
1 Elementary Reactions and Mechanisms

If a chemical equation describes an individual molecular event, as for instance

O + CH4 −−→ OH + CH3, (1)

then we can write down the rate law from the stoichiometry:

−d[O]
dt

= −d[CH4]
dt

=
d[OH]
dt

=
d[CH3]

dt
= k[O][CH4], (2)

where k is an elementary rate constant. This example is a bimolecular reaction;
the other possibilities are unimolecular and termolecular, both of which are
rarer. Most chemical reactions are not elementary as written. One of the main
goals of most kinetic studies is to determine the sequence of elementary reac-
tions, or mechanism, which makes up an overall reaction.

The “laboratory” reaction

2ICl + H2 −−→ I2 + 2HCl (3)

might have the observed rate law

1
2
d[HCl]

dt
= k[ICl][H2]. (4)

This rate law suggests that the kinetics are dominated by a bimolecular reaction
between ICl and H2. One possibility for the mechanism is

ICl + H2
k1−−→ HI + HCl (slow) (5)

HI + ICl
k2−−→ HCl + I2 (fast) (6)

We will shortly see how to analyze the behavior of this mechanism quantita-
tively. Note that adding together Eq. (5) and Eq. (6) gives the overall reaction.

The mechanism lists the elementary reactions making up a chemical pro-
cess. It can be used to predict the detailed concentration vs. time behavior and
therefore the observed rate law. A mechanism (proposed) cannot be proven
correct, though it can be proven wrong by disagreement with observed behav-
ior.

1.1 Simple example: reversible unimolecular transformation

The mechanism

A
k1−−→ B (7)

B
k2−−→ A, (8)
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which can also be written

A
k1−↽−−⇀−
k2

B, (9)

gives the set of “elementary rate laws”

d[A]
dt

= −k1[A] + k2[B] (10)

d[B]
dt

= k1[A]− k2[B] (11)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t/(1/k1)

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

en
tr

at
io

n/
[A

0] [B]

[A]

τ = 1/(k1 + k2)

Figure 1: Behavior of a reversible first order
reaction for the case B0 = 0 and k1 = 2k2.

This is a system of two coupled ODEs. Once the ini-
tial conditions are specified, its solution describes the
complete time dependence. Figure 1 shows a graphical
representation of the concentration vs. time profiles of
both components when B0 = 0. In this case, the system
of equations can be easily solved analytically, and I will
now show how to do that. In more complicated cases I
will leave out the detailed solutions.

We can solve the system by using mass balance to un-
couple the two equations: [B] = B0 + (A0 − [A]) from
stoichiometry, so that

d[A]
dt

= −k1[A] + k2(B0 + A0 − [A]). (12)

Eq. (12) is now a separable differential equation in [A]
only. Its solution, with [A](t = 0) = A0, is

[A](t) =
1

k1 + k2

×
{

(k1A0 − k2B0)e
−(k1+k2)t + k2(A0 + B0)

}
. (13)

The rate law in this case looks like

−d[A]
dt

= (k1 + k2)[A]− k2(B0 + A0) (14)

= k′[A] + C, (15)

and the reaction order is not defined.
At equilibrium, the forward and reverse rates are the same, so

k1[A]eq = k2[B]eq (16)

[B]eq

[A]eq
=

k1
k2

(17)

= Keq (18)
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Many exact solutions of this type are given by G. Szabo, in Comprehensive
Chemical Kinetics, ed. by Bamford and Tipper. (v.2?)

2 Exact and approximate analytic solutions to sets
of rate equations.

Any kinetic system composed entirely of first-order (or pseudo-first-order!)
steps has an exact analytic solution. It may be found by the linear algebraic
methods described in Sec. 2.5 in Steinfeld, Francisco, and Hase. Moderately
complicated systems can also be handled with Laplace transforms, described
in Sec. 2.4 of the same text. These techniques work only for linear (1st-order)
systems. Let’s consider qualitatively a few simple cases, where the higher-
powered solution techniques are unnecessary.

2.1 Consecutive first-order reactions

A
k1−−→ B

k2−−→ C (19)

An example of this sort of system is the electronic quenching of excited
bromine atoms by CO2,

Br∗1
2

+ CO2 −−→ CO∗2(001) + Br 3
2

(20)

CO∗2 + CO2 −−→ 2CO2, (21)

under conditions of excess CO2 so that it is pseudo first order. One way to
monitor the reaction progress is to measure IR luminescence of Br∗ or CO∗2.

A decays away with τ = 1/k1. B grows, then decays:

[B] =
k1A0
k2 − k1

(
e−k1t − e−k2t

)
(22)

where the set of rate equations was one of the problems on the math refresher
assignment. The maximum concentration of B depends on the relative sizes
of k1 and k2. Let’s look at the two extreme cases, illustrated in the upper and
lower panels of Figure 2.

2.1.1 Consecutive 1st-order, k1 � k2

In this case, then at short times (t � 0), the second exponential term in Eq. (22)
is near 1, the equation looks like B ≈ A0(1− e−k1t), and B grows in with time
constant 1/k1 as though no conversion to C was occuring. At long times, the
first of the two exponential terms goes toward zero, and we have [B] � A0e

−k2t,
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so that B is decaying toward C with time constant 1/k2. The system essentially
converts all the A to B, and then, on a slower timescale, converts the B to C.
The maximum concentration of B will be nearly the initial concentration of A.

0 5 10 15 20
t/(1/k1)

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

en
tr

at
io

n/
[A

0]

[C][A]

[B]τ = 1/k1

τ = 1/k2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t/(1/k1)

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

en
tr

at
io

n/
[A

0]
[B]

[A]

[C]

τ = 1/k1τ = 1/k2

Figure 2: Temporal behavior of consecutive,
irreversible first-order reactions. The upper
panel shows the case k1 = 5k2; the lower
panel shows the case k2 = 5k1.

We can get [C] by mass balance: [C] = A0 − [A] −
[B]. Substituting the long-time behavior of B into that
expression gives C = A0(1 − e−k2t), and C grows with
time constant 1/k2 from B.

2.1.2 Consecutive 1st-order, k1 	 k2

Now, at short times, e−k1t ≈ 1, so [B] ≈ k1
k2
A0(1− e−k2t).

At long times, e−k2t ≈ 0, and we have [B] ≈ k1
k2
A0e

−k1t.
Note that the time constants on the rising and falling part
of the [B](t) curve have inverted: the curvature on the
rising part of the curve is determined by k2, while the
curvature on the falling part is given by k1. The faster
rate coefficient always sets the exponential behavior of
the rise, no matter whether it is the first or second coeffi-
cient in the mechanism.

Once again we find the behavior of C by mass bal-
ance. The exact equation, applicable no matter the values
of the rate coefficients, is

[C] = A0 − [A]− [B] (23)

= A0

(
1− k2

k2 − k1
e−k1t +

k1
k2 − k1

e−k2t
)

. (24)

The concentration of C does not have a simple short-
time behavior, but at long times [C] ≈ A0(1 − e−k1t).
When the second rate coefficient in the consecutive
mechanism is much larger than the first, then as soon as
a B molecule is formed it converts right away to C, and the rising behavior of C
looks as though B did not exist and C was being formed directly from A. This
result anticipates the steady-state approximation.

2.2 Competetive (parallel) first order reactions

In this case, the mechanism is

A
k1−−→ B (25)

A
k2−−→ C (26)
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Figure 3: Temporal behavior of competing, ir-
reversible first-order reactions. In this figure
k1 = 2k2.

The rate equations are

d[A]
dt

= −(k1 + k2)[A] (27)

d[B]
dt

= k1[A] (28)

d[C]
dt

= k2[A] (29)

The first of the three is an ordinary first-order decay,
giving [A] = A0e

−(k1+k2)t. Substituting that result into
the second and third equations gives separable equations
for both B and C, which have nearly the same solutions:

[B] =
k1A0
k1 + k2

(1− e−(k1+k2)t) (30)

[C] =
k2A0
k1 + k2

(1− e−(k1+k2)t) (31)

Note that the temporal behavior of both B and C are
the same; their risetimes are determined by the sum of
the two elementary rate coefficients. Their concentra-
tions are determined by the individual rate constants, such that [B]/[C] = k1/k2
always. Such systems are convenient to study experimentally; measure τA to
get k1 + k2, then simply measure [B]

[C] at any convenient time (typically t → ∞)
to get the ratio k1/k2. Those two measurements are enough to determine the
individual ks. This approach is the basis of the very popular “relative rates
method” of experimental kinetics.

2.2.1 Kinetic vs. thermodynamic control

If the reactions are reversible,

A
k1−↽−−⇀−
k−1

B (32)

A
k2−↽−−⇀−
k−2

C, (33)

then the issue of thermodynamic or kinetic control of products appears.
Assuming no direct interconversion of B and C,

[B]eq

[C]eq
=

[B]eq

[A]eq
·
[A]eq

[C]eq
=

k1
k−1

k−2
k2

= KBC. (34)
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If k1k−2 	 k−1k2 so that KBC 	 1, then at equilibrium there will be much
more C than B and we say that C is the “thermodynamically favored” product.
On the other hand, if k1 � k−1 and k2 � k−2, both elementary reactions will
“act irreversible” - their forward rates will be much greater than their reverse
ones - until most of the A is gone. During that time the ratio [B]/[C] ≈ k1/k2.
If k1 � k2, mostly B will appear. B is then called the “kinetically favored”
product. These conditions on the rate coefficients are not mutually exclusive,
and the effect is not at all rare. If

k1 = 100 s−1 k−1 = 10−7

k2 = 10−2 k−2 = 10−12

then Table 1 shows the resulting concentrations. This is a not-too-extreme case
of kinetic control.

Table 1 Kinetic control
time [A](%) [B](%) [C](%)
0 100 0 0
10 s 0 99 1
3 months 0 98 2
1900 years 0 1 99
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2.3 Relative Rate Experiments

Consider elementary reaction of B with two compounds A1 and A2, to give
products P1 and P2.

A1 + B
k1−−→ P1 (35)

A2 + B
k2−−→ P2 (36)

If B is added to a mixture of A1 and A2, whose concentrations are � [B]0,
then

d[P1]
dt

= k1[A1]0[B] (37)

d[P2]
dt

= k2[A2]0[B] (38)

d[P1]
d[P2]

=
k1[A1]0
k2[A2]0

(39)

So, after a long time

[P1]∞
[P2]∞

=
k1[A1]0
k2[A2]0

(40)

If either k1 or k2 is known from other measurements, this technique allows
determination of the other without a concentration-vs.-time experiment; just let
B react to completion with a mixture of A1 and A2, then analyze the products
when the reaction is over. This relative rate technique has been used extensively
to measure reaction rates of radicals.

Example: Generate phenyl radicals (C6H5·) by pyrolysis of a precursor, in
the presence of both a hydrocarbon RH and CCl4. After the reaction, mea-
sure the ratio [C6H5Cl]/[C6H6]. That ratio times [RH]0

[CCl4 ]0
gives the ratio of rate

constants kCCl4
/kRH. Careful work requires several starting ratios; then from

Eq. (40) plotting the final product ratio vs. the initial reactant ratio yields k1/k2
as the slope, and a zero intercept.

Equivalently, the loss rates for A1 and A2 can be observed, if one is confi-
dent that no other processes remove them from the system. Then

d[A1]
dt

= k1[A1][B] (41)

d[A2]
dt

= k2[A2][B]. (42)
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so

d[A1]
d[A2]

=
k1
k2

[A1]
[A2]

(43)

k2
d[A1]
[A1]

= k1
d[A2]
[A2]

(44)

k2 ln [A1] = k1 ln [A2] + C (45)

When [A1] = [A1]0, [A2] = [A2]0, so C = k2 ln [A1]0 − k1 ln[A2]0

k2 ln
(

[A1]
[A1]0

)
= k1 ln

(
[A2]
[A2]0

)
(46)

k1
k2

=
ln

(
[A1 ]
[A1 ]0

)
ln

(
[A2 ]
[A2 ]0

) (47)

so measurement of [A1] and [A2] at any time will give k1/k2.
The advantage of relative rate techniques is that slow but quantitative an-

alytical techniques (gas chromatography, wet-chemical analysis, etc) can be
used to study even fast reactions.

2.4 Approximations

What to do if a mechanism is too complicated to usefully compare its predic-
tions with data?

In particular, mechanisms give concentration vs. time for all species. Usu-
ally we are only interested in reactants or products or both. So we seek a
method to eliminate the concentrations of intermediates in our rate expres-
sions.

Example:

A
k1−↽−−⇀−
k−1

B (48)

B + C
k2−−→ D (49)

Net reaction A + C→ D.

d[A]
dt

= −k1[A] + k−1[B] (50)

d[B]
dt

= k1[A]− (k−1 + k2[C])[B] (51)

d[C]
dt

= −k2[B][C] (52)

d[D]
dt

= k2[B][C] (53)
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If B is a very reactive species (perhaps an organic free radical), we might
assume that its concentration remains small throughout the reaction. Then
the absolute slope of its concentration will be small compared to other time
dependences in the system, and we write

d[B]
dt
≈ 0. (54)

This is called the steady-state or Bodenstein approximation.
We then use that assumption to eliminate [B] from the rate expressions for

the product D.

d[B]
dt

SSA≈ 0 = k1[A]− (k−1 + k2[C])[B] (55)

[B]
SSA≈ k1[A]

k−1 + k2[C]
(56)

d[D]
dt

SSA≈ k1k2[A][C]
k−1 + k2[C]

(57)

Now if k−1 � k2[C],

d[D]
dt

SSA≈ k1k2
k−1

[A][C] apparent 2nd order (58)

while if k2[C] � k−1,

d[D]
dt

SSA≈ k1[A] apparent 1st order (59)

2.5 Validity of SSA

It is sufficient that the sum of all effective rate coefficients “out of” the interme-
diate be much greater than the sum “into” the intermediate. In our example,
this means

(k−1 + k2[C]) � k1. (60)

(It’s generally safe to take “�” to mean “greater by a factor of 50 or more”;
smaller ratios are often acceptable.)

In addition, there must be a “build-up time” during which [B] climbs to its
(small) steady-state value, and d[B]

dt ≈ 0 must be incorrect. This period is over
when

(k−1 + k2[C])t � 5. (61)
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2.5.1 Example: sequential 1st-order reactions

In this section I want to work out a quantitative indication of the time required
to establish the steady state for the simplest case. Consider

A
k1−−→ B

k2−−→ C. (62)

Then

[B] =
k1

k2 − k1
A0(e

−k1t − e−k2t) (63)

d[B]
dt

=
A0k1
k2 − k1

(k2e
−k2t − k1e

−k1t) (64)

How long until d[B]
dt = 0? Call that tS, and solve for it explicitly:

ln k2 − k2tS = ln k1 − k1tS (65)

tS(k1 − k2) = ln k1 − ln k2 = ln
(
k1
k2

)
(66)

tS =
1

k1 − k2
ln

(
k1
k2

)
(67)

=
1

k2 − k1
ln

(
k2
k1

)
(68)

Compare this with τ for the slow step, which is 1/k1.

