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Abstract

The “isokinetic relationship” is a purported linear relationship

among the enthalpies and entropies of activation along a series of

reactions. The standard technique for determining whether an isoki-

netic relationship holds for a particular group of reactions is incorrect,

and will “discover” the relationship where it does not exist. The pa-

per describes an amusing example of its failure, shows why the false

correlations occur, and gives brief descriptions of correct approaches

and references to them.



1 Introduction

Kenneth Connors’s textbook Chemical Kinetics: The Study of Reaction Rates

in Solution (1 ) contains an interesting homework problem:

From the last four digits of the office telephone numbers of

the faculty in your department, systematically construct pairs of

“rate constants” as two-digit numbers times 10−5 s−1 at tempera-

tures 300 K and 315 K (obviously the larger rate constant of each

pair to be associated with the higher temperature). Make a two-

point Arrhenius plot for each faculty member, evaluating ∆H‡

and ∆S‡. Examine the plot of ∆H‡ against ∆S‡ for evidence of

an isokinetic relationship.

I assigned this problem to the students in my graduate chemical kinetics

course. The ∆H‡ vs. ∆S‡ plot from a typical solution set is shown in Figure 1.

The students were mostly astonished at the result; the naively calculated

correlation coefficient r is 0.9999.
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2 The isokinetic relationship

Consider a series of reactions which are sufficiently similar that one might

expect the same mechanism to operate along the series. The oxidations

of ethanol, n-propanol, n-butanol, etc., to their corresponding acids are an

example. Since the alkyl chain is not expected to participate in the reaction in

any important way, the properties of the transition state for the rate limiting

step of each oxidation should be similar. If that is the case, one might expect

the enthalpy and entropy of activation ∆H‡ and ∆S‡ to change in a simple

way as the chain length of the substrate is increased. The term isokinetic

relationship was first defined as a linear dependence of ∆H‡ on ∆S‡ for a

series of reactions (labeled by n):

∆H‡n = β∆S‡n + ∆H‡0. (1)

If that relationship holds, then at temperature β all the reactions in the

series have the same rate coefficient. β is therefore called the isokinetic

temperature. In practice β has usually been positive, so that the changes

in rate coefficients along a series are less extreme than would be expected

purely on the basis of enthalpy changes. That observation has led to the
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alternative term compensation effect for the isokinetic relationship.

3 History

Correlations between enthalpies and entropies were noted early in chemistry,

but were not widely used until Leffler published (2 ) a long list of ∆H‡–∆S‡

correlations of apparently high quality and suggested chemical interpreta-

tions. More examples and analysis were given in Leffler and Grunwald’s

influential textbook Rates and Equilibria of Organic Reactions (3 ). Rather

quickly, some workers expressed concerns about experimental errors in the

measured ∆H‡ and ∆S‡ values and how they might contribute to spurious

correlations, and two papers (4 ,5 ) showed that the problem is really caused

not by experimental errors but by an inherent correlation between ∆H‡ and

∆S‡ which arises when both are computed from the same data set.

Exner reviewed the problem in 1973, showing that the use of ∆H‡–∆S‡

plots invariably leads to poor results, and also showing how to use an accurate

statistical treatment on the untransformed data to ascertain the existence of

a linear isokinetic relationship along a reaction series and to evaluate the

isokinetic temperature and its uncertainty (6 ). Exner gave a good review
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of the literature up to that point and the reader is referred to his paper for

further background.

Since 1973, discussions of the isokinetic relationship and its use in inter-

preting other correlation parameters such as Hammet’s ρ have appeared in

many places. Some have fully stated the errors inherent in the ∆H‡–∆S‡

treatment, some have given some warnings but not expressed the real dan-

ger, and others have not seemed to notice that a problem exists. The present

paper is intended to slow the proliferation of the problem by calling it to the

attention of chemical educators, to present a simple analysis of the problem

that makes the origin of the false correlations clear, and to draw general

conclusions about the procedures of correlation analysis. The procedure de-

scribed here also constitutes a simple, qualitative “litmus test” which can be

applied to nearly any correlation procedure.

4 Origin of the false correlation

The problem expressed in terms of telephone numbers is simpler than the

treatment of real kinetic data, where rate coefficients at more than two tem-

peratures might be measured for each reaction and where the experimental
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temperatures for different reactions might not be the same. Exner (6 ) and

Krug et al. (7 ,8 ) have described good procedures for treatment of real chem-

ical data. However, the spurious correlations appear for exactly the same

reasons in the simpler phone number problem and it affords a clear picture

of their origin.

