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Abstract 

The critical step facing every decision maker is when to stop 

collecting evidence and proceed with the decision act. This is 

known as the stopping rule. Over the years, several unconnected 

explanations have been proposed that suggest nonoptimal 

approaches can account for some of the observable violations of 

the optimal stopping rule. The current research proposes a unifying 

explanation for these violations based on a new stopping rule 

selection (SRS) theory. The main innovation here is the 

assumption that a decision maker draws from a large set of 

different kinds of stopping rules and is not limited to using a single 

one. The SRS theory hypothesizes that there is a storage area for 

stopping rules—the so-called decision operative space (DOS)—

and a retrieval mechanism that is used to select stopping rules from 

the DOS. The SRS theory has shown good fit to challenging data 

published in the relevant literature. 
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One of the most important steps of decision making is 

determining when to stop collecting evidence and proceed 

with the final decision. This is defined as the stopping rule 

and it is thought to be an irreplaceable component of almost 

all cognitive models of decision making.  

Take, for example, a patient who is facing a risky 

medical treatment. The treatment can have a good 

outcome—that is, the patient will benefit from it—or it can 

have a bad outcome—that is, the patient will suffer serious 

side effects. To the patient’s surprise, doctors don’t have a 

unanimous opinion on whether the treatment is beneficial or 

harmful. Thus, the patient decides to ask for several doctors’ 

opinions. The patient collects either positive opinions (+1) 

in favor of the risky treatment or negative opinions (-1) 

against the risky treatment. The total sum of evidence is 

defined as the critical difference, d. But how many opinions 

should he collect to reduce the risk of making the wrong 

decision? To help the patient with the decision, his best 

friend, a statistician, tells him that the number of opinions 

can be calculated based on the most optimal solution. 

 

The Optimal Stopping Rule for Evidence 

Accumulation and Deviations  

 
The determination of the optimal stopping rule in 

statistical decision making has been examined in great detail 

by Wald (1947) and from the Bayesian perspective by 

Edwards and colleagues (Edwards, 1965). The optimal 

Bayesian model defines the stopping rule as the 

minimization of the expected loss, E(L) (De Groot, 1970). 

The rule prescribed by the optimal model is to continue 

collecting evidence and to stop only when the expected 

value of loss is equal to or lower than the expected loss 

associated with deferring the decision and collecting more 

evidence. 

To calculate the optimal number of doctors the patient 

should consult, his friend the statistician acquired the 

conditional distributions of doctors’ positive (+) opinions 

given that the treatment can be either beneficial or harmful, 

P(+opinion | beneficial treatment), P(+opinion | harmful 

treatment), and also the prior probabilities of beneficial and 

harmful treatments, P(beneficial treatment) and P(harmful 

treatment) (e.g., Edwards, 1965; Schechter, 1988). The 

statistician used all these probabilities to calculate the so-

called posterior odds in favor of the hypothesis that the 

treatment is beneficial given the evidence acquired from n 

number of doctors,    
                     

                 
          . The 

posterior odds would indicate the best decision for the finite 

number of collected doctors’ opinions, if the costs and 

payoffs associated with the risky treatment and the expected 

diagnostic value of a single opinion are considered. Using 

mathematical software, the statistician got the number 3 as 

the optimal stopping rule value for that risky decision. This 

means that the patient should collect positive and negative 

doctors’ opinion (+1s and -1s) as long as their cumulative 

sum (d) is lower than the value of d=+3 or higher than the 

value d=-3. The patient should stop evidence collection and 

make a decision as soon as d=3, in which case the patient 

should accept the risky treatment, or d=-3, in which case the 

patient should reject the risky treatment (e.g., Schechter, 

1988). 