Table 2 Buildup time as a function of k2/k1.

k2/k1 2 5 10 20 50 100
t∗S .69 .40 .26 .16 .080 .047

tS
τ

= t∗S = k1tS (69)

t∗S =
1

k2
k1
− 1

ln
(
k2
k1

)
(70)

The value t∗S indicates what fraction of the overall reaction time is required
for the steady state to be established. The smaller it is, the smaller will be
the error associated with the initial buildup of B. Numerical results appear
in Table 2. If k2/k1 ≥ 50, the steady state is established within the first ten
percent of the reaction time; that is probably a reasonable cutoff for use of the
approximation. In the next section I consider another approximation, the rapid
equilibrium approximation, and its relation to the SSA.
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2.6 Other Simplifying Approximations

Once again, consider the mechanism

A
k1−↽−−⇀−
k−1

B (71)

B
k2−−→ C (72)

and let us look for an expression for d[C]
dt . We have the set of rate equations

d[A]
dt

= −k1[A] + k−1[B] (73)

d[B]
dt

= k1[A]− (k−1 + k2)[B] (74)

d[C]
dt

= k2[B] (75)

I want to consider two main cases, illustrated in Figure 4 and summarized
in Table 3.

Table 3 Relations among simplifying approximations.

Case Requirements Long-time rate coefficient
SSA (k−1 + k2) � k1 k1k2/(k−1 + k2)
REA (k1 + k−1) � k2 k1k2/(k1 + k−1)

SS-EQ k−1 � k1 and k−1 � k2 k1k2/k−1

2.6.1 Rapid equilibrium case: (k1 + k−1) � k2

The rate equations for A and B now look like the simple system A −↽−−⇀− B,
whose solution was worked out in Section 1.1. After a time ≈ 1/(k1 + k−1), the
A −↽−−⇀− B reaction will reach approximate equilibrium so that [B] ≈ k1

k−1
[A]. A

and B will act like a single species that is slowly decaying toward C, and

d[C]
dt

REA≈ k1k2
k−1

[A] (76)

This is the “rapid equilibrium approximation.”

2.6.2 Steady state case: (k−1 + k2) � k1
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Figure 4: The steady-state and equilibrium
approximations for the A −↽⇀− B −→ C mech-
anism, for two different sets of rate coeffi-
cients. In the upper panel k−1 = k2 = 10k1;
in the lower panel k1 = k−1 = 10k2.

This is just the requirement for the steady-state approxi-
mation. Applying it to this case gives

d[B]
dt

= −k1[A]− (k−1 + k2)[B]
SSA≈ 0 (77)

so

[B]
SSA≈ k1[A]

(k−1 + k2)
(78)

d[C]
dt

SSA≈
(

k1k2
k−1 + k2

)
[A] (79)

2.6.3 Equilibrium-steady-state case

If, in the steady-state case, k−1 � k2, or, in the rapid
equilibrium case, k−1 � k1, then these two approxima-
tions reduce to a common result, which Pyun (J. Chem.
Ed. 48, 194 (1971)) calls the “equilibrium-steady-state so-
lution”. This simplest approximation requires that k−1
be the fastest rate coefficient in the system.

After the time required for the establishment of either
the steady state or the rapid equilibrium condition, C be-
gins appearing (in this first-order example) with a sim-
ple exponential behavior. The effective rate coefficient
for this appearance is given in Table 3.

2.7 Rate determining steps

In some cases, the overall reaction rate is dominated by
one of the elementary steps, and that step is called the
“rate-determining” or “rate-controlling” step.

In the steady-state approximation, if k2 � k−1, then the long-time rate co-
efficient reduces simply to k1. In that case the formation of B from A is limiting
the overall rate, and we say that the first step is rate-determining.

In the rapid equilibrium approximation, if k1 � k−1, then the A—B equilib-
rium lies heavily in the direction of B, and the long-time rate coefficient again
becomes simply k1. In this case the second step is the rate controlling one.

If the combined SSA-EQ approximation holds, then C appears with an ef-
fective rate coefficient that is the product of the rate coefficient for the second
step and the equilibrium constant for the first step. In this case, the second step
is again the rate controlling one, but the apparent rate coefficient (if one tries to
model the mechanism with a simple A −→ C elementary step) is modified by
the equilibrium constant for the initial equilibrium.

Notice that a single rate-controlling step does not always exist. For exam-
ple, in a sequence of consecutive first-order transformations, if all the steps
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have the same rate coefficient then no one of them dominates the rate. (In other
words, if you changed any one of them slightly, the overall rate of production
of product would change.)

These various approximations - SSA, rapid equilibrium, rate-controlling
step, etc. - are often more valuable for the chemical insight they provide than
for mathematical power. In many cases they can be used to focus attention on
the particular ports of a mechanism which are most important in determining
the rate.

Whenever one or more assumptions about the values of rate coefficients are
made, it is worthwhile to check the range of validity of the assumptions with
numerical work.
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2.8 Examples

2.8.1 Ligand substitution

The nucleophilic substitution reaction

Ni(CO)4 + PPh3 −−−−→ Ni(CO)3PPh3 + CO (80)

has the proposed mechanism (J. P. Day et al., JACS (90), 6927 (1968))

Ni(CO)4
k1−↽−−−−−−⇀−

k−1

Ni(CO)3 + CO (81)

Ni(CO)3 + PPh3
k2−−−−→ Ni(CO)3PPh3 (82)

Applying the steady-state approximation to the unsaturated intermediate
Ni(CO)3 gives

d
dt

[Ni(CO)3] = k1[Ni(CO)4]− (k−1[CO] + k2[PPh3])[Ni(CO)3] (83)

[Ni(CO)3]
SSA≈ k1[Ni(CO)4]

k−1[CO] + k2[PPh3]
(84)

d
dt

[Ni(CO)3PPh3] = k2[Ni(CO)3][PPh3] (85)

SSA≈ k2[PPh3]
k1[Ni(CO)4]

k−1[CO] + k2[PPh3]
(86)

Under conditions of high ligand (PPH3) concentration, the rate law will
reduce to

d
dt

[Ni(CO)3PPh3] ≈ k1[Ni(CO)4], (87)

that is, first order in the carbonyl concentration only. This is a common kinetic
behavior seen for metal carbonyl nucleophilic substitutions.

2.8.2 Dinitrogen pentoxide decomposition

The reaction

2N2O5 → 4NO2 + O2 (88)

follows an observed first-order rate law. The reaction between N2O5 and NO
also looks first order but is much faster. NO3, a blue gas, also appears as an
intermediate. A page from Johnston showing some data is reproduced in Fig-
ure 5.
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Figure 5: Data on dinitrogen pentoxide decomposition (from Johnston).
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First-order kinetics suggests a unimolecular reaction as an important step.
Try this:

N2O5
k1−↽−−−−−−⇀−
k−1

NO2 + NO3 (89)

NO2 + NO3
k2−−−−→ NO + NO2 + O2 (90)

NO + NO3
k3−−−−→ 2NO2 (91)

We shall try to find an expression for d[NO2 ]
dt .

d[NO2]
dt

= k1[N2O5]− k−1[NO2][NO3] + 2k3[NO][NO3] (92)

d[NO3]
dt

= k1[N2O5]− (k−1 + k2)[NO2][NO3]− k3[NO][NO3] (93)

Apply SSA to NO3:

d[NO3]
dt

SSA≈ 0 (94)

[NO3]
SSA≈ k1[N2O5]

(k−1 + k2)[NO2] + k3[NO]
(95)

Substitute into d[NO2 ]
dt expression:

d[NO2]
dt

SSA≈ k1[N2O5]
{

1− k1[NO2] +−2k3[NO]
(k−1 + k2)[NO2] + k3[NO]

}
(96)

d[NO2]
dt

SSA≈ k1[N2O5]
{

k2[NO2] + 3k3[NO]
(k−1 + k2)[NO2] + k3[NO]

}
(97)

This is still pretty ugly. Since NO is consumed quickly on the timescale of
this reaction, try applying SSA to NO as well.

d[NO]
dt

= k2[NO2][NO3]− k3[NO][NO3]
SSA≈ 0 (98)

[NO]
SSA≈ k2

k3
[NO2] (99)

so

d[NO2]
dt

SSA≈ k1[N2O5]
{
k2[NO2] + 3k2[NO2]
(k−1 + 2k2)[NO2]

}
(100)

d[NO2]
dt

SSA≈ 4k1k2
k−1 + 2k2

[N2O5] (101)
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So with these two approximations we have found a first-order rate law, as
observed.

The most common approach in steady-state treatments is to eliminate the
concentrations of presumed intermediates, in order to find a rate law in terms
of reactant or product concentrations only. The formation of “effective” or “ob-
served” rate coefficients in terms of elementary ones usually becomes clear, but
it is not always obvious that the SSA should hold at all.

2.8.3 Oxidation of aqueous azide

This example shows both the use of the steady-state treatment for an unstable
intermediate and the effect of rapid equilibria that precede a rate-determining
step.

A simplified mechanism for the oxidation of azide ion by aqueous Br2 is

Br2 + N−3
fast−−−−→ BrN3 + Br− (102)

BrN3 + Br−
K1−↽−−−−−−⇀− Br2N−3 (103)

BrN3 + N−3
k1−−−−→ Br− + N6 (104)

N6
k3−−−−→ 3N2 (105)

The reaction was followed under conditions of excess N−3 and Br− by ob-
serving the appearance of N2 gas (T. S. Vivekanadam et al., Int. J. Chem. Kin. 13,
199 (1981).) The product appeared with an apparent first-order behavior that
dependended linearly on [N−3 ]. The intermediate N6 is an obvious candidate
for the steady state approximation:

[N6]
SSA≈ k1

k3
[BrN3][N

−
3 ] (106)

d[N2]
dt

= 3k3[N6] (107)

SSA≈ 3k1[BrN3][N
−
3 ] (108)

The first reaction is “fast”, so it is reasonable to regard the initially added
bromine as converted completely to BrN3 immediately. The BrN3 can either
be complexed by Br− in step 103, or react to form product in step 104. The
equilibrium gives us

[Br2N−3 ]
REA≈ K1[BrN3][Br−] (109)

When rapid equilibria are present, it is often useful to define a quantity
whose value does not change so long as no reactions other than the equilib-
rium reactions occur. In this case we can define a quantity that is the total
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concentration of oxidized bromine, and examine its kinetics.

M = [BrN3] + [Br2N−3 ] (110)
REA≈ [BrN3] + K1[BrN3][Br−] (111)
REA≈ [BrN3](1 + K1[Br−]) (112)

[BrN3]
REA≈ M

1 + K1[Br−]
(113)

Since M is only destroyed in step Eq. (104),

dM
dt

= −k1[BrN3][N
−
3 ] (114)

REA≈ −k1[N
−
3 ]

M
1 + K1[Br−]

(115)

Note that dM
dt is just proportional to the rate of appearance of product, and

that it should be expected to follow pseudo-first-order kinetics under condi-
tions of constant [N−3 ] and [Br]. The effective first-order rate coefficient is

keff = [N−3 ]
k1

1 + K1[Br−]
. (116)

The appearance of several terms in the denominator of a rate expression is a
common effect of equilibria that precede a rate-determining step.

Notice that bromide acts to inhibit the reaction by tying up the oxidized
bromine (the oxidizing agent) in the unreactive complex Br2N−3 . The standard
experimental analysis of this sort of competitive equilibrium is to measure keff
at several values of [Br−], and make a plot of [N−3 ]/keff against [Br−]. The
intercept of such a plot is 1/k1, and its slope is K1/k1.

In fact, the complex can add another bromide ion to form Br3N2−
3 , and the

Br2N−3 can react with azide to produce N6 with a smaller rate coefficient than
k1. This additional component to the equilibrium and additional pathway to
products do not change the basic pseudo-first-order nature of the reaction, but
they make the expression for keff more complicated.

3 Numerical Solutions to Rate Equations

The systems of coupled differential equations produced by even modestly com-
plicated mechanisms are often difficult or impossible to solve analytically. The
steady-state and equilibrium approximations sometimes can simplify them to
tractable systems, but often they cannot, and even when they can it is not al-
ways clear that the approximations are good. A separate approach is to give
up hope of obtaining analytic expressions for concentration as a function of
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time, but to solve the differential equations numerically. This approach just
produces predicted curves of concentrations of all the species in the system,
given the mechanism, the rate coefficients, and the initial conditions.

Several common motivations for numerical approaches are the following:

1. To handle hopelessly complicated mechanisms with many intermediates
and many rate coefficients. In this case, it’s the only game in town.

2. To verify the validity of SSA and similar approximations made in analyt-
ical approaches.

3. To get C-vs-t profiles, even for relatively simple mechanisms, for com-
parison to data.

3.1 Computational Methods

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y exact
Euler’s method

Figure 6: Euler’s method solution for the
equation dy

dt = e−x(1− x), with a step size of
0.158.

Two good references for numerical algorithms are C.W.
Gear, Numerical Initial Value Problems in Ordinary Dif-
ferential Equations, Prentice-Hall (Englewood Cliffs, NJ);
1971), and W.H. Press et al, Numerical Recipes in [C or
Fortran], 2nd edition, Cambridge University Press (NY;
1992).

The basic idea in all numerical approaches is that dif-
ferential equations give you the slope on each concentra-
tion as a function of the concentrations. You can use
that to trace out C vs. t. The simplest possible method
is called Euler’s method, and I will describe it briefly; an
example is shown in Figure 6.

We describe the chemical system in terms of a vector
of concentrations y, and the mechanism gives us a corre-
sponding vector of derivatives y′.

Let us look at one particular component of y′, d[B]
dt :

d[B]
dt

= k1[A] + (k−1 + k2[C])[B] + · · · (117)

= f (y). (118)

At t = 0, we have y = y0, y′ = y′0.
Take a small step in t, called h. Assume that the step is small enough that

the concentrations change linearly during it. Then

y(h) = y(0) + hy′(0). (119)

For the next step, take

y(2h) = y(h) + hy′(h), (120)

19



and so on.
I do not recommend this technique for any real problems. But it gives you

the idea. Better methods calculate the slope halfway between the steps, or fit
parabolas instead of straight lines, or vary the stepsizes to fit the problem . . .
(see the references given above for details.)

A problem that often occurs in kinetics is that rate constants of quite differ-
ent magnitudes appear in the problems. For example, in the simple mechanism

A
k1−↽−−−−−−⇀−

k−1

B (121)

B
k2−−−−→ C (122)

if k−1 � k2, then even after the equilibrium is established, the numerical rou-
tine must keep taking small steps because 1/k−1 is small. The required small
time steps make the problem slow (= expensive). This is called “stiffness”.
Many realistic kinetic systems, including ones where the rapid equilibrium or
SS approximations are useful, are stiff.

The Euler method I described above, and the Runge-Kutta method de-
scribed in Espenson, both are susceptible to stiffness. More sophisticated nu-
merical methods are required. Several different ones are available, but the best
developed ones are descendants of the modified “predictor-corrector” one de-
veloped by Gear.
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3.2 Simulation programs

Several different programs are available for performing numerical solutions of
kinetic systems. The ones I have found useful are listed below.