The phone number problem implies specific constraints. The rate coef-

ficients always have values between 0 (practically, 1) and 99 10−5 M−1 s−1,

and the rate coefficient is always higher at higher temperature. The (k1, k2)

data pairs are therefore always located in the region of (k1, k2) space outlined

in the upper panel of Figure 2. A search for correlations in the data must

at least be a test of the hypothesis that the distribution of rate pairs inside

that region is not uniform. If the correlations are to be sought in a different

space than the original one, then the uniform probability distribution should

be transformed to the new space and the distribution of transformed data

must be shown to be different from the transformed uniform distribution. In

fact, a uniform distribution of (k1, k2) pairs transforms to a highly correlated

distribution of (∆S‡, ∆H‡) pairs.
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4.1 Formulation of the problem

The necessary transformation of a probability distribution function P (k1, k2)

over a region R into a new function P ′(∆S‡,∆H‡) has two parts. First, the

boundary of the region R must be mapped into the corresponding boundary

R′ in the new space. Second, the Jacobian (or “area element”) J must be

evaluated over the region R. If the Jacobian has the same sign throughout

R, then the new distribution in the (∆S‡,∆H‡) space is given by

P ′(∆S‡,∆H‡) = P (k1(∆S
‡,∆H‡), k2(∆S‡,∆H‡)) |J | (2)

where the functions k1(∆S‡,∆H‡) and k2(∆S‡,∆H‡) give the original vari-

ables in terms of the transformed ones. The transformation is defined by the

transition state theory expressions for the rate coefficients (9 ):

k =
kBT

h
exp(

∆S‡

R
) exp(−∆H‡

RT
)(c−◦ )(1−m). (3)

In eq 3, kB and h are Boltzmann’s and Planck’s constants respectively, R is

the gas constant, c−◦ is the concentration in the standard state to which the

activation parameters ∆S‡ and ∆H‡ are referred, and m is the “molecularity”
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(unity for a unimolecular reaction, 2 for a bimolecular reaction, and so on).

For compactness of notation I define the rate coefficients k1 and k2 to be

the coefficients measured at temperatures T1 and T2 respectively, divided

by the concentration units (c−◦ )(1−m); this definition forces the coefficients to

have units of inverse seconds. The transformation from (∆S‡,∆H‡) space to

(k1, k2) space is obtained by inserting first k1 and T1 and then k2 and T2 into

eq 3:

k1 =
kBT1

h
exp(

∆S‡

R
) exp(−∆H‡

RT1

), (4)

k2 =
kBT2

h
exp(

∆S‡

R
) exp(−∆H‡

RT2

). (5)

The transformation from (k1, k2) space to (∆S‡,∆H‡) space is obtained by

inverting eqs 4–5:

∆H‡ = R

(
T1T2

T1 − T2

)
ln

(
k1T2

k2T1

)
, (6)

∆S‡ = R

(
T1T2

T1 − T2

)[
1

T2

ln

(
hk1

kBT1

)
− 1

T1

ln

(
hk2

kBT2

)]
. (7)
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4.2 Transformation of the boundary

The constraints on measured rate coefficients in the phone number problem

are kmin ≤ k1, k2 ≤ kmax, and k1 ≤ k2. The boundary of the accessible region

in (k1, k2) space is therefore formed by the three lines k1 = kmin (boundary

(a) in Figure 2), k2 = kmax (boundary (b)), and k1 = k2 (boundary (c)).

Inserting those relations in turn into eqs 6 and 7 and then eliminating k1

or k2 between the two yields the following expressions for the boundary in

(∆S‡,∆H‡) space:

∆H‡ =



T1

(
∆S‡ − R ln

(
hkmin

kBT1

))
on boundary (a)

T2

(
∆S‡ − R ln

(
hkmax

kBT2

))
(b)

R
(
T1T2

T1−T2

)
ln
(
T2

T1

)
(c)

(8)

A plot of the transformed boundary assuming bimolecular reaction, a

standard state of 1 mol L−1 and the values of kmin, kmax, T1, and T2 suggested

by Connors is shown in the lower panel of Figure 2. One reason for the false

correlation is immediately apparent: the boundary of the accessible region

in (k1, k2) space becomes a sharply acute triangle in (∆S‡,∆H‡) space. All

the possible (∆S‡,∆H‡) pairs must fall within the new boundary. If the

(∆S‡,∆H‡) pairs cover most of the possible values of ∆S‡, then a respectable
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linear correlation cannot fail to appear.

If experimental errors are associated with the kinetic data, then each

point in the (k1, k2) space is replaced by a region of finite size, typically an

ellipse. Note that those ellipses will all be mapped into the long, narrow

triangular region in (∆S‡,∆H‡) space as well, so experimental error will not

tend to make the false correlations appear worse. Also note that increasing

the value of kmax to allow larger variations in the rate coefficients will tend

to extend boundaries (a) and (b) with little effect on the length of boundary

(c). The limited range of rate coefficient magnitudes in the phone number

problem is therefore not a crucial restriction.