The relevant literature has revealed that humans do not 

use the optimal stopping rule. (1) In a deferred decision task 

in which subjects had the option to defer their decision until 

they had purchased new information, subjects bought either 

too little evidence (Phillips & Edwards, 1966; Pitz, 1968) or 

too much evidence (Pitz, 1968) compared to the optimal 

model’s predictions. (2) The critical difference value d can 

change over the course of sampling evidence in a single trial 

(e.g., Busemeyer & Rapoport, 1988; Pitz, 1968). Subjects 

tended to make final decisions on smaller critical difference 



values for larger sets of evidence. To account for these 

results, the optimal model should adjust the critical 

difference value such that it decreases as more evidence is 

acquired (Pitz, 1968; Viviani, 1979). (3) Subjects frequently 

terminated evidence collection when the critical difference 

value was zero (d=0; Pitz, 1968; Pitz, Reinhold, & Geller, 

1969). From the optimal Bayesian viewpoint, this means 

that decision makers made a final decision even though 

there was no evidence to support any decision. (4) It has 

also been shown that human decision makers sometimes 

stop on a nondiagnostic sequence of evidence (Busemeyer 

& Rapoport, 1988). For example, after a series of three 

positive pieces of evidence the subjects stopped on a 

negative piece of evidence, {+, +, +, -}, and made a decision 

that supported the positive evidence. Note that the last two 

pieces of evidence were nondiagnostic and stopping on such 

a pattern of evidence is logically inconsistent with the 

optimal model. 

The optimal approach to decision making has suffered 

more general criticism. The optimal model can be 

successfully applied only when a decision maker possesses 

perfect knowledge of all aspects of a situation. Following 

Savage (1954) and Binmore (2009), perfect knowledge of 

an environment is possible if one resides in a so-called small 

world. Examples of a small world are a controlled 

laboratory experiment, a lottery, and certain games. In a 

small world a detailed statistical representation of the 

environment exists and an optimal model can predict the 

exact amount of evidence needed to be collected to find the 

optimal stopping value.  

But most decision makers live in a large world. A large 

world is quite unpredictable and dynamic—it is constantly 

changing and it is almost impossible to form an exact 

statistical representation of such an environment. In a large 

world a decision maker has limited time to make decisions, 

possesses limited cognitive powers in terms of memory and 

attention, and usually acts inconsistently (Berg, Biele, & 

Gigerenzer, 2008; Gigerenzer, 2008; Schooler & Hertwig, 

2005; Shanteau, 1992; Tversky & Kahneman, 1974). It is 

unrealistic to expect that a decision maker living in a large 

world would be able to employ an optimal model to 

determine when to stop accumulating evidence. Alternative 

approaches have been aimed at exploring how to make 

effective decisions with a limited amount of information and 

a limited cognitive system. 

 

Bounded Rationality and Nonoptimal 

Stopping-Rule Models 
 

According to the bounded rationality approach, making 

decisions involves simple decision strategies and shortcuts 

that allow for quick and effortless decisions (e.g., 

Gigerenzer, 2004). Boundedly rational models require 

neither exact statistical representation of the environment 

nor optimization. (For a review of different nonoptimal 

models for evidence collection see Busemeyer & Rapoport, 

1988; for examples see Fifić, Little, & Nosofsky, 2010). 

Boundedly rational models for determining stopping rules 

are more suited to real-life decision-making problems and 

cognitive limitations than is the optimal model. Let us return 

to our patient example. The patient started to question the 

optimal value d=3 after he learned that the conditional 

distributions used to estimate the doctors’ diagnostic 

accuracies do not exist for his country. Instead, his friend 

the statistician used the data from another, much smaller 

country across the ocean. Not trusting the optimal solution 

(d=3), the patient decided to use another rule. He decided to 

obtain five doctors’ opinions and make his decision based 

on the majority. This is defined as the fixed-sample-size 

stopping rule (s=5 in the example). A decision maker 

determines a fixed amount of evidence to be collected 

before the collection starts. Our patient may have used a 

five-opinion stopping rule before—years ago when he 

bought a car. Alternatively, the patient could rely on another 

useful cue—a streak of either positive or negative opinions. 