Kinsim (Barshop et al., Biochem. J. 258, 381 (1989); available at http://wuarchive.
wustl.edu/packages/kinsim/) Kinsim is a very popular Gear-type sim-
ulator. It includes a fitting program (Fitsim) that can adjust the rate co-
efficients to fit real data. Both Kinsim and Fitsim are installed on the
Windows computers in the graduate computer laboratory. See the hand-
out for a brief introduction to its use; a complete manual is available at
the web site listed above.

React (Written by Mike Whitbeck of Lawrence Livermore National Labora-
tory). React is similar to Kinsim, though I have found it a little less
reliable. The source code is not available, but compiled versions for
DOS, Macintosh, and OS/2 are available at the Computational Chemistry
List server at OSC: ftp://ccl.osc.edu/pub/chemistry/software/MAC/
react/, or ftp://ccl.osc.edu/pub/chemistry/software/MS-DOS/react/.)

Acuchem This is an old-style DOS program described in Braun et al., Int. J.
Chem. Kin. 20, 51 (1988). It has somewhat more convenient data entry
than the previous two, but provides output is less convenient forms. It is
very reliable. Copies are available from me on disk.

CKS This program uses a different approach than the previous ones. It is a
“stochastic simulator”; it does a sort of Monte Carlo simulation of a very
small volume within the chemical system that contains typically a few
thousand molecules, and it does not treat the system with differential
equations at all. CKS is basically a repackaging of the program described
by Bunker et al. in Combustion and Flame 22, 375 (1974); for a thorough
analysis of the stochastic method, see Gillespie (J. Computational Phys. 22,
403 (1976)). For most kinds of mechanisms it is not competitive with
the Gear integrators for speed (statements in its documentation to the
contrary notwithstanding). It is especially poor at handling systems with
fast equilibria. Also, because of its stochastic nature the output data of
concentration vs. time have “noise” on them. However, it is a very nicely
designed program, it runs on Windows, Mac, and OS/2 computers, and
it is probably the easiest to use of all the programs listed. It is available at
http://www.almaden.ibm.com/st/msim/.

CHEMKIN This is the heavy-duty, no-holds-barred program system devel-
oped at Sandia National Laboratory for simulating reactions (especially
combustion) in flowing, nonisothermal systems with hundreds of species
and perhaps thousands of elementary reactions. It is a Gear integra-
tor. It is now distributed by a commercial firm, though it is available
at modest cost to universities. Information about ordering it is at http:
//www.reactiondesign.com/.
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4 Construction of Candidate Mechanisms from Rate
Laws

4.1 Rate controlling steps in sequential mechanisms

Figure 7: Schematic free energy diagram for
sequential 1st-order system with 4 intermedi-
ates, A → X,→ X2 → X3 → X4 → P

The heuristic procedures I will describe below for con-
structing a mechanism from a carefully determined rate
law depend on particular elementary steps being rate-
controlling under some conditions. I therefore need to
say a little more about how to think about rate controlling
steps. Intermediates are stable chemical species at free en-
ergy minima; transition states are unstable and will im-
mediately react without further perturbation.

In a sequential mechanism, to decide on an RCS you
must divide the reaction path into sections separated
by successively lower (more stable) intermediates. Con-
dense the mechanism to include only those intermedi-
ates.

Here we have

A −−→ X2 −−→ P. (123)

The other steps will be fast compared to those. Of the
remaining steps, the one with the largest free energy bar-
rier between the beginning and end of the section will be the RCS.

In Figure 7, the largest barrier is from X2 to ‡4, so the second step in the
condensed scheme will be the RCS. Intermediate X2 will build up; other inter-
mediates will remain at low concentrations.

For bimolecular reactions, this simple scheme must be modified to include
concentrations, producing “effective first-order” rate coefficients. See J.R. Mur-
doch, J. Chem. Educ. 58, 32 (1981).

4.2 Mechanism construction rules

A carefully determined rate law can be interpreted to obtain the atomic com-
position and charge of the important transition states (highest point in each
section of the free-energy diagram), and often some information about reac-
tions prior to the RCS. It never (without studies specifically on the elementary
reactions making up the mechanism) tells about fast reactions which follow the
RCS.

Espenson gives a set of guidelines for interpretation of rate laws which I’ll
describe. These depend on accuracy of the steady-state and equilibrium ap-
proximations in appropriate parts of the mechanism. They are not foolproof
but are sensible and useful.

1. If the rate law is written in terms of the predominant species in the reac-
tion medium, the composition and charge of the transition state for the
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RCS is the “algebraic value” of the concentration terms in the observed
rate law. An undetermined number of solvent molecules may also be
present in the transition state.

In our example from Section 2.8.2,

2N2O5 −−→ 4NO2 + O2, (124)

with rate law

d[N2O5]
dt

= k[N2O5], (125)

the transition state for the slow step simply has the composition N2O5.

In the aqueous redox reaction

Tl3+ + Hg2+
2 −−→ Tl+ + 2Hg2+, (126)

rate = k
[Tl3+][Hg2+

2 ]

[Hg2+]
. (127)

We “subtract out” the denominator, to obtain a transition state composi-
tion of TlHg, and a transition state charge of 3+.

For orders of 1
2 , use only half the atoms:

2(MnIIIMG)+ + S2O2−
4 −−→ 2(MnIIMG) + 2SO2, (128)

where MG is the protein myoglobin, has the rate law

rate = k[(MnIIIMG)+][S2O2−
4 ]

1
2 , (129)

and the TS is thought to have the composition Mn MG SO2 with no
charge.

2. A sum of positive terms in the rate indicates independent parallel path-
ways to the same product. The composition and charge of the transition
state along each pathway is found as above.

3I− + H2O2 + 2H+ −−→ I−3 + 2H2O (130)

d[I−3 ]
dt

= ka[I
−][H2O2] + kb[I

−][H2O2][H
+] (131)

This acid-catalyzed reaction would be studied by monitoring the forma-
tion of I−3 in various pH buffered solutions. ka could be determined by
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extrapolation to zero [H+]. There are two pathways, plain and catalyzed,
with compositions in the TS of (H2O2I)− and H3O2I.

We can see how this example comes about in a simple case:

A + B
k1−↽−−⇀−

k−1

C (132)

C + A
k2−−→ D (133)

C
k3−−→ D (134)

Applying SSA to C,

0
SSA≈ d[C]

dt
= k1[A][B]− (k−1 + k3 + k2[A])[C] (135)

so

[C]
SSA≈ k1[A][B]

k−1 + k3 + k2[A]
(136)

Now

d[D]
dt

= k2[A][C] + k3[C] (137)

=
k1k2[A]2[B]

k−1 + k3 + k2[A]
+

k1k3[A][B]
k−1 + k3 + k2[A]

(138)

In the small [A] limit (k2[A]	 k−1 + k3), giving

rate =
(

k1k2
k−1 + k3

)
[A]2[B] +

(
k1k3

k−1 + k3

)
[A][B] (139)

and we correctly interpret that there are two important transition states
with compositions A2B and AB.

In the large [A] limit, k2[A] � k−1 + k3, so

rate = k1[A][B] +
k1k3
k2

[B] (140)

We can manipulate this expression to show that the first term dominates:

k2 · rate = k1k2[A][B] + k1k3[B] (141)
= k1[B](k2[A] + k3) (142)
≈ k1[B]k2[A] (from large [A] assumption) (143)

rate = k1[A][B] (144)

In this limit the first step has become rate controlling and the k3 step is
unimportant. The relevant T.S. is the AB collision complex.
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3. A sum of n terms in the denominator implies a succession of at least n
steps; all but the last of them must be reversible.

2Fe2+ + Tl3+ → 2Fe3+ + Tl+ (145)

−d[Tl3+]
dt

=
k[Fe2+]2[Tl3+]

[Fe2+] + k′[Fe3+]
(146)

At low product concentration ([Fe2+] � k′[Fe3+]), we have rate = k[Fe2+][Tl3+].
At high product concentration,

rate =
k
k′

[Fe2+]2[Tl3+]

[Fe3+]
. (147)

With 2 terms in the denominator, we expect two successive transition
states. Their compositions (but not order of occurrence) are obtained
from the limiting cases where one or the other term dominates. In this
example they have compositions (FeTl)5+ and (FeTl)4+.

4. Species appearing as single terms in the denominator of a rate expression
are produced in steps prior to the RCS.

In the last example we postulate that under high concentrations of Fe3+,
it is a product in the first of the two steps. The two reactants have total
charge +5, so try this mechanism:

Fe2+ + Tl3+ k1−↽−−⇀−
k−1

Fe3+ + Tl2+ (148)

Tl2+ + Fe2+ k2−−→ Fe3+ + Tl+ (149)

The second step has TS composition (FeTl)4+, as required. Apply SSA to
Tl2+:

d[Tl2+]
dt

= k1[Fe2+][Tl3+]− [Tl2+](k−1[Fe3+] + k2[Fe2+]) (150)

so

[Tl2+]
SSA≈ k1[Fe2+][Tl3+]

k−1[Fe3+] + k2[Fe3+]
=

k[Fe2+][Tl3+]

[Fe3+] + k1[Fe2+]
(151)

rate = k2[Tl2+][Fe2+] =
k1k2[Fe2+]2[Tl3+]

k−1[Fe3+] + k2[Fe2+]
(152)

rate =
k[Fe2+]2[Tl3+]

k′[Fe3+] + [Fe2+]
(153)
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where k = k1 and k′ = k−1/k2.

So this mechanism agrees with the observed rate law at both low and
high concentrations of Fe3+. At high concentrations, the first step be-
comes a rapid prior equilibrium. Large concentrations of Fe3+ drive the
concentration of Tl2+ down and reduce the rate of formation of product.
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4.3 Application of “mechanism rules” to a simple inorganic
example

Vanadium ions can be oxidized by Hg2+:

2V3+ + 2Hg2+ −−→ 2VIV + Hg2+
2 (154)

The observed rate law is

−d[V3+]
dt

=
k[V3+]2[Hg2+]

k′[VIV] + [V3+]
. (155)

Rule 3 tells us to expect at least 2 steps. Rule 1 gives the composition of the two
transition states as (VHg)4+ and (VHg)5+. In the succession of steps required
by the rules, all but the last must be reversible.

Since the two reactants can themselves produce one of the two required
transition states ((VHg)5+), it’s natural to bring them together as one step:

V3+ + Hg2+ k1−↽−−⇀−
k−1

VIV + Hg+ (156)

The Hg+ product of that reaction can react with another V3+ to give the second
required transition state. This reaction need not be reversible (but could be). A
single, rapid, association reaction between two mercury atoms can complete
the mechanism.

Hg+ + V3+ k2−−→ VIV + Hg0 (157)

Hg0 + Hg2+ k3−−→ Hg2+
2 (158)

Now, let us check to make sure this mechanism gives the correct rate law
with reasonable assumptions. The intermediates are Hg+ and Hg0. Applying
the SSA to Hg+, we find

d[Hg+]
dt

= k1[V
3+][Hg2+]− k−1[V

IV][Hg+]− k2[V
3+][Hg+] (159)

[Hg+]
SSA≈ k1[V

3+][Hg2+]

k−1[V
IV] + k2[V

3+]
(160)

−d[V3+]
dt

SSA≈ k1[V
3+][Hg2+]− k−1[V

IV][Hg+] + k2[V
3+][Hg+] (161)

= k1[V
3+][Hg2+] + [Hg+](k2[V

3+]− k−1[V
IV]) (162)

= k1[V
3+][Hg2+]

+

(
k1[V

3+][Hg2+]

k−1[V
IV] + k2[V

3+]

)
(k2[V

3+]− k−1[V
IV])

(163)
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= k1[V
3+][Hg2+]


1 +

(
k2[V

3+]− k−1[V
IV]

)
k−1[V

IV] + k2[V
3+]


 (164)

= k1[V
3+][Hg2+]

(
2k2[V

3+]

k−1[V
IV] + k2[V

3+]

)
(165)

=
2k1[V

3+]2[Hg2+]
k−1
k2

[VIV] + [V3+]
(166)

which is the observed rate law. Note that the rapid, post-RCS reaction of Hg0

does not enter the rate law. That is the general case: fast reactions that follow
the rate controlling step do not appear in the rate law. Another example of that
principle was the decomposition rate of N6 in the bromine-azide reaction; its
rate constant does not appear in any of the rate expressions once the steady
state approximation has been applied to N6.

4.4 Half-integral orders

These are common both in dissociative equilibrium reactions and in free-radical
chain reactions (eg. H2 + Br2.)

4.4.1 Dissociative equilibrium

The dissociative equilibrium case is

A
k1−↽−−⇀−

k−1

2B (167)

2(B + C
k2−−→ D), (168)

which gives the overall reaction

A + 2C −−→ 2D. (169)

If the A −↽⇀− B equilibrium is rapid,

Keq =
[B]2eq

[A]eq
(170)

[B]eq = K
1
2
eq[A]

1
2 (171)

d[D]
dt

= k2[B][C] (172)

= K
1
2
eqk2[A]

1
2 [C] (173)
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4.4.2 Radical reactions

For radical chain mechanisms, there is a set of “mechanistic rules” similar to
those we have used, called the Goldfinger-Letort-Niclause notes. They con-
sider whether the chain-propagating reactions are first or second order, etc.
See Laidler for a discussion.

A simple example of a radical half-integral reaction is acetaldehyde thermal
decomposition:

CH3CHO
k1−−→ CH3 + CHO initiation (174)

CH3 + CH3CHO
k2−−→ CH4 + CH3CO propagation (175)

CH3CO
k3−−→ CH3 + CO propagation (176)

2CH3
k4−−→ C2H6 termination (177)

Applying the SSA to CH3 and CH3CO and adding the d[]/dt = 0 equations
together (a common trick in radical mechanisms) we get

[CH3] =
(
k1
k4

) 1
2
[CH3CHO]

1
2 . (178)

Since

d[CH4]
dt

= k2[CH3][CH3CHO], (179)

the overall reaction is 3/2 order in CH3CHO. Laidler gives a good discussion
of radical mechanisms and the conditions under which various orders appear.
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5 Enzyme Catalysis

A catalyst is a substance that speeds up a reaction without itself being con-
sumed. It speeds up a reaction by providing a new mechanistic path to prod-
ucts with a higher rate than the original, uncatalyzed pathway.

5.1 Basic mechanism

An important class of biological catalysts is the enzymes. These are proteins
which typically act as very specific catalysts. The reactant whose transforma-
tion is catalyzed by the enzyme is called the substrate.

