

In terms of the processing component

	Compensatory environment	Non-Compensatory environment
Exhaustive	.8	.33
Limited	-	.5


In terms of the processing component

	Compensatory environment	Non-Compensatory environment
Exhaustive	.8	.33
Limited	-	.5
Serial	.6	.83
Parallel	.2	-


In terms of the models' identification

	Compensatory environment	Non-Compensatory environment
ТТВ	.2	.5
WADD	.6	.33
NB	.2	-
Horse Race	-	-
Unknown	.2	.17

Reaction Time Pattern Compensatory Enviornment

Reaction Time Pattern Non-Compensatory Enviornment Stimulus Cue Configuration

Conclusions

- The SFT approach was applied only to the limited set of decision making strategies.
- The SFT can be used to model selection and model falsification.
- Overall, participants showed different MIC patterns in the different environments
- Support for TTB and lexicographic decision making in the noncompensatory environment
- WADD and serial exhaustive cue processing in the compensatory environment.
- Method's costs are minimal: no optimization, no parameters, less assumptions
- The Rosetta Stone represents an important direction to better identification of processes engaged in decision making.

Contact: mfific@gmail.com References Fific, Little, & Nosofsky, (2010) Psych Review Gaissmaier, Fific, & Rieskamp, J. (2010) Thank you for your attention!

Contact: mfific@gmail.com References Fific, Little, & Nosofsky, (2010) Psych Review Gaissmaier, Fific, & Rieskamp, J. (2010)