The patient could stop looking for more opinions after 

receiving three successive positive or negative doctor 

opinions (r=3) and make a decision accordingly. This is 

defined as the runs stopping rule (cf. Audley & Pike, 1965; 

Estes, 1960). In sports games the runs rule is also known as 

the hot or cold hand rule (Bar-Eli, Avugos, & Raab, 2006; 

Gilovich, Vallone, & Tversky, 1985; Wilke & Barrett, 

2009). A player who scores a streak of shots in a row is 

perceived to be ―hot‖ and is a preferred shooter. A player 

who has a streak of misses is likewise perceived to be 

―cold.‖  

Although boundedly rational models have been able to 

explain some observed deviations from the optimal 

predictions (for details see Busemeyer & Rapoport, 1988), 

no single such model has been able to account for them all. 

Take, for example, the fixed-sample-size stopping rule, 

which can account for the finding that decision makers 

sometimes stop on a nondiagnostic sequence of evidence. 

This rule predicts that the probability of termination should 

be equal for nondiagnostic sequences of identical length. In 

contrast, it has been observed that subjects prefer some 

nondiagnostic sequences over others of the same length 

(Busemeyer & Rapoport, 1988). The runs stopping rule can 

account for the finding that decision makers stop on d=0, for 

example {+,+,-,-}. To stop on that evidence, the stopping 

rule value for the negative evidence has to be set on two 

pieces of negative evidence (r= -2). The stopping rule for 

positive evidence has to be set on a value larger than two 

pieces of positive evidence (say r=+3). However, the runs 

stopping rule has limited explanatory power (Busemeyer & 

Rapoport, 1988). For example, it cannot explain stopping 

when streaks of evidence are missing. In general, more 

explanatory power is gained by combining several stopping 

rules (see Pitz et al., 1969) within one framework. We lack a 

systematic theory to tie together different stopping rules in a 

single framework for decision making. To remedy this 

theoretical gap, I propose the stopping rule selection (SRS) 

theory.  

 



The SRS Theory 

 
The SRS theory provides the basis for a general 

approach to decision-making operations. This theory is 

consistent with the idea of a boundedly rational decision 

maker who utilizes simple decision rules in real time. In 

different environments, a decision maker acts adaptively, 

constantly looking for the best decision strategies, stopping 

rules, and critical values.   

 

A formal description of the SRS theory and 

proposed stopping rules. 

 

The SRS theory aims to provide a unifying framework for 

the storage and retrieval of multiple stopping rules. It 

consists of three hypotheses.  

Hypothesis 1: Multiple stopping rules. The SRS 

theory assumes that several different stopping rules can 

operate concurrently. Decision makers act adaptively to 

changes in the environment, not only by calibrating different 

stopping rule values (value criterion) but also by switching 

between different stopping rules if needed. In real life, 

multiple stopping rules can be combined in a complex 

fashion (e.g., Pitz et al., 1969). Take, for example, scoring 

in tennis: The winner of a tennis game is the player whose 

score is at least two points higher than the opponent’s (d≥2) 

and if at least four points have been won so far (s≥4).  

Hypothesis 2: Storage for stopping rules—the 

decision operative space (DOS). A major component of the 

SRS theory is a storage place for the stopping rules and their 

values, which is called the decision operative space (DOS). 

The DOS can be seen as a variant of an ―adaptive toolbox,‖ 

a collection of domain-specific specialized cognitive 

mechanisms for decision making built through evolution 

(Gigerenzer & Todd, 1999; Payne, Bettman, & Johnson, 

1993; Todd, 1999). Unlike the toolbox concept, the DOS is 

conceptualized as a structured psychological space. The 

stopping rules stored in the DOS are sorted on two 

dimensions: the cognitive effort needed for a certain 

stopping rule, and the time needed to make a decision using 

a certain stopping rule (Figure 1A). Depending on the 

environment, a decision maker can use these two 

dimensions to estimate which decision tools are the most 

appropriate to use.  