The simplest (“Briggs-Haldane”) mechanism is

S + E
k1−↽−−⇀−

k−1

ES (180)

ES
k2−−→ P + E (181)

Applying the SSA to [ES] we obtain

d[ES]
dt

= k1[E][S]− (k−1 + k2)[ES] (182)

[ES]
SSA≈ k1[E][S]

k−1 + k2
(183)

Since [E] is usually small, and a decent fraction of the enzyme may be com-
plexed as ES, it is useful to write

[E]0 = [E] + [ES] = [E]
(

1 +
k1[S]

k−1 + k2

)
, (184)

so that

[E] =
(k−1 + k2)[E]0
k−1 + k2 + k1[S]

. (185)

Then

[ES] =
k1[S]

k−1 + k2

(k−1 + k2)[E]0
k−1 + k2 + k1[S]

(186)

=
k1[S][E]0

k−1 + k2 + k1[S]
. (187)
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The reaction rate is

d[P]
dt

= k2[ES]
SSA≈ k1k2[S][E]0

k−1 + k2 + k1[S]
(188)

=
k2[E]0

1 + k−1+k2
k1 [S]

(189)

d[P]
dt

=
vs

1 + KM
[S]

=
vs[S]

KM + [S]
, (190)

Eq. (190) is called the Michaelis-Menten equation. KM = k−1+k2
k1

is the Michaelis
constant. It has units of concentration and gives the concentration of S at which
the reaction rate has reached half its maximum value (and approximately half
the enzyme is tied up in ES.)

At small [S], KM/[S] � 1, so

d[P]
dt
∼ vs

KM
[S] (191)

and the kinetics looks 1st order in S. At large [S], d[P]/dt is independent of [S].
The enzyme is then said to be saturated, and the observed rate is vS.

5.2 Data analysis

Experiments are often carried out with the initial rates approach; they are done
on a timescale slow compared to establishment of the steady state but fast com-
pared to the depletion of S, so that rates of product formation d[P]/dt as func-
tions of [S] can be determined.

Several “standard” plots are used in analysis of enzyme kinetic data, and
are illustrated in Figure 8. The simplest is the Michaelis-Menten plot, shown
in the top panel. For quantitative analysis (determination of KM and vS,) the
Lineweaver-Burk and Eadie-Hofstee plots are used more often. Of these three,
the E-H plot gives the most precise determination of KM. It is based on the
rewritten form of the M-M equation

1
[S]

d[P]
dt

= − 1
KM

d[P]
dt

+
vs
KM

. (192)

Often [E]0 is not known, because it is difficult to obtain pure enzymes. If it
is known, k2 can be determined from the experimental value of vs.

5.3 Transient state kinetics

Whether [E]0 is known or not, these “steady-state” experiments do not allow
us to find values for k1 or k−1. To do that, we need to do kinetics in the transient
phase before the steady-state condition on ES is satisfied.
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Figure 8: Three common enzyme kinetic plots. The three panels (top to bottom)
show Michaelis-Menten, Lineweaver-Burk, and Eadie-Hofstee plots.
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Let’s find a complete solution for [ES] and [P] for times short enough that
[S] ≈ [S]0.

d[ES]
dt

= k1[E][S]− (k−1 + k2)[ES] (193)

= −[ES](k1[S] + k−1 + k2) + k1[S][E]0. (194)

Now use

[S] ≈ [S]0 (195)

and define

σ = k1[S]0 + k−1 + k2 (196)
b = k1[S]0[E]0. (197)

Now

d[ES]
dt

= −σ[ES] + b (198)

This is a separable DE with solution

[ES] =
b− Ce−σt

σ
, (199)

and because [ES](t = 0) = 0, C = b. Then

[ES] =
b
σ

(1− e−σt) (200)

d[P]
dt

= k2[ES] =
k2b
σ

(1− e−σt) (201)

[P](t) =
k2b
σ

∫
1− e−σtdt (202)

=
k2b
σ

(
t +

1
σ
e−σt + C

)
(203)

Since [P](t = 0) = 0, C = −1/σ, and we have

[P](t) =
k2b
σ

(
t +

1
σ

(e−σt − 1)
)

(204)

For t � 1/σ (but small enough that [S] ≈ [S]0), a plot of [P] vs. t will be a line
with slope k2b/σ and x-intercept t = 1

σ , as shown in Figure 9. If we measure σ
at several different [S]0, we can make a plot of σ against [S]0, which will have
slope k1 and y-intercept k−1 + k2 as shown in the lower panel of Figure 9. If k2
can be evaluated from a knowledge of [E]0 and the steady-state kinetics, then
we have enough information to determine all the elementary rate coefficients
in the Briggs-Haldane mechanism.
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Figure 9: Enzyme kinetics in the transient region.
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6 Experimental Techniques

6.1 Elementary considerations

Several questions must be answered before an experimental approach can be
selected.

• Over what time does the reaction occur?

• Are the reactants stable or unstable?

• What range of temperature is interesting?

All these questions are relevant to the choice of experimental technique in-
dependent of the particular detection method employed.

6.2 Stable reactants, slow to medium time scales

6.2.1 Batch mixing

This is kinetics on classical stir-in-a-pot reactions. It works for τmin � 10 s. You
can analyze the concentrations by removing samples at intervals and titrating,
using GC, whatever. A method for stopping reaction in your sample (freezing,
neutralization, etc) is handy. Or, you can monitor the reaction in situ - optical
absorption, polarimetry, ion-selective electrodes, conductivity, etc. all work.

6.2.2 Stopped-flow technique

For faster reactions, 10−3s or slower, the stopped-flow technique works for so-
lution samples. In this method, solutions of reactants are mixed rapidly in a
special chamber and flowed through a detection cell (optical detection is most
popular). So long as the reactants are flowing steadily, no change in the com-
position of the mixture in the detection chamber appears. When the flow is
stopped suddenly, the composition begins changing and this change is moni-
tored in time. See Figure 10.

The hydrodynamics of most solvents limits the stopped-flow technique to
timescales of a millisecond or longer; faster reactions will already be partially
underway by the time the mixing is complete, so it is hard to get meaningful
data on well-mixed solutions. For faster reactions of stable species, it is neces-
sary to produce one reactant in situ, or to use near-equilibrium techniques.

6.3 Near-equilibrium methods for fast reactions

2 Two kinds of near-equilibrium techniques are important: relaxation and nmr.
Both are good on the microsecond to millisecond timescale.
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Figure 10: Schematic of stopped-flow apparatus

6.3.1 Relaxation (T-jump and p-jump, mostly)

Let reaction come to equilibrium, with concentrations Ae, Be, Ze for A + B −↽−−⇀−
Z. Then “disturb” the equilibrium by changing T, P, etc. suddenly so that the
equilibrium concentrations should be different, and watch the relaxation to a
new equilibrium value.

Relaxation example: A + B
k1−↽−−⇀−
k−1

Z

k1AeBe = k−1Ze (205)
d[A]
dt

= −k1[A][B] + k−1[Z] (206)

Write

[A] = Ae − δ, [B] = Be − δ, [Z] = Ze + δ (207)
d[A]
dt

= −dδ

dt
= −k1(Ae − δ)(Be − δ) + k−1(Ze + δ) (208)

−dδ

dt
= −k1(AeBe − (Ae + Be)δ + δ2) + k−1Ze + k−1δ (209)

−dδ

dt
= δ(k1(Ae + Be) + k−1 − k1δ)−k1AeBe + k−1Ze︸ ︷︷ ︸

=0

(210)
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sample

Figure 11: Schematic of T-jump apparatus

If δ 	 Ae + Be (a “small” disturbance), then

dδ

dt
≈ −(k1(Ae + Be) + k−1)δ, (211)

and all components relax toward their equilibrium concentrations with first-
order kinetics, τ = 1

k1(Ae+Be)+k−1
. Together with long-time measurements of

the equilibrium concentrations, both k1 and k−1 can be obtained.
The most common ways to disturb the equilibrium are to change T or P

rapidly. To change T, the solution can be heated with an electrical current.
Figure 11 shows a basic circuit. The energy stored in a capacitor of capacitance
C at voltage V is 1

2CV
2. When the switch is closed, the energy stored on the

capacitor heats the solution resistively, so ∆T = 1
2C
−1
V CV2, where CV is the

heat capacity of the solution.
To change P for a pressure-jump experiment, the usual technique is to burst

a diaphragm holding back a high-pressure gas. For slow reactions, concentration-
jump also works: add an aliquot of product to shift equation back toward re-
actants, etc.

Manfred Eigen won the 1967 Nobel Prize in Chemistry for development
of the relaxation method of studying fast reactions. (It was shared with the
developers of the flash photolysis method to be described shortly.)

6.3.2 NMR Lineshape Analysis (Espenson sec. 11.5)

Chemical shifts in nmr spectra are determined by “chemical environments” of
the nuclei at resonance. Consider (CH3)2NCHO. It has a hindered rotation
about the C-N bond. If that rotation is “frozen”, the two methyl groups are in
different environments, and the spectrum (of either 1H or 13C) will show a pair
of lines, one for each methyl group. However, if the rotation is very fast com-
pared to the time over which the absorption experiments, each methyl group
will see an “average” environment that is part -H and part -O, and so they will
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have exactly the same chemical shift and appear as a single nmr line. In be-
tween these two extremes, the lines show a continuous change of behavior, as
illustrated in Figure 12. An analysis of the lineshape can therefore be used to
determine the rate of exchange.

Figure 12: NMR lineshapes (from Espenson).

The “experimental timescale” is given roughly by 1/∆ν, where ∆ν is the
difference in asborption frequencies in the absence of exchange. (Alternatively,
in modern pulse nmr, it is related to T2, the spin-spin relaxation time). Typically
the timescales range from 100 µs to 1 s.

Generally these experiments are done at varying temperatures, to change
the rates. A rough guide is that the two lines will just become distinct at a
temperature where K ∼ π√

2
(∆ν) (for Keq = 0.5.) Most new nmr spectrometers

contain canned software to do these lineshape analyses.
Several different kinds of reactions can be studied with nmr. They include

solvent exchange, as in

CH3CH2OHa + Hb
2 O −↽−−⇀− CH3CH2OHb + HaOHb (212)

Here the methyl and ethyl protons are slightly split by the hydroxyl proton,
because the OH proton can have its moment aligned along or against the mag-
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netic field. However, when an exchange reaction occurs, the new proton can
go on in either direction. If many exchanges occur, the CH3CH2 protons see
only an average OH-proton indirect coupling.

Electron transfer and metal-ligand equilibria can also be studied effectively
this way.

In these experiments, as in the relaxation (T-jump, P-jump, etc.) methods
for studying equilibrium rates, the “relaxation constant” k′ = k1 + k−1 is mea-
sured. The individual rates can be obtained if the equilibrium constant k1/k−1
is also known.

References on lineshape analysis include E.L. King, J. Chem. Ed. 56, 580
(1979), and H. Günther, NMR Spectroscopy - An Introduction, Wiley, NY, 1972.

6.4 Flash Photolysis

Flash photolysis is the main techniques for medium-to-fast reactions with un-
stable reactants, and is nearly the only technique used for the very fastest reac-
tions. It uses photochemistry of a “precursor” P to produce reactant A:

P hv−−→ A (+ other stuff) (213)
A + B −−→ products (214)

The photolysis step needs to be fast compared to subsequent reaction steps.
Flashlamps give light pulses lasting 1–20 µs; lasers can produce pulses of many
lengths, but the most common ones nowadays range from 20 ns, adequate for
bimolecular gas phase reactions at moderate pressure or bimolecular solution
reactions (that do not have solvent as one reactant), down to about 50 fs, which
is needed for the fastest unimolecular reactions in solution. The detection
method also needs to be fast with respect to the overall kinetics; optical meth-
ods (transient absorption, laser-induced fluorescence, pulsed polarimetry) are
the most popular approaches. In most experiments the flash and subsequent
analysis are done repeatedly, either on the same sample if product buildup is
not a problem, or on a series of fresh samples produced by a slow flow of reac-
tants through the detection region.

Norrish and Porter shared the Nobel Prize in 1967 with Eigen, largely for
their development of flash photolysis. The prize to Ahmed Zewail last year
was for applications of flash photolysis at very short time scales.

A recent gas phase example is in Bersohn et al, J. Chem. Phys. 101, 5818
(1994):

SO2
193nm, 10ns−−−−−−−−−−→ SO + O(3P) (215)

O(3P) + C2H2 −−→ HCCHO∗ (216)
HCCHO∗ −−→ H + HCCO (217)
HCCHO∗ −−→ CH2 + CO (218)

Bersohn et al. monitored the H and CO products with laser induced fluores-
cence.
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6.5 Discharge Flow Experiments

Discharge flow experiments use a steady electric discharge to produce reac-
tants, then allow them to react while flowing along a tube. At each point along
the tube, the concentrations are steady, so signals can be averaged to get good
signal to noise; experiments at different distances along the flow tube yield
concentrations at different times since the reaction began. This is a very popu-
lar method for studying reactions of radical and ionic species.

Figure 13:

Spectroscopic detection along the length of the tube, or mass spectrometry
at the end of the flow tube, using a moveable injector to vary the flow distance,
are the most popular detection techniques.

Good references are C.J. Howard, J. Phys. Chem. 83, 3 (1979), and F. Kauf-
man, J.Phys. Chem. 88, 4909 (1984).

Oser et al, 24th Symp. (International) on Combustion, The Combustion
Institute, 1992.) studied OH + CH3 reactions by generating OH and CH3 in
separate discharges:

H2
µwave
−−−−−→ 2H (219)

H + NO2 −−→ OH + NO fast, (220)

F2
µwave
−−−−−→ 2F (221)

F + CH4 −−→ CH3 + HF fast, (222)
OH + CH3 −−→ H2O + CH2 (plus other channels) (223)

They detected detect OH at different distances along the flow tube with fluo-
rescence.
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An important technique in flow-tube experiments is the ability to titrate the
reactive species with fast reactions.

O2
µwave
−−−−−→ 2O (224)

O + NO2 −−→ NO + O2 (225)
O + NO −−→ NO∗2 (226)

NO∗2
−hν−−−→ NO2. (227)

By calibrating the flow of NO2, and watching the green fluorescence from
NO∗2, one can accurately determine [O] at different points along the tube.

6.6 Shock Tube Experiments

In a shock tube experiment, a low-pressure gas of reactants is suddenly heated
by the passage of a strong shock wave, produced by rupture of a diaphragm
that was holding back a high pressure “driver” gas. The temperature can
change by more than 1000 K in fractions of a millisecond, and optical tech-
niques are used to follow the subsequent chemistry. This technique is good
for gas phase reactions at high temperature (700-2500k), and is nearly the only
technique for gas phase reactions above ≈ 1400K. Many of the rate coeffi-
cients needed in Kinsim-like models of hydrocarbon combustion have been
measured this way.

Figure 14:

There are only about a dozen shock-tube laboratories in the world. The
main disadvantages of the technique are

• The high-temperature chemistry is often very complicated, and it can be
difficult to sort out different elementary reactions.
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• It is hard to do repetitive signal averaging since each repetition of the ex-
periment takes at least an hour or so. Experimenters are therefore limited
to detecting species that are easy to see.

There was a good review of shock tube techniques and results by J.V. Michael,
in the 1992 Ann. Rev. Phys. Chem.
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7 Temperature Dependence of Rates

Most reactions go faster with increasing temperature. A common equation
used to describe the T dependence is the Arrhenius equation,

k = Ae−Ea/RT (228)

The Arrhenius equation is neither exact nor universal, but it describes many
reactions tolerably well over a modest temperature range, and it contains ele-
ments of the correct physics. We shall find the assumptions underlying the
Arrhenius equation shortly. In the meantime, I want to point out that the pa-
rameters A and Ea should be regarded as empirical quantities with the defini-
tions

Ea(T) = −R d(ln k)
d(1/T)

(229)

= RT2 d(ln k)
dT

(230)

A(T) = k(T)/ exp(−Ea(T)/RT) (231)

The necessary function k(T) can be obtained either from experiment or from
some theory, but A and Ea should not be regarded as having underlying phys-
ical significance in most cases. For elementary reactions, some theories of ki-
netics do ascribe precise meanings to them.