4.3 Transformation of the Probability Distribution

A uniform probability distribution

P (k1, k2) =
2

(kmax − kmin)2 (9)

in the original space will probably not be uniform in the new space. To

calculate the new distribution, the Jacobian of the transformation, defined
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by

J =

∣∣∣∣∣∣∣∣∣
(

∂k1

∂∆S
‡

) (
∂k1

∂∆H
‡

)
(

∂k2

∂∆S
‡

) (
∂k2

∂∆H
‡

)
∣∣∣∣∣∣∣∣∣ , (10)

where the vertical bars denote the determinant, is required. Evaluation of J

is straightforward from eqs 4 and 5; the result is

J =

(
kB

Rh

)2

(T2 − T1) exp

(
2∆S‡

R

)
exp

(
−∆H‡

R

(
1

T1

+
1

T2

))
. (11)

The Jacobian is positive throughout the region, so the new probability

distribution is (from eqs 2, 9, and 11)

P ′(∆S‡,∆H‡) =
2

(kmax − kmin)2

(
kB

Rh

)2

(T2−T1) exp

(
2∆S‡

R

)
exp

(
−∆H‡

R

(
1

T1

+
1

T2

))
.

(12)

This new distribution is the product of an exponentially increasing func-

tion of ∆S‡ and an exponentially decreasing function of ∆H‡. For any par-

ticular value of ∆H‡, the corresponding value of ∆S‡ will tend toward high

values, meaning that the (∆S‡,∆H‡) pairs will tend to accumulate toward

the right-hand side of the region in Figure 2. Similarly, for any value of ∆S‡,

the points will tend toward the lower boundary of the region. The net effect

is that points in (∆S‡,∆H‡) space will tend to cluster along boundary (b)
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in Figure 2, rather than filling the available region uniformly. The probabil-

ity distribution strengthens the correlation introduced by the long, narrow

shape of the new boundary. Figure 3 was created with the same data used in

Figure 1, but using T2 = 600 K instead of 315 K to provide a wider region in

(∆S‡,∆H‡) space. The influence of the transformed probability distribution

is clear.

Since the slope of the boundary line (b) is T2, the “isokinetic temperature”

obtained from this analysis will tend to be close to T2 as well. When a real

reaction series is misanalyzed this way, the isokinetic temperature obtained

will usually be close to the higher end of the temperature range used for the

experimental measurements.

5 Discussion

Is there a real isokinetic relationship with chemical meaning? Yes. One

way to find it is to overlay rate constant data for all the reactions in the

series of interest on a single Arrhenius plot, and look for a point of common

intersection among the best-fit lines. The temperature corresponding to the

abscissa of the intersection is the isokinetic temperature β, at which all the
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reactions have the same rate coefficient. If no point of common intersection

exists within experimental error, then an isokinetic relationship cannot be

said to hold for the series of reactions. Often the common intersection point

lies well outside the range of experimentally accessible temperatures, and the

uncertainty in β will be large. Exner’s treatment is essentially a quantitative

version of this approach based on least-squares fitting.

Exner suggests another very simple method, applicable when rate con-

stants at two well-separated temperatures are available for each reaction. If

plots are made simply of log k1 vs. log k2, linear correlation implies a valid

isokinetic relationship. However, the method is useful mostly for “quick and

dirty” evaluations because it is limited to the two-temperature case.

Krug et al. (7 , 8 ) have suggested another means of searching for isoki-

netic relationships. They recommend evaluating ∆G‡Thm
and ∆H‡ from the

kinetic data and searching for correlations in the ∆H‡–∆G‡Thm
plane, where

∆G‡Thm
is the estimated Gibbs energy of activation at the “harmonic mean”

experimental temperature, Thm = 〈 1
Ti
〉−1. ∆H‡ and ∆G‡Thm

can be evaluated

in a way that leaves their values uncorrelated (that is, their covariance near

zero).

Both the simple log k1 vs. log k2 plot and the treatment of Krug et al.
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remove the main problem of the ∆H‡–∆S‡ approach, the transformation

of the boundary of the data region into a very long, narrow region in the

target space. The behavior of their Jacobians for transformation of a uniform

distribution into the target space is similar to the ∆H‡–∆S‡ case, however.

The plots in (log k1, log k2) or (∆H‡,∆G‡Thm
) space will consequently nearly

always “look better” than plots in the (k1, k2) plane. Careful least-squares

treatments are therefore a necessity; the paper of Krug et al. describes a good

approach in detail.

6 Conclusion

The isokinetic relationship illustrates a general principle in empirical work.

Generally, correlations among directly observed data values will be meaning-

ful. If the search is carried out among functions of the variables, one must

be careful to distinguish between correlations which are purely mathematical

in nature and ones which have physical meaning. The simple test used here,

analysis of a uniform distribution by the chosen technique, might serve as an

initial “reality check” in many cases.
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7 Figure Captions

Figure 1. Typical solution plot for the phone number problem.

Figure 2. Upper panel: Boundary of accessible (k1, k2) values. Lower panel: Cor-

responding boundary in (∆S‡,∆H‡) space.

Figure 3. Points and boundary assuming T2 = 600 K.
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Figure 1: Typical solution for the phone number problem.
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Figure 2: Upper panel: Boundary of accessible (k1, k2) values. Lower panel:
Corresponding boundary in (∆S‡,∆H‡) space.
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Figure 3: Points and boundary assuming T2 = 600 K
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