The time scale, on the x-axis, is defined as 

chronological time. The exact expected duration of each 

stopping rule can be calculated from an analytic expression 

(e.g., see Feller, 1957, p. 317; also Busemeyer & Rapoport, 

1988; Pitz, 1968; Pitz et al., 1969). Cognitive effort, on the 

y-axis, is defined as the processing complexity of a decision 

strategy and can be measured by the number of elementary 

information processes (EIPs, after Payne et al., 1993) 

engaged in making a decision. As shown in Figure 1A, each 

point in the DOS represents a stopping rule with a certain 

stopping value. Stopping values belonging to the same 

stopping rule lie on one line: For the runs stopping rule it is 

r, for the critical difference rule, d, and for the fixed-sample-

size rule, s. Overall decision accuracy increases as one 

chooses stopping rules and their values from the upper right 

corner of the DOS. However, the price of improvement is 

increases in both time and cognitive effort. As depicted in 

Figure 1, two stopping rules—the critical difference and the 

fixed-sample-size—are estimated to be of approximately the 

same complexity. They share the same EIPs, which are 

counting, differencing, averaging, and memory engagement. 

They differ on the time needed to complete the operations. 

The critical difference stopping rule needs more time to 

finish than the fixed-sample-size rule, for the same critical 

value. The runs stopping rule uses EIPs that are far simpler 

than those used by the previous two. To detect runs, a 

decision maker has only to count evidence, with minimal 

memory. Although based on simple EIPs, the runs stopping 

rule requires considerably more waiting time for larger 

critical values of runs. 

A 

 
B 

 
Figure 1: (A) The decision operative space 

(DOS) for three stopping rules. Each point 

represents a single stopping rule with a 

stopping value. A straight line connects the 

same stopping rule with different stopping 

values. (B) A cast-net retrieval from the DOS. 

Dotted circles represent three different cast 

nets.   

 

Hypothesis 3: Retrieval of the stopping rules. Two 

candidate retrieval mechanisms are proposed. The first is 

called ―cast-net‖ retrieval. The second is based on a 

satisficing approach (Todd, 1997; Todd & Miller, 1999).  
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Cast-net retrieval. Selection of stopping rules 

resembles throwing a cast net and catching fish. A decision 

maker acts much like a fisherman, casting a net into the 

operative space. Here, on each throw the catch is a subset of 

possible stopping rules. To behave adaptively in different 

environments, decision makers adjust the location in the 

DOS where the net will be cast, and the size of the net. A 

decision maker who is not familiar with the environment or 

encounters much uncertainty in evidence collection may 

cast a larger net. If familiar with the environment, the 

decision maker may throw a smaller net.  The larger the net 

is, the more different stopping rules are collected to make a 

single decision. The SRS theory specifies how several 

stopping rules could be used simultaneously to make a final 

decision.  

The second property of the cast-net retrieval approach 

is the double tradeoff. Depending on where stopping rules 

are retrieved from the DOS, a decision maker may choose to 

trade off speed and accuracy (cf. Diederich, 2003; Kocher & 

Sutter, 2006; Payne et al., 1993) or cognitive effort and 

accuracy (Payne et al., 1993). Figure 1B shows examples of 

both tradeoffs. Three cast-net locations are marked by red 

circles. Moving upward from the lower left circle on the 

vertical ―work harder‖ path indicates a cognitive effort–

accuracy tradeoff, keeping the time value constant. A 

decision to move vertically in the DOS means choosing to 

sacrifice frugality of effort to achieve better accuracy. A 

decision maker works harder to improve overall decision 

accuracy, as mainly the critical difference stopping rule is 

sampled. Moving from the lower left circle on the horizontal 

―take longer‖ path indicates a speed–accuracy tradeoff, 

keeping the cognitive effort value constant.  A decision to 

move horizontally means choosing to sacrifice speed to 

achieve better accuracy. A decision maker takes longer, as 

mainly the runs stopping rule is sampled. The two tradeoffs 

can be used to explain adaptive decision making. Under the 

condition of increased uncertainty, it is expected that a 

decision maker would increase cognitive effort, and take the 

―work harder‖ path. Under time pressure, it is expected that 

a decision maker would use less time-consuming stopping 

rules and follow the ―take longer‖ path.  