Figure 15 shows the behavior predicted by the Arrhenius equation for the
two common plots, k vs. T and ln(k) vs. 1/T.
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Figure 15: Two plots of rate coefficients for a reaction with A = 1010

cm3mol−1s−1 and Ea = 20 kJ/mol.

The “classical” method of finding A and Ea is to plot ln(k) vs. 1/T for a se-
ries of rate coefficients measured at different T, and get Ea and A from the slope
and intercept. Both that method and the more modem nonlinear fit directly to
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the Arrhenius equation suffer from heavy correlations: The same data can be
fit equally well by many different A/Ea pairs, so it is not possible to deter-
mine either value very precisely. These correlations occur because the data are
taken over a fairly narrow range of T, and long extrapolations are necessary, as
appears in the right panel of Figure 15.

When data of high quality are taken over a sufficiently wide temperature
range, usually the Arrhenius equation does not describe them accurately; plots
of ln k vs. 1/T are curved. In that case we speak of temperature-dependent A
and Ea, as illustrated in Figure 16.
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Figure 16: “Arrhenius plot” for a reaction that does not follow simple Arrhe-
nius behavior.

Data that show curvature on Arrhenius plots are most often fitted by the
equation

k(T) = ATme−Eb/RT , (232)

where the three parameters A, m, and Eb may be varied to fit the data. The
values of A, m, and Eb should be regarded simply as empirical fitting constants
that can be used to summarize a large quantity of kinetic data with just a few
numbers. It can be misleading to try to extract chemical information from em-
pirically fitted values. On the other hand, some theories of reaction rates make
physical predictions of the values of A, m, and Eb.
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7.1 Hard-sphere collisions

Consider a very simple hard-sphere model of a bimolecular reaction:

Figure 17:

Kinetic theory of gases gives a formula for the number of A-B collisions per
unit time:

ZAB = π(rA + rB)2unAnB, (233)

where π(rA + rB)2 is the collision cross section (units m2), u is the relative speed
|vA− vB| of the colliding molecules (units m/s), and nA and nB are the densities
of the A and B molecules (units m−3.).

ZAB has units m3s−1, actually collisions/ m3s.
Some fraction of those collisions will result in reaction, so the number of

reactions per second per m3 is

Rate = Prπ(rA + rB)2unAnB, (234)

where Pr is the probability of reaction upon each hard-sphere collision.
An elementary bimolecular reaction has rate law

Rate = knAnB, (235)

so

k = Prπ(rA + rB)2u = σu, (236)

where σ is the reaction cross section.
Pr might depend on many things in real reactions: collision velocity, ori-

entation of molecules, internal energy of molecules, etc. If we assume in this
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hard-sphere case that Pr only depends on the relative velocity of the colliding
spheres, we write

k = uσ(u). (237)

If we have a distribution of relative velocities rather than a single sharp one,
we must average over the velocity distribution f (u)du:

k =
∫ ∞

0
uσ(u) f (u)du (238)

(Here f (u)du is a probability, so f (u) is a probability density;
∫ ∞

0 f (u) du = 1.)
Now we can evaluate k′s by inserting different functions for σ(u) and f (u).
The simplest possible case is high-energy scattering of hard spheres at a

specified collision velocity (perhaps Ne-He collisions in a high energy molecu-
lar beam experiment).

σ(u) = σ0 = π(rA + rB)2 (239)

(meaning Pr = 1 always)

f (u) = δ(u− u0) (240)

Then

k =
∫ ∞

0
uσ0δ(u− u0)du = σ0u0 (241)

If σ(u) depends on velocity (the “effective size” changes with velocity) but
the relative speed distribution is still sharp, we get

k =
∫ ∞

0
uσ(u)δ(u− u0)du = σ(u0)u0 (242)

Generally, reactions do not occur with well-defined collision velocities, but
with well-defined temperatures. We then need the Maxwell-Boltzmann distri-
bution of relative speeds:

f (u) = 4π

(
µ

2πkBT

)3/2
u2e
− µu2

2kBT (243)

where µ is the reduced mass, mAmB
mA+mB

, and kB is Boltzmann’s constant.
With that relative velocity distribution,

k(T) = 4π

(
µ

2πkBT

)3/2 ∫ ∞

0
σ(u)u3e

− µu2

2kBT du (244)
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Figure 18:

Change variables to collision energy

εt =
1
2

µu2 (245)

dεt = µu du (246)

Multiply (inside) and divide (outside) by µ2/2

k(T) =
8π

µ2

(
µ

2πkBT

)3/2 ∫ ∞

0

µu2

2
σ(εt)e

− µu2

2kBT µudu (247)

k(T) =
8π

µ2

(
µ

2πkBT

)3/2 ∫ ∞

0
εtσ(εt)e

−εt/kBTdεt (248)

We now have the cross section written as a function of collision energy
rather than velocity, but it contains the same information.

This is the collision theory expression for the second order elementary rate
coefficient. We have assumed that the only factor affecting whether a collision
results in reaction is collision energy. What might be a reasonable form for
σ(εt)? In many reactions we expect a “threshold energy”; there’s an “energy
hill” which must be surmounted.

So reasonable σ(εt) might look like the ones illustrated on the next page.
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I want to calculate the k(T) expected for several plausible model functions
σ(εt).

1) Every hard-sphere collision reacts.

σ(εt) = σ0 = πd2 (249)

k(T) =
8π

µ2

(
µ

2πkBT

)3/2
σ0

∫ ∞

0
εte
−εt/kBTdεt (250)

Integrate by parts to get

k(T) =
8π

µ2

(
µ

2πkBT

)3/2
σ0(kBT)2 =

(
8k8T
πµ

)1/2
σ0 = ūσ0 (251)

This simple model recovers the hard-sphere collision frequency we began
with.

T dependence is predicted to be

k(T) = AT1/2. (252)

Very few reactions are well described by this model.
A better model might assign a higher probability of reaction to a head-on

collision than to a glancing one. A simple application of this idea results in the
“line of centers” model.
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8 Simple rate coefficient calculations

I want to calculate the k(T) expected for several plausible model functions
σ(εt).

8.1 Every hard-sphere collision reacts

σ(εt) = σ0 = πd2 (253)

k(T) =
8π

µ2

(
µ

2πkBT

)3/2
σ0

∫ ∞

0
εte
−εt/kBTdεt (254)

Integrate by parts to get

k(T) =
8π

µ2

(
µ

2πkBT

)3/2
σ0(kBT)2 (255)

=
(

8kBT
πµ

)1/2
σ0 = ūσ0 (256)

This simple model recovers the hard-sphere collision frequency we began
with.

The temperature dependence is predicted to be

k(T) = AT1/2. (257)

Very few reactions are well described by this model.
A better model might assign a higher probability of reaction to a head-on

collision than to a glancing one. A simple application of this idea results in the
“line of centers” model.

8.2 Line of centers model

For each value of u, there will be some critical value of b, called bmax. Collisions
with that u and b > bmax will not result in reaction; with b ≤ bmax reaction will
occur.

To find bmax we require that the “energy along the line of centers”, 1
2 µv2

loc,
be greater than some threshold value ε0. Then we will have

σ(εt) = σ(
1
2

µu2) = πb2
max(u). (258)
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Figure 19:

From the diagram, we have

b
d

= cos
(π

2
− ϕ

)
= sin ϕ (259)

vloc = u cos ϕ = u(1− sin2 ϕ)1/2 (260)

vloc = u

(
1−

(
b
d

)2
)1/2

(261)

We require

1
2

µv2
loc ≥ ε0, (262)

where the equality holds at b = bmax.

1
2

µu2︸ ︷︷ ︸
εt

(
1−

(
b
d

)2
)
≥ ε0 (263)

1− b2
max

d2 =
ε0
εt

(264)
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b2
max = d2

(
εt − ε0

εt

)
(265)

So

σ(εt) = πb2
max = πd2

(
εt − ε0

εt

)
(266)

(267)

when εt ≥ ε0, and σ(εt) = 0 otherwise.
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Figure 20: “Line of centers” cross section as a function of translational energy.

With this σ(εt), we evaluate k(T)

k(T) =
8π

µ2

(
µ

2πkBT

)3/2
σ0

∫ ∞

ε0

(
εt − ε0

εt

)
εte
−εt/kBTdεt (268)

Integrate by parts to obtain

k(T) =
8π

µ2

(
µ

2πkBT

)3/2
σ0e
−ε0/kBT(kBT)2 (269)

k(T) =
(

8kBT
πµ

)1/2

︸ ︷︷ ︸
volume “swept out” by one molecule each second

σ0 e−ε0/kbT︸ ︷︷ ︸
fraction of collisions effective in producing reactions

(270)
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This formula is the “SCT” or “LOC” rate coefficient definition.
Predicted temperature dependence is

k(T) = AT1/2e−ε0/kBT (271)

What is the predicted activation energy?

Ea ≡ RT2 d(ln k)
dT

(272)

where we use R for molar units, kB for molecular units. Then

ln k = ln A +
1
2

ln T − ε0/kBT (273)

d(ln k)
dT

=
1

2T
+

ε0

kBT
2 (274)

Ea = ε0 +
1
2
kBT (275)

So the activation energy Ea is equal to ε0 at T = 0 (where the rate also equals
0!) and rises linearly with T after that.

In general, a k(T) expression

k(T) = ATme−Eb/RT (276)

will have activation energy

Ea = Eb + mRT. (277)

8.3 “Arrhenius” cross section

Here I want to apply a cross section

σ(εt) = C
(εt − ε0)

1/2

εt
(278)

for εt > ε0, and σ(εt) = 0 otherwise. C has units of (energy)1/2 · m2.
Inserting this into Eq. (248) for k(T), we have

k(T) = (constant)
∫ ∞

0
(εt − ε0)

1/2e−εt/kBTdεt (279)

Change variable to y = (εt − ε0)
1/2, integrate by parts (twice), and use the

Gaussian integral∫ ∞

0
e−a

2x2
dx =

√
π

2a
. (280)
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Figure 21: Special cross section

Collecting constants gives

k(T) =
2C

(2µ)1/2 e
−ε0/kBT (281)

Finally, we have arrived at something that looks like the Arrhenius equa-
tion, with Ea independent of temperature.

In fact, this particular form for σ(εt) is the only one which gives a T-independent
Ea. Since the Arrhenius equation is so successful and widely used, one might
be tempted to believe that

σ(εt) ∝
(εt − ε0)

1/2

εt
(282)

for most chemical reactions. No; most reactions are studied over a rather nar-
row T range (perhaps 0 to 100 0C, for example), and over that small a range
deviations from Arrhenius behavior are hard to see.

Now that we have the idea of a collision-energy-dependent reaction cross
section σ(εt) in hand, I can give a physical interpretation of Ea. This interpre-
tation is known as Tolman’s theorem: Ea give the difference between the average
energy of reacting molecules and the average energy of all molecules in the
sample.
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Note that only for the special shape σ(εt) ∝ (εt−ε0)1/2

εt
do the two averages

move together with changing T.

Figure 22:
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8.4 Direct application of SCT

Let’s compare some “LOC” results with experimental ones. For a collection of
atom-transfer reactions whose kinetics have been measured, we can compare
experimental A-factors (also called the frequency factor) to LOC ones if we
take the experimental Ea as a reasonable estimate of ε0. Other necessary data
are hard-sphere radii σ0, obtained from gas viscosity measurements. (That is,
looked up.) Table 4 gives values from some homolytic hydrogen atom transfer
reactions in the gas phase. The SCT rates are almost always too large, and they
are much too large for more complicated reactants.

Table 4 Measured and calculated (by the line of centers model) A-factors for a
few H-atom transfer reactions.

reaction log10 Aexp/ M−1 s−1 log10 ALOC

H + HCl −−→ H2 + Cl 10.36 11.77
H + HBr −−→ H2 + Br 11.04 12.16
H + HI −−→ H2 + I 10.70 12.13
CH3 + H2 −−→ CH4 + H 8.60 11.62
CH3 + nC4H10 −−→ CH4 + C4H9 8.08 11.56
CH3 + C6H6 −−→ CH4 + C6H5 7.40 11.97

One interpretation is that the molecular orientations might make a differ-
ence. To account for that, we might introduce a “steric factor” p to fix up the
agreement between theory and experiment:

p =
Aexp

ASCT
. (283)

Typical values of p must be 10−4 – 10−1; smaller values reflect tighter con-
straints on the geometry of an encounter. Now the “predicted” rate coefficient
is

kfixed(T) = pūσ0e
−ε0/kBT (284)

where the average relative speed ū is
(

8kBT
πµ

)1/2
as before.

In the 20s and 30s, considerable effort was expended trying to find good
ways to predict p. However, as it became clear that several factors other than
simple steric ones were important, this approach was largely abandoned.

9 Thermodynamic connection

Can we find a connection between the measured activation energies (or postu-
lated threshold energies) and real thermodynamic quantities? Maybe.
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Consider a reversible, elementary reaction of ideal gases:

A
k1(T)
−↽−−−−−−⇀−
k2(T)

B (285)

If k1 and k2 follow the Arrhenius equation over the experimental tempera-
ture range,

k1 = A1e
−E1/RT (286)

k2 = A2e
−E2/RT (287)

At any T, the equilibrium constant K◦ is

K◦ =
PB,eq/P◦

PA,eq/P◦
=

k1(T)
k2(T)

, (288)

where the standard state is the ideal gas with pressure P◦ = 1 bar. In this
case, since the reactants and products are ideal gases and the same number of
moles of gas is present before and after the reaction, the rate coefficients may be
written in any units and the last equality holds. For reactions that change the
number of moles, or reactions in solution, the rate coefficients must be written
in the units specified by the thermodynamic standard state.

Thermodynamics gives us

K◦(T) = exp(−∆G◦/RT) (289)

where

∆G◦ = ∆H◦ − T∆S◦ (290)

In using Eq. (289), it is important to keep track of standard states, because K◦ is
always dimensionless and extracting useful concentrations or pressures from
it demands that you pay attention to the standard states. Any modern physical
chemistry textbook should give a careful description; I like the treatment in
Levine, Physical Chemistry, 4th ed. (McGraw-Hill, 1995).

In this reaction, for which the number of moles of gas does not change, and
also approximately for solution reactions,

∆H◦ = ∆E◦ + ∆(PV) (291)
≈ ∆E◦ (292)

so that

K◦(T) = exp
(
−∆E◦ + T∆S◦

RT

)
(293)

= e∆S◦/Re−∆E◦/RT (294)

56



Then

k1(T)
k2(T)

=
A1
A2

e−(E1−E2)/RT = e∆S◦/Re−∆E◦/RT , (295)

and it seems reasonable to identify A1
A2

with e∆S◦/R, and E1 − E2 with ∆E◦. (This
is a plausible interpretation, not a proof!) Figure 23 shows the interpretation.

Figure 23: Thermodynamic interpretation of the difference in forward and re-
verse activation energies.

∆E◦ is a perfectly well-defined thermodynamic quantity; A and B are sta-
ble substances with measurable equilibrium properties. ()‡ may or may not
possess thermodynamic properties; if all reactions go through a well-defined
transition state, it is reasonable to ascribe an E◦ to that state. E1 and E2 are
empirical kinetic parameters.

If we can get away with this bit of weak thermodynamics, it has useful ap-
plications. For instance, thermodynamic properties of unstable intermediates
can be estimated. Consider

Br + CH4
k1−↽−−⇀−
k2

HBr + CH3 (296)

If the activation energies in the forward and reverse directions can be mea-
sured, then the overall ∆E◦ for the reaction is given by their difference. Since
∆E◦ of formation for all species except CH3 is already known, we can then
calculate ∆E◦ for formation of CH3.

Possible problems with this “calorimetry through kinetics”:

1. Kinetic data are generally less accurate than thermodynamic data.
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2. Our interpretation has depended on A −↽−−⇀− B being an elementary re-
action. It’s easy to confuse an Ea measured for unresolved composite
reactions with an elementary Ea. Then, k1/k2 �= K◦.

3. ()‡ might not be sufficiently well-defined to have a real E◦; different
molecular encounters might travel along quite different paths. This be-
havior can appear as strongly T-dependent Arrhenius parameters in some
cases.

In practice, the third problem is often swamped by the first.
The idea that ()‡ might have useful thermodynamic properties is expanded

in transition state theory, which we will begin studying next week.

9.1 Activation energies and catalysis

.
Consider a reaction with uncatalyzed and catalyzed pathways:

A
ku−−→ P (297)

A + C
kc−−→ P + C (298)

The catalyst is providing a new pathway with a new transition state, as illus-
trated in the left panel of Figure 24.

Figure 24: Correct (left panel) and incorrect (right panel) interpretations of the
effect of a catalyst.

Often the statement is made that the catalyst lowers the activation energy
for the reaction. That’s right, but subject to some misinterpretation.
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Why can’t, for example, the catalyst raise the E◦ of the reactants, lowering
E1 and leaving E2 the same, as in the right panel of Figure 24?

Here’s a moneymaking scheme that works if this second possibility is avail-
able. Allow a mixture of A and P to come to equilibrium. Then add the catalyst.
Since E◦(A) increases, the equilibrium constant shifts; the reaction will move
toward products, releasing heat. Use that heat to do some work, or sell it. Then
remove the catalyst (which is unchanged by definition.) The reaction will shift
back to the left, absorbing heat from the surroundings. This violates the Second
Law of Thermodynamics. Equilibria are unaffected by catalysts; only rates are
affected.
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10 Predicting rate coefficients

The basic problem: there is no easy, cheap, accurate way. I think of the ap-
proaches that are commonly used in three groups:

Empirical methods These attempt to predict rate coefficients for particular re-
actions by relating them to rates of similar reactions that have already
been measured.

Statistical rate theories These make assumptions about the time scales of in-
tramolecular energy flow and reaction. The most important are transition
state theory (TST) and its extensions, and the closely related theory called
RRKM for unimolecular and recombination reactions.

Dynamical theories These attempt to predict rates by explicitly following the
motions of atoms in time. They are capable of essentially perfect accuracy
in principle, but are impossible to carry out except for the simplest three-
and four-atom reactions.

I will give an overview of several successful empirical methods, with refer-
ences but not much detail.

10.1 Empirical Methods

10.1.1 Evans-Polanyi-Semenov correlation

Ea vs. ∆E:

Ea = α∆E + C, (299)

where α and C are empirical fitting constants and ∆E is the thermodynamic ∆E
(or ∆H ) for the reaction.

For example, for a series of atom-transfer reactions

X ·+RH → Hx + R · (300)

Variation of R, but maintaining the same fitting parameters for all Rs with
primary H, (for example) might work.

Similarly, it is sometimes useful to correlate bond dissociation energies against
activation energies. These correlations work decently, especially for atom trans-
fer reactions, but the reactions in a correlated series must be fairly closely re-
lated. Figure 25 shows an example. Moore and Pearson is a good reference.

10.1.2 Bond energy - bond order method (BEBO)

This “semiempirical” method is described in H.S. Johnston, Gas Phase Reaction
Rate Theory. This theory attempts to predict activation energies without us-
ing measured rates for similar reactions. Instead, it uses empirical correlations
with other (spectroscopic and thermochemical) data. It works well for H-atom
transfer and somewhat less well for other atom transfers. It has largely been
superseded by modern TST.
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Figure 25: Evans-Polyani-Semenov plot, from Moore and Pearson:

10.1.3 Benson’s rules

The primary reference is S. Benson, Thermochemical Kinetics. Benson gives a
list of suggestions for estimating values needed in the “thermodynamic TST”
expression

k(T) =
kBT
h

exp


∆S

‡

0
R


 exp


−∆H

‡

0
RT


 (c−◦ )∆n

‡

(301)

(We’ll derive this expression later). Benson’s rules allow estimation of ∆S
‡

0

and ∆H
‡

0 on the basis of characteristics of different types of reactions, for both
gas-phase and solution. He gives tables of “group contributions”: for example,

∆S
‡

0 for a hydrocarbon reaction will be increased by so much if a methyl group
is added to a molecule.

These rules and similar ones are widely used, especially in chemical engi-
neering. For fast estimates of organic reaction rates, Benson’s rules are often
the method of choice.
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10.1.4 Linear free energy correlations

Espenson describes several, the most famous being the Hammett equation that
correlates rates for reactions of m- and p- substituted aromatics with different
substituents. These are widely successful in physical organic chemistry. I defer
discussion until we cover reactions in solution explicitly.

10.1.5 Computational Approaches

Several modern quantum chemistry programs (Gaussian, GAMESS, etc.) will
attempt to calculate energies and other properties of transition states (and there-
fore activation energies) for medium-sized molecules. These techniques are
getting better all the time. It is absolutely necessary to do a calculation which
includes some form of electron correlation (MCSCF, CI, CCSD, etc.) in order to
obtain reactive properties correctly. Density functional theory is rapidly gain-
ing popularity for this purpose.

10.2 Introduction to Potential Energy (hyper) Surfaces

A collection of N atoms requires 3N coordinates to specify positions of all nu-
clei. 3 coordinates specify the location of the center of mass (COM). 3 coordi-
nates specify orientation in space (only 2 are required for linear molecules.) So
3N − 6 relative coordinates describe “internal” positions.

Use the Born-Oppenheimer approximation to separate motions of nuclei
and electrons; then write an effective potential for the nuclei as function of
nuclear positions. The effective potential as a function of nuclear position is
the “potential energy hypersurface”, usually called “potential surface”, PES,
or simply “potential”.

“Effective potential” means total internal energy of the molecular system
except nuclear kinetic energy.

10.2.1 Diatomic Molecules

3N − 5 = 1 we only need a one-dimensional potential surface: a potential
energy curve. The only possible reaction here is dissociation; the natural “re-
action coordinate” is the internuclear distance.
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10.2.2 Linear Triatomic System

For a triatomic, N = 3, so 3N− 5 = 4, and we should properly have a potential
surface that depends on 4 coordinates. To simplify the problem let us consider
only collinear arrangements; this restricts 2 internal bending coordinates, and
we are left with 2 independent coordinates. The potential energy surface is
usually drawn as a contour map, as in Figure 26.

Figure 26: Generic 2D potential surface for a linear triatomic problem.

If we plot V as function of distance along minimum energy path, we get
something like a traditional reaction coordinate diagram, as in Figure 27. It’s
sometimes convenient to make a new coordinate system which has one axis
parallel to the minimum energy path at the saddle point, as in the top panel of
Figure 27. Then plots of V vs the new coordinates show a distinct maximum in
the reaction coordinate and a minumum in the other direction. The properties
of the surface at the saddle point play an important role in predictions of rates.

For more complicated reactions than linear triatomic atom transfers, the
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Figure 27:

64



potential surface is hard to draw. But there is usually still one coordinate, the
“reaction coordinate”, along which the potential has a maximum at the saddle
point. All other coordinates show minima in the potential at the saddle point.
The quantum chemistry programs search for transition states by looking for
these points with maxima along single axes and minima along all others.

10.2.3 Trajectories

One way to model kinetics is to “shoot marbles along the potential surface”.
To do this it is very useful to introduce new coordinates that are appropriate
for AB + C systems of different masses.

Figure 28:

r1 = x− y tan θ (302)
r2 = αy sec θ (303)

where

sin Θ =
[

MAMC
(MA + MB)(MB + MC)

]1/2
(304)

α =
[
MA(MB + MC)
MC(MA + MB)

]1/2
(305)

These “skewed and scaled coordinates” can be used in classical trajectory
calculations to predict vibrational and translational effects in reactions.
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10.3 Transition State Theory

This material is covered minimally in Espenson section 7–7, and better in Chap.
10 of SFH; these notes follow the SFH treatment. Good descriptions may also
be found in Laidler (section 4.5) and Moore & Pearson.

TST is a procedure for calculating A-factors for reactions. It is also known as
“activated complex theory”, and sometimes by the older and more optimistic
name “absolute rate theory”.

It makes the following assumptions:

1. The Born-Oppenheimer approximation applies to reacting molecules.

2. There is a Boltzmann distribution of reactant molecule internal states.

3. There is a “dividing surface” at the saddle point; once a reacting pair of
molecules has crossed it, it cannot turn back. Some authors (including
SFH) regard this as the “fundamental assumption” of TST.

4. At the saddle point, motion along the reaction coordinate is “free”; it is
not coupled with other motions.

5. In the transition state, the Boltzmann distribution continues to describe
the reacting molecules’ internal states.

Figure 29: Potential energy along the minimum energy path.

10.4 Derivation

Consider the elementary reactions

A + B −↽−−⇀− X‡ → C, (306)
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whose reaction coordinate diagram is shown in Figure 29. δ is an arbitrary (but
small) “thickness” of the transition-state region along the reaction coordinate.

We know that at complete equilibrium,

[X‡] = N‡ = K‡
c [A][B] (307)

and that if we break all the X‡ into two groups, one going forward (N‡
f ) and

one backward (N‡
b ), those two must be equal:

N‡
f = N‡

b =
1
2
N‡ (308)

Now if all the product molecules (and therefore N‡
b ) were all taken away,

the concentration N‡
f would be for the moment unchanged. So,

N‡
f =

1
2
N‡ =

1
2
K‡
c [A][B] (309)

This situation is called “quasiequilibrium.”
Those forward-moving transition states have an average velocity v̄s. They

will require an average time δ
v̄s

to cross the transition region, so the concentra-
tion of product molecules formed per second is

N‡
f
v̄s
δ

=
N‡

2
v̄s
δ

(310)

=
K‡
c

2
v̄s
δ

[A][B] (311)

and we identify the rate coefficient

k =
K‡
c

2
v̄s
δ

. (312)

We need to evaluate K‡
c and v̄s.

To calculate v̄s, we use the one-dimensional Maxwell distribution of speeds.
Note that the integration goes only from 0 to ∞ rather than from −∞ to ∞,
since we are interested only in those transition states that are moving along the
reaction towards products and not those moving back toward reactants.

v̄s =

∫ ∞
0 vse

− µsv
2
s

2kBT dvs∫ ∞
0 e
− µsv

2
s

2kBT dvs

=
(

2kBT
πµs

)1/2
(313)

To calculate K‡
c , we need statistical mechanics. The basic statistical mechan-

ics expression for an equilibrium constant is

K‡
c =

Q‡
tot

QAQB
e−E0/kBT , (314)
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where the Q are partition functions, per unit volume, and E0 is the difference
between the zero point energies of the reactants and the transition state (the
“classical barrier”.)

We have assumed separability for the motion along the reaction coordinate;
that means

Q‡
tot = Q‡

SQ
‡ (315)

where Q‡
S is the (1-dimensional) partition function for motion along the re-

action coordinate, and Q‡ the partition function for all other motions of the
transition state. Treating the motion along the reaction coordinate as transla-
tion in a box of length δ, we have

Q‡
S = (2πµskBT)1/2 δ

h
(316)

from elementary stat mech; Q‡
S is dimensionless. So,

K‡
c = (2πµskBT)1/2 δ

h
Q‡

QAQB
e−E0/kBT (317)

and substituting into the formula for k (with our expression for v̄s)

k =
k‡
c

2
V̄s
δ

(318)

= (2πµskBT)1/2 δ

2h

(
2kBT
πµs

)1/2 1
δ

Q‡

QAQB
e−E0/kBT (319)

k =
kBT
h

Q‡

QAQB
e−E0/kBT (320)

Eq. (320) is the basic transition state theory equation. Note that this expression
is independent of δ and µs, which were artificial.

To calculate the rate, we need to know E0 and be able to evaluate the par-
tition functions. We can estimate E0 from experimental activation energies, or
try to measure it with more sophisticated experimental techniques, or try to
calculate it with electronic structure theory. This last possibility is becoming
more and more accessible and popular.

10.5 Partition Functions

For a single molecule,

Q ≡∑
i
e−Ei/kBT (321)
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where the sum is over all states i, or

Q = ∑
j
gj e
−Ej/kBT (322)

where the sum is over all energy levels j and each level has degeneracy gj. If
we separate the energy into electronic, vibrational, rotation, and translational
contributions,

Ej = ej + vj + rj + tj, (323)

and similarly separate the degeneracies

gj = gcgvgrgt, (324)

then we can factor the partition function

Q = QelQvQrQt (325)

and evaluate each degree of freedom separately.
The electronic partition function is

Qel = ∑
i
gie
−ei/kBT , (326)

where i labels all the electronic states. Usually, the separation between the
ground state (ei = 0) and the higher states is much greater than kBT, so that
Qel ≈ g0, the degeneracy of the ground state. Notable exceptions are 2Π di-
atomics, such as NO and OH, which have two low-lying electronic energy lev-
els that both have significant population at ordinary temperatures. Open-shell
atoms behave similarly.

For the other degrees of freedom, the sums can be evaluated ahead of time
to obtain closed-form expressions. The expressions and typical values are given
in Table 5, taken from chapter 4 of Laidler.

To use these formulas, we need spectroscopic data on the reactants (usually
not difficult to find) and the transition state (usually not available.) So, for the
transition state, we can either guess the values on the basis of known values
for similar molecules, or calculate them with electronic structure programs.

Rotational partition functions contain σ, the symmetry number. Laidler
and SFH (and I) recommend that you ignore the σ in the rotational P.F.s and
instead use a statistical factor L‡. L‡ is the number of different possible transi-
tion states (or sets of products) which you could form if all the identical atoms
were labeled so you could tell them apart. For example, in the reaction

H + CH4 −−→ H2 + CH3 (327)
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Table 5 Partition function table from Laidler.

the statistical factor L‡ is 4:

H5 + CH1H2H3H4 −−→ H5H1 + CH2H3H4, (328)

etc.
For rotational partition functions you need moments of inertia, while spec-

troscopic tables generally give you rotational constants.