 

The SRS Theory: A Walkthrough of the Decision 

Process 
 

In this section I provide a walkthrough of the decision 

process behind the SRS theory using the cast-net retrieval 

approach. The SRS model has two stages. The first stage is 

characterized by the selection and retrieval of stopping rules 

and their stopping values. The second is characterized by 

sequential evidence collection and application of stopping-

rule criteria. The process is broken into six steps, three in 

the first stage and three in the second. 

Step 1: Select hypotheses. Depending on the decision 

problem, a decision maker chooses the choice hypotheses 

(e.g., Thomas, Dougherty, Sprenger, & Harbison, 2008). 

For example, in the patient decision situation described 

above, the two hypotheses H1 and H2 could be about the 

risky treatment: H1: The risky treatment is a beneficial 

procedure, and H2: The risky treatment is a harmful 

procedure. 

Step 2: Cast a net. The plethora of stopping rules and 

their values presents a challenge for the selection process. 

To select a subset of the stopping rules and their values, a 

decision maker throws a cast net into the DOS. To 

determine the position of the cast net and its span, a decision 

maker estimates how much time and cognitive effort can be 

invested in making the decision (on time and cognitive 

effort dimensions). These position estimates can be 

influenced by knowledge the decision maker possesses 

about this particular environment or similar ones. If no 

knowledge is available then a random starting point can be 

chosen. For illustration, assume that the following set of 

rules determines the cast {r=1, r=2, s=2, s=3, d=3, d=2}. 

Step 3: Select a stopping rule. Once the DOS has been 

reduced by casting a net, several stopping rules and their 

values are randomly sampled from the net. All stopping 

rules and their values contained within the net can be 

retrieved with the same probability, defined by the 

probability density function      
 

                         
.  

For example, a decision maker could select the following set 

of stopping rules and their values from the cast net: {r=2, 

s=2, d=3}. Alternatively the probability of retrieving a 

certain rule from the cast net can be described by the 

bivariate normal distribution, x        ) (where the bold 

symbols are vectors), allowing rules that are closer to the 

center of a net to be retrieved with a higher probability than 

rules that are caught around the edges of the net. 

Step 4: Collect evidence. The second stage starts with 

evidence accumulation. This step is repeated until a decision 

is made. 

Step 5: Check stopping rule. The SRS model tests 

whether the evidence accumulated so far meets one of the 

criteria of the stopping rule selected from the net in Step 3. 

Assume that the model performs a serial test across three 

selected stopping rules. If none of the criteria have been met 

the decision maker looks for more evidence and repeats 

from Step 4. If any of the stopping value criteria are met, the 

decision maker stops evidence collection and proceeds with 

making the final decision. 

Step 6: Stop and make a decision according to the 

hypothesis that was supported by the evidence. 

 

Face Validity of the SRS Theory: 

Preliminary Work and Results of Fitting  

 

To establish face validity, I fit the SRS model to 

challenging data sets published in two separate studies on 

determining stopping rules (Busemeyer & Rapoport, 1988; 

Pitz, 1968). My preliminary work showed that the SRS 

computational model can provide an excellent account of 

reported human data patterns. It is able to account for 

between 93% and 100% of the variability of Pitz’s (1968) 



data and for about 86% of observed evidence patterns in 

Busemeyer and Rapoport’s (1988) data. 

In addition to showing high fitting accuracy, the SRS 

model was able to account for all four findings that falsified 

the optimal approach, described above: (1) People bought 

too much or too little evidence (Pitz, 1968); (2) the value of 

the critical difference (d) could change over the course of 

sampling evidence in a single trial (e.g., Busemeyer & 

Rapoport, 1988; Pitz, 1968); (3) people terminated evidence 

collection when the critical difference was zero (d=0; Pitz et 

al., 1969); and (4) people stopped on nondiagnostic patterns. 