B̃ =
B
hc

=
h

8π2cI
(329)

where B̃ is in cm−1 units, or

B =
h̄2

2I
(330)

(331)

with B in joule units.
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Nonlinear molecules have three moments of inertia, called IA, IB, and IC.
In symmetric tops, two of the moments are the same. These come in two flavors:
if the unique moment of inertia is smaller than the other two, the top is called
prolate, while if the unique moment is larger than the other two, it is called
oblate. Prolate is cigar-like, oblate is frisbee-like. For symmetric tops, then,
only two rotational constants (not three) appear in spectroscopic tables, and
you have to understand which one to use twice. The relations between the ro-
tational constants and the moments of inertia are similar to that for diatomics:

Ã =
h

8π2cIA
(332)

B̃ =
h

8π2cIB
(333)

For asymmetric tops the three rotational constants are all different.
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The “working” TST expression is now (for ideal gases)

k =
kBT
h

L‡ Q‡

QAQB
e−E0/kBT (334)

where L‡ is the “statistical factor” (SFH sec. 10.6.2), and Q‡ is the molecular
partition function per unit volume for the transition state, excluding the mo-
tion along the reaction coordinate, and excluding any symmetry numbers. QA
and QB are the molecular partition functions per unit volume for the reactants,
excluding symmetry numbers.

This expression in terms of partition functions is strictly valid only for ideal
gases. The expression for the equilibrium constant in terms of partition func-
tions, Eq. (314), is true only in that case. For other systems, more sophisticated
expressions for the equilibrium constant are needed; instead, TST is usually
used in an alternative (but less predictive) “thermodynamic” form.

I now proceed to several examples of the use of TST with increasing com-
plexity.

10.6 Collisions of hard spheres

10.6.1 Straightforward calculation

Consider the simplest case, a bimolecular reaction between hard spheres.

A + B → products (335)

k(T) =
kBT
h

Q‡

QAQB
e−E

‡
0 /kBT (336)

We need to use partition functions appropriate to the hard-sphere model.
Hard spheres have no internal structure, so we have translational parts only
for the reactants.

QA =
(2πmAkBT)3/2

h3 (337)

QB =
(2πmBkBT)3/2

h3 , (338)

where both have units m−3. The transition state looks like two hard spheres
touching, as shown in Figure 30, so its partition function is like that of a di-
atomic molecule. The reaction coordinate corresponds to the single vibrational
mode of the diatomic, so we need not include that in Q‡; only the translational
and rotational parts need to be included:

Q‡ = Q‡
t Q

‡
r (339)
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Figure 30:

Q‡
t =

(2π(mA + mB)kBT)3/2

h3 (340)

Q‡
r =

8π2 IkBT

σh2 , (341)

but we ignore σ (in this case it’s 1 anyway).
To calculate Q‡

r we need to calculate the moment of inertia. We find the
center of mass with the two equations

xA + xB = rA + rB = dAB (342)
xAmA = xBmB (343)

The moment of inertia is I = mAx
2
A + mBx

2
B. ( Exercise: Show that I = µd2

AB,
where µ = mAmB

mA+mB
.) Then

Q‡
r =

8π2µd2
ABkBT

h2 (344)

Now

k(T) =
kBT
h

(2π(mA+mB)kBT)3/2

h3
8π2µd2

ABkBT
h2

(2π(mAkBT)3/2

h3
(2πmBkBT)3/2

h3

e−E
‡
0/kBT (345)
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Lots of stuff cancels; we are left with

k(T) = (kBT)1/2µ−1/2√8π1/2e−E
‡
0/kBTd2

AB (346)

=
(

8kBT
πµ

)1/2
πd2

ABe
−E‡

0/kBT (347)

This is exactly the same formula we got from the line of centers model in
simple collision theory! Note the origin of the πd2

AB term (the cross section)
in the TST rate. It came from the rotational partition function. Greater dAB
and greater masses make for larger densities of rotational states, and therefore
greater statistical factors in the rate. E‡

0, as before, is the difference in ground-
state energies of the reactants and transition state.

What is Ea?

Ea = kBT
2 d(ln k)

dT
(348)

= kBT
2 d
dT

(
1
2

ln T −
E‡

0
kBT

+ constant

)
(349)

= kBT
2

(
1

2T
+

E‡
0

kBT
2

)
(350)

=
1
2
kBT + E‡

0 , (351)

as expected.
Let’s look at a couple of quick-and-dirty estimates we can make from the

TST rate expression without actually doing any calculations.

10.6.2 Temperature dependence

Looking at Table 5 we see that both translational and rotational partition func-
tions contribute a factor of T1/2 per degree of freedom so we expect to have

k(T) ∼ kBT
h

Q‡
t

(T3/2)
Q‡

r
(T)

(T3/2)
QA

(T3/2)
QB

e−E
‡
0/kBT (352)

so the overall T dependence looks like

k(T) ∼ T1/2e−E
‡
0/kBT (353)

We could have immediately written down the expected formula for Ea from
this estimate.
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10.6.3 Order of magnitude of preexponential factor

Using the rough numbers from Table 5 we have

k(T) =
kBT
h

q3
t q

2
r

q3
t q

3
t

e−E0/kBT (354)

where qt and qr indicate per degree of freedom. So wehave

A ∼ (1031)(102)

(1031)(1031)

kBT
h

(355)

kBT
h has the value 6.25× 1012 s−1 at 300 K, so

A ∼ (10−29 m3)(6× 1012 s−1) (356)

∼ 6× 10−17 s−1 m3 (357)

∼ 6× 10−11 cm3 s−1 (358)

where these units include an implied “per molecule”. This is a typical A for a
fast gas phase bimolecular reaction. For a reasonable set of µ, πd2

AB, Eq. (347)
gives A = 2.4 × 10−11 cm3 molec−1 s−1. So our order-of-magnitude estimate
is not too bad.

To give you a feeling for magnitudes of bimolecular rate coefficients,

10−11 cm3

molec · s
∧= 6× 1012 cm3

mol · s
∧= 6× 109 L

mol · s (359)
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Since K‡
c is a concentration equilibrium constant,

d(ln K‡
c )

dT
=

∆E‡
0

RT2 (360)

d(ln k)
dT

=
d
dT

(
ln

[
kBT
h

K‡
c

])
(361)

=
1
T

+
∆E‡

0

RT2 (362)

Ea = RT2 d(ln k)
dT

= ∆E‡
0 + RT (363)

At constant pressure,

∆H‡
0 = ∆E‡

0 + P(∆V‡
0 ), (364)

where ∆V‡
0 is called the “standard volume of activation”. For unimolecular

gas-phase or solution reactions, ∆V‡
0 ≈ 0. Then

∆H‡
0 = ∆E‡

0 (365)

and so

Ea = ∆H‡
0 + RT (366)

k =
kBT
h

exp

(
∆S‡

0
R

)
exp

(
− Ea
RT

)
exp

(
RT
RT

)
(c−◦ )∆n‡

(367)

k = e
kBT
h

exp

(
∆S‡

0
R

)
exp

(
− Ea
RT

)
(c−◦ )∆n‡

(368)

So, from the Arrhenius parameters we can obtain ∆S‡
0, ∆H‡

0 , ∆E‡
0 ;

A = e
kBT
h

exp

(
∆S‡

0
R

)
(c−◦ )∆n‡

(369)

for solution or unimolecular reactions. For bimolecular reactions, assuming
ideal gas behavior,

P(∆V‡
0 ) = ∆n‡RT (370)

so

Ea = ∆H‡
0 + RT(1− ∆n‡) (371)
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and

k = e(1−∆n‡) kBT
h

exp

(
∆S‡

0
R

)
exp

(
Ea
RT

)
(c−◦ )∆n‡

(372)

Thermodynamic TST is not really a predictive theory, though it is possi-
ble to empirically estimate enthalpies and entropies of activation, for instance,
through Benson’s rules. But it is very widely used as a descriptive framework
for the interpretation of kinetic data. Volumes, entropies, and enthalpies of ac-
tivation may be related to changes in molecular structure when the transition
state is formed. Espenson’s chapter 7 gives several examples of this sort of in-
terpretative use of TST. (Section 7.4 should be ignored; such correlations are
nearly always spurious and chemical interpretations are extremely dangerous.
See McBane, J. Chem. Educ. 75, 919 (1998).)

As the paper by Robinson points out, it is important to keep track of the
standard states used for the activation parameters. It’s very easy to find en-
tropies of activation in the literature whose numerical values are meaningless
because of errors in units of the rate coefficient.

11 Extensions to TST

Two important classes of modifications to classical TST are typically used to-
day.

1. Quantum corrections, especially for tunneling. These account for the
possibility that light atoms such as H and D might tunnel through the
saddle-point barrier rather than climbing over it.

2. Variational TST, which attempts to minimize the effects of recrossing.
Since recrossing always makes TST predict too large a rate, variational
TST simply tries different configurations as the transition state (most of
which are not “at the top of the barrier”) until it finds the one that gives
the lowest rate.

11.1 Tunneling corrections

There are several different kinds of tunneling corrections, but all are based on
the quantum mechanical idea of a partical tunneling through a barrier. When
a particle with kinetic energy Et approaches a barrier of height E0, in classical
mechanics the particle will pass over if Et > E0 and be reflected back if Et < E0.
(If Et = E0, it will spend forever trying to reach the top.) But in quantum
mechanics, all energies have nonzero probabilities of both transmission and
reflection.
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Figure 31: Classical and quantum particles approaching barriers.

11.1.1 Tunneling correction

The one-dimensional Wigner correction is the simplest tunneling correction. It
assumes that the reaction barrier may be approximated by an inverted parabola
near the transition state:

V(s) = V0 −
1
2
mω‡s2, (373)

where V0 gives the potential at the top of the barrier, and ω‡ is the magnitude
of the “imaginary frequency” at the barrier. (If the barrier were inverted to
form a potential well, the well would be a harmonic oscillator with angular
frequency ω‡ = (k/m)1/2; k is the force constant and m is the reduced mass for
the harmonic motion.) Then at low temperatures (kBT 	 V0), the tunneling
correction factor κ is

κ(T) = 1 +
1

24

(
h̄ω‡

kBT

)
(374)

More sophisticated tunneling methods either assume a more realistic shape
for the potential barrier, or try to account for the possibility that the tunneling
might occur through a different part of the barrier than right at the transition
state.

Tunneling is important when

1. the temperature is low (kBT 	 V0),

2. the atoms moving at the transition state are light (that is, are H or D), and

3. the barrier at the transition state is narrow (thin).

Tunneling corrections always make the rate larger than that predicted by clas-
sical TST.
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11.1.2 Variational TST

We have been putting the dividing surface at the maximum in potential energy
along the reaction path. It might be that that is not the best place.

Consider a reaction path that has a broad, open climb to the “summit” (sad-
dle point) but shortly thereafter has a very narrow channel or passageway to
products:

Figure 32:

Many trajectories might make it over the saddle point, but not find the
“door” into the product region and get bounced back toward reactants. These
recrossing trajectories get counted as product in normal TST, and contribute to
a too-large estimate of the rate coefficient.

If we have a reliable way to predict transition state properties (vibrational
frequencies, rotational constants) as a function of transition state structure (nu-
clear positions), then there is a way to solve this problem. Recrossing will
always produce a TST rate which is too high. If we calculate the TST rate as a
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function of transition state structure, and choose the structure which gives the
minimum rate, the TS will find its way to the “doorway” and recrossing will
be minimized.

This procedure, called variational TST, is equivalent to placing the dividing
surface at the point of maximum Gibbs function (rather than potential energy)
along the reaction path.

Two programs are freely available to do these variational TST calculations.
The grandaddy program is POLYRATE, from D. Truhlar’s group at University
of Minnesota. It is available at http://comp.chem.umn.edu/WWW/POLYRATE/
POLYRATE.html. It has many, many options, and versions that attempt to ac-
count for solvent effects as well.

The other is TheRate (THEoretical RATEs), at http://therate.hec.cetah.
edu. It has many fewer options; it uses only Gaussian for electronic structure
data. You give the program Gaussian output files for the reactants, TS, and
products. It gives you a list of predicted rates at temperatures of your choice,
with or without tunneling corrections.

If you want to do variational TST, it produces a set of Gaussian input files
at locations it needs; you run those, and it then reads their output.

11.2 Microcanonical TST

“Microcanonical” means “at fixed energy” rather than “at fixed temperature”.
The goal is to calculate a rate coefficient for a collection of molecules all with
the same energy E.

To go from the microcanonical rate coefficient k(E) to the canonical one
k(T), you average over an energy distribution:

k(T) =
∫ ∞

0
P(E)k(E)dE. (375)

SFH derives the microcanonical rate constant (section 10.7), using classical
statistical mechanics. The result is

k(E) =
G‡(E− E0)

hN(E)
(376)

where G‡() is the sum of states of the transition state of energy E− E0. This
is the total number of transition-state quantum states at energy E (dimension-
less).

N(E) is the density of states of the reactants at energy E. Units are (energy)−1

(typically states-per-wavenumber.) N(E) = dG(E)
dE .

This formula is important in the version of TST best suited to unimolecular
reactions, called RRKM theory.
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Figure 33:

11.2.1 Sum and Density of States

The allowed energy levels for molecules generally become more numerous as
the energy increases:

The density of states N(E) is the number in a small interval δE. The number
of states G(E) is the total number below energy E.

81



11.3 Unimolecular Reactions - further development and overview

Basic mechanism

A + M
k1−↽−−⇀−

k−1

A∗ + M (377)

A∗
k2−→ P (378)

SSA on A* gives

rate = kuni[A] =
k1k2[A][M]
k−1[M] + k2

(379)

Notation: E0 is minimum energy required for the step A*→ P to occur.
E is the energy actually contained in an A* molecule.
Increasingly sophisticated theories try to do more realistic jobs of estimating

k1, k−1, and k2.
1) Lindemann: Calculate k1 from LOC/SCT, threshold E0.

Assume k−1 is the collision rate v̄σ
Assume k2 is independent of E.

2) Hinshelwood: Retain assumptions that k2 is independent of E and that
k−1 = v̂σ.

Estimate k1 by using classical stat mech to evaluate the “equilibrium con-
stant” k1/k−1, assuming that a molecule contains � classical oscillators.

Then

k1 =
v̂σ

(s− 1)!

(
E0
kBT

)s−1
e−E0/kBT (380)

These k1s can be much larger than SCT; for E0/kBT = 10 and s = 5, k1 in-
creases by a factor of 500 over SCT.

Remaining problem: s is empirically not equal to the number of vibrational
modes, and it isn’t clear why. Also the T dependence is very poorly predicted.

3) Classical RRK (Rice-Ramsperger-Kassel)
Allow for k2 to change with E.

k2 → k2(E) ≡ k(E) (381)

We continue to assume that k−1 = v̂σ, but we must modify the notation to
allow for different rates of production of A* with different E.