Regarding the accumulation of evidence, the observed data 

depart from the optimal model predictions (Table 1): For 

smaller values of d, the subjects collected too much 

evidence; for larger values of d, the subjects collected too 

little evidence. The SRS model captures this observed data 

trend as shown in the SRS model-fitting data. Regarding the 

value of the critical difference (d), as can be seen in Table 1, 

less evidence was needed for larger values of d to terminate 

evidence collection, compared to the optimal model 

prediction. This trend is accounted for by the SRS model fit. 

Regarding the termination of evidence collection when the 

critical difference was zero (d=0), again as seen in Table 1, 

the SRS model shows that n>0 for d=0. Finally, regarding 

stopping on nondiagnostic patterns, the SRS model can also 

predict the nondiagnostic sequence of evidence (see Table 

2). The SRS model fitted the observed patterns {1,1,1,0} 

and {0,0,0,1} (see Table 2; remember that 1 stands for 

positive and 0 for negative evidence). Note that the last two 

pieces of evidence in each pattern provide the nondiagnostic 

information for the optimal model.  

 

 

 

Table 1: The average number of pieces of 

evidence (n, shown in the table’s cells) 

collected as a function of critical difference (d) 

for three source reliability values (p=.8, .7, and 

.6). The observed column shows averaged 

observed human data (from Pitz, 1968). The 

SRS column shows the best fit values when the 

stopping rule selection (SRS) model is fitted to 

the observed data. The optimal column shows 

the n values predicted by the optimal model. 

The r
2
 values are the proportions of explained 

variability the SRS model can account for. 

 

 

d 

Source reliability p=.8 

r
2
=1 

 Observed SRS Optimal 

0 2.73 2.71 0 

1 2.75 2.8 1 

2 3 2.92 2.93 

3 3.67 3.59 4.71 

4 5.04 5 6.41 

  

 

 

d 

Source reliability p=.7 

r
2
=0.98 

 Observed SRS Optimal 

0 3.56 3.92 0 

1 3.42 3.65 1 

2 4.47 4.21 3.43 

3 6.07 6 6.13 

4 6.64 6.53 8.86 

 

 

 

d 

Source reliability p=.6 

r
2
=0.93 

 Observed SRS Optimal 

0 3.05 3.89 0 

1 4.43 4.51 1 

2 5.2 4.75 3.84 

3 4.74 5 8.05 

4 7.12 6.86 13.37 

 

 

 

Table 2: The results of the SRS model fit to 

Busemeyer and Rapoport (1988) data, from the 

constant cost condition of their Experiment 2. 

Table shows the matching patterns correctly 

recognized by the SRS model, as well as the 

nonmatching patterns. Evidence refers to observed 

patterns, where ―1‖ stands for positive evidence 

opinion and ―0‖ stands for negative evidence 

opinion. Response accuracy refers to whether the 

final decision based on collected evidence was 

correct. Observed refers to the observed proportion 

of each pattern. SRS fit refers to the best fitted 

proportions by the SRS model.   
Evidence   Response 

accuracy 
Observed SRS fit 

Observed matched patterns 
{1, 1}  Correct  0.06 0.1 
{0, 0}  Correct  0.07 0.1 
{1, 1, 1}  Correct  0.19 0.17 
{0, 0 ,0}  Correct  0.18 0.16 
{1, 0, 1, 1}  Correct  0.05 0.04 
{0, 1, 1, 1}  Correct  0.05 0.04 
{1, 1, 1, 1}  Correct  0.08 0.07 
{1, 1, 1, 0}  Correct  0.001 0.01 
{1, 1, 0, 1}  Correct  0.05 0.03 
{1, 1, 0, 0}  Incorrect  0.001 0.01 
{1, 0, 0, 0}  Correct  0.07 0.04 
{0, 0 ,0 ,0}  Correct  0.06 0.07 
{0, 1, 0, 0}  Correct  0.06 0.04 
{0, 0 , 1 ,0}  Correct  0.05 0.03 
{0, 0 , 0, 1}  Correct  0.01 0.01 

Observed nonmatched patterns 
{0, 0, 1}  Incorrect  0.002388 0 
{0, 1, 1}  Correct  0.009817 0 
{1, 0, 0}  Correct  0.002786 0 
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