A + M
dk1(E)
−↽−−−−−−−−⇀−

k−1

A∗(E, E + dE) + M (382)

A∗(E, E + dE)
k(E)−→ P (383)
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Define a corresponding differential unimolecular rate constant, the contri-
bution a particular E makes to kuni:

dkuni(E, E + dE) =
k(E) dk1(E)

k−1

1 + k((E)
k−1 [M]

(384)

Overall kuni will be

kuni =
∫ ∞

E0

k(E)dk1(E)/k−1

1 + k((E)
k−1 [M]

(385)

Now we need to calculate dk1(E) and k(E).
In classical RRK we use the same approach as Hinshelwood to find dk1(E)/k−1;

the probability that a collection of s oscillators has energy between E and E +
dE is

P(E)dE =
1

(s− 1)!

(
E

kBT

)s−1
exp

(
− E

kBT

)
dE
kBT

(386)

(Integrating this expression from E0 to ∞ and approximating E0 � kBT
gives the same formula as before for P(E > E0.))

Now

dk1(E)
k−1

=
1

(s− 1)!

(
E

kBT

)s−1
exp

(
− E

kBT

)
dE
kBT

(387)

Now we need to calculate k(E), the first-order rate constant for decay of
A*(E, E + dE).

Important assumption: vibrational energy in the molecule distributes itself
statistically through the molecule in a time short compared to 1/k(E).

This assumption is called “fast IVR” and has been the subject of much dis-
cussion.

To find k(E), think of the molecule as a collection of oscillators. The en-
ergy in the molecule gets “reshuffled” once per vibrational period. After each
reshuffling, the probability that an energy ≥ E0 lands in one critical oscillator
is

P =
(
E− E0

E

)s−1
(388)

The average amount of time before that happens is τ = 1
ν

1
P , so the rate

constant k(E) is

k(E) = τ−1 = νP = ν

(
E− E0

E

)s−1
(389)
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Figure 34:

With our expressions for dk(E)
1 /k−1 and k2(E), we calculate kuni:

Define ω = collision frequency = k−1[M], x = E−E0
RT , b = E0

RT , dx = dE
RT

Use

kuni =
∫ ∞

E0

k(E)(dk1(E)/k−1)

1 + k(E)
k−1 [M]

(390)

to get

kuni =
νe−b

(s− 1)!

∫ ∞

0

xs−1e−xdx

1 + ν
ω

(
x

b+x

)s−1 (391)

That is the “classical RRK theory rate coefficient”.
The integral is difficult analytically but easy numerically.

We must estimate ν (“average” vibrational frequency)
ω (collision frequency)
E0 (typically high-P activation energy)
S (effective number of oscillators)

At high pressures (ω → ∞),∫ ∞

0
xs−1e−xdx = Γ(s) = (s− 1)! (392)

so that

kuni ≈ νe−E0/RT (393)
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Generally, ν and E0 are set to the experimental A and Ea obtained at high
pressure. Using the gas kinetic ω, then measuring p1/2 and adjusting s to fit it,
usually gives a decent representation of the whole falloff curve.

Figure 35:

Figure 36:

4) Quantum RRK. Rather than using the classical expression for the proba-
bility that the critical oscillator contains an energy > E0, take a quantum count-
ing expression:

k(E) = ν
(j!)(j−m + s− 1)!
(j−m)!(j + s− 1)!

(394)
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Figure 37:

j = total number of quanta available = E/hv
m = number required in critical oscillator for reaction = E0/hv
For dk1/k−1, use quantum stat mech

P(Ei) =
gie
−Ei/kBT

∑i gie
−Ei/kBT

=
gie
−Ei/kBT

Q
(395)

j = Ei/kBT (396)

Q = (1− e−hv/kBT)−s (397)
gi = number of ways to distribute j quanta among s oscillators (398)

=
(j + s− 1)!
(j!)(s− 1)!

(399)

so

dk1(Ei)
k−1

=
(

1− exp
(
− hv

kBT

))s (j + s− 1)!
j!(s− 1)!

e−Ei/kBT (400)

Since the Ei are now discrete, we sum to get kuni rather than integrate:

kuni
k∞

=
(

1− e
− hv

kBT

)s ∞

∑
j=m


 e
−(j−m) hv

kBT
(j−m+s−1)!
(j−m)!(s−1)!

1 + ν
ω

(j−m+s−1)!j!
(j+s−1)!(j−m)!


 (401)

We need values for ν, ω, s, m.
Set s = 3N-6

ν = exptl. high-pressure A factor
m = E∞

a /hv
ω = gas-kinetic value
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Generally this fits as well or better than classical RRK, with one less ad-
justable parameter. The calculation is also easier.

The RRK theories are generally useful for fitting, interpolation, and expla-
nation of data, but not for any real predictive power.
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11.4 Overview of RRKM theory

“RRKM theory” (Rice, Ramsperger, Kassel, Marcus) is another name for micro-
canonical TST applied to unimolecular reactions. It improves the earlier RRK
theories in two ways:

1. Allow a realistic set of vibrational frequencies

2. Use microcanonical TST to evaluate k2(E) (usually written simply k(E)
in this context.)

The “standard” reference books for unimolecular reactions are Robinson &
Holbrook and Gilbert & Smith.

The fundamental expressions in RRKM theory are

k(E) =
G‡(E− E0)

hN(E)
(402)

dk1
k−1

=
N(Er)
Qr

e−Er/kBT
N(Ev)
Qv

e−Ev/kBTdErdEv (403)

The first is the microcanonical TST expression I showed before, and the second
is the ordinary statistical mechanics equilibrium expression for the probabil-
ity of a molecule having its internal energy within a particular range, when
the molecule’s internal states are properly described with quantum mechani-
cal energy levels. Equation 11–67 in SFH gives an approximate result for kuni
that arises from these two equations.

To evaluate k(T) we need E0, E‡, L‡, vibrational frequencies and moments
of inertia for A and A‡, and T. The temperature enters only in the excitation
step for a thermal unimolecular reaction. If the molecules are prepared for
reaction by a means other than thermal gas-phase collisions (for instance by
laser excitation), then the dk1/k−1 part of the calculation is unnecessary and
k(E) can be used directly.

Generally RRKM calculations are handled with computer programs, be-
cause evaluating the sums and densities of states is tedious for most molecules
at the energies relevant to unimolecular reactions. In addition, if thermal rate
coefficients are needed, the averaging over internal energies E is best done nu-
merically. Modern treatments also handle the exchange of energy between
rotational (useless for reaction) and vibrational energy. (In an isolated poly-
tomic molecule, total energy E and total angular momentum J are strictly con-
served, but the distribution of the total energy between vibration and rotation
can change with time.)

There is an old but widely used RRKM program available through the
Quantum Chemistry Program Exchange at the University of Indiana. A more
modern program that follows the approach described in the book by Gilbert
and Smith (on reserve) is UNIMOL, available at the Computational Chemistry
List archive (http://www.ccl.net/cca/software/SOURCES/FORTRAN/unimol/).
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Absolute reaction rates may be predicted with RRKM in a manner similar
to that described for TST of bimolecular reactions: evaluate reaction barriers,
vibrational energy levels, and molecular structure with ab initio calculations
and plug them into the RRKM formulas. Accuracy similar to that achieved
with TST is common.

If high-pressure rate data are available, and the intent is to model the falloff
behavior, the most common procedure is to use the high-pressure activation
energy to obtain E0, and use ab initio results only for the densities of states. This
procedure often gives excellent agreement with experimental results, since it
avoids the typical errors of a few kJ/mol in ab initio determinations of reaction
barriers.

The version of RRKM theory I have described applies to reactions with bar-
riers, as in the top panel of Figure 38. For barrierless dissociations, variational
TST is required; it requires more input (usually from calculations) but works
well. Stephen Klippenstein of case Western Reserve has recently been one of
the main developers of this approach. See Gilbert & Smith.

Figure 38:

RRKM can also be used to study other kinds of unimolecular reactions than
ordinary thermal collisionally activated ones. “Chemical activation” uses a
bimolecular reaction to form a single “hot” product at low pressures. Typi-
cally the product will undergo unimolecular reaction before a collisional sta-
bilization takes place. In infrared multiple photon dissociation (IRMPD), CO2,
Nd:YAG, and similar IR lasers dump a pile of IR photons into a strongly ab-
sorbing molecule. The resulting unimolecular reaction can usually be described
by RRKM.

A fundamental assumption of RRKM is that internal vibrational redistribu-
tion (IVR) - random flow of vibrational energy in the molecule - is rapid com-
pared to the timescale of unimolecular reaction. This assumption underlies the

89



use of statistical calculatoin of the rate of passage over the barrier, and is the
unimolecular equivalent of the “all internal states of reactants are in Boltzmann
equilibrium” in ordinary TST. RRKM also makes all the same assumptions as
TST in describing the step A∗ −→ A‡.

Lifetimes in RRKM are exponential (first-order kinetics.) The most com-
mon apparent deviations from RRKM are reactions occurring on excited states
which are repulsive; dissociation then occurs on a time scale comparable to 1
vibrational period, and the assumptions of RRKM are not reasonable.
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12 Reactions in Solution

What might be different about a reaction occurring in solution (as opposed to
the gas phase)?

Collisions - molecules don’t move about freely, but solvent
is in the way

Energetics - interactions with solvent molecules can
dramatically affect equilibrium constants and
other properties of reactions. Solvent molecules
can break symmetries, etc.

Dynamics - Collisions with solvent maintain thermal
equilibrium (in local regions) very effectively.
Solvent molecules may play active roles in reactions.

First let’s consider the simple problem of collisions. In the gas phase, all we
needed was kinetic theory of gases. In solution, we need to pay attention to
transport properties, even in well-mixed solutions.

12.1 Cage Effect

Experiment: put 100 black marbles and 2 white marbles in a tray that could
hold a maximum of 150 marbles in a single layer. Start shaking the tray. Note
the time each time the white marbles collide.

Figure 39:

The average number of collisions per second is about the same as in the gas
phase, but the distribution is different. The solvent molecules form a “cage”
around the colliding A-B pair, forcing them to undergo several collisions before
separating. Each “group” of collisions is called an encounter. Reactions that
happen very fast, and therefore on the first collision in each encounter, will be
slower in solution because the effective number of collisions is reduced to the
number of encounters. Those are called “diffusion limited” reactions.
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12.2 General Treatment of Transport Effects on Solution Reac-
tions

Reactants move through well-mixed solutions by diffusion and by conduction
(electrically driven motion). It is not too difficult to write down a formula that
shows the effects of diffusion and conduction on solution reactions. SFH sec-
tion 4.2 derives a “general phenomenological expression” for the rate constant
of a solution reaction, using the following ideas:

1. Diffusion of A and B molecules through the solution, with diffusion con-
stants DA and DB, are driven by concentration gradients of [B] around A
molecules.

2. Conduction of B molecules (ions) toward or away from A molecules is
due to a potential energy of interaction between them, called V(r).

3. There is an “encounter rate coefficient” kr, the rate coefficient for the
“true” concentration of B near the A molecules (at the “critical distance”
R). kR is defined by

−d[B]
dt

= k[A][B] = kR[A][B](R). (404)

The result of their treatment is eqn. 4–24, on p. 130:

k =
4π(DA + DB)β

1 + 4π(DA+DB)β

kRe
−V(R)/kBT

(405)

where

β =

[∫ ∞

R

eV(r)/kBT

r2 dr

]−1

, (406)

and V(r) is the potential energy of interaction of A and B ions at separation r in
the solution. Several limiting-case forms of this phenomenological expression
are useful in examining solution data.

12.2.1 Diffusion-limited rate coefficient

If the reaction occurs very fast once the reactants have come together, then
diffusion of the reactants through the solution is the process that limits the
rate. Let us estimate the rate constant in that case and compare it to that for a
fast gas phase reaction. Setting kR = ∞ in Eq. (405) gives immediately

kD = 4π(DA + DB)β (407)
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For neutral molecules, V(r) = 0. Then

β =
[∫ ∞

R

dr

r2

]−1
= R, (408)

so that

kD = 4π(DA + DB)R. (409)

How does this compare with very fast (“gas kinetic”) reactions in the gas
phase, where the rate is

kGK =
(

8kBT
πµ

) 1
2

πd2
AB? (410)

Typical diffusion constants at 300 K are on the order of 10−5 cm2 s−1. If we take
both the critical distance R in the solution phase and the hard sphere diameter
dAB in the gas phase as 5 Å, and use a reduced mass µ of 30 amu, we find

kD = 1× 10−11 cm3 s−1 = 8× 109 M−1 s−1 (411)

kGK = 3.6× 10−10 cm3 s−1 = 2× 1011 M−1 s−1 (412)

so that a collision-limited gas phase reaction goes about 30 times faster than
the same reaction in solution. The factor of 30 difference represents the typical
number of collisions in an encounter. For a no-barrier reaction, only the first
one counts.

For ions, we must evaluate β in order to estimate the diffusion-limited rate
coefficient. The potential energy of interaction is

V(r) =
zAzBe

2

εr
(413)

where ε is the solvent permittivity, with units F m−1. ε is related to the dimen-
sionless dielectric constant ε by the relation ε = 4πε0ε; ε0 is the permittivity of
vacuum, ε0 = 8.854188× 10−12 F m−1.

(In problems involving electrostatic quantities, I find it useful to remember
that the energy stored on a capacitor is given by E = 1

2CV
2, while power is

related to voltage and current by P = V · I. These formulas help me remember
the relations among the units farad, volt, ampere, and watt.)

Then

β =
−zAzBr0

1− exp( zAzBr0
R )

(414)

where

r0 =
e2

εkBT
(415)
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r0 has the value 7 Å at 25◦ for water, which has ε = 78.5.
For a given R (critical distance of approach), the diffusion-limited rate con-

stant then varies with the product of reactant charges zAzB, as shown in Table 6
(from SFH).

Table 6

12.2.2 Viscosity effects

The Stokes-Einstein relation describes how the diffusion constant changes with
solvent viscosity:

D =
kBT

6πrη(T)
(416)

where the viscosity η(T) has units kg m−1 s−1, and r is the particle radius. For
most liquids,

η(T) ∼ e+Eη/RT (417)

so that

D ∼ kBT
6πr

e−Eη/RT (418)

and the diffusion-limited rate coefficient will have an apparent activation en-
ergy Evisc

a = Eη + RT.

94



12.3 Effect of Solvent Dielectric Constant on Slow Reactions
Between Ions

For slow reactions, kR 	 4π(DA +DB)β, and the general solution rate constant
expression becomes

k = kRe
−V(R)/kBT (419)

= kR exp

(
−zAzBe

2

4πε0εRkBT

)
(420)

In this expression, only kR and R are not known. It is sometimes possible to
measure the rate of an ionic reaction in a mixed solvent whose dielectric con-
stant ε can be changed by altering the mole fractions of the solvent components.
A plot of the logarithm of the obtained k vs. 1/ε should then yield a value of
R. Figure 40 shows an example.

Figure 40:

12.4 Effect of Ionic Strength on Reactions Between Ions

Rate coefficients for ionic reactions can be affected by simply adding inert salts
to the solutions. This effect can be understood in terms of the shielding effect
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of the “ion atmosphere” which surrounds a solvated ion in solution. It is sim-
ilar to, but more drastic than, the reduction of attraction and repulsion by the
dielectric constant of the solvent.

The effect of screening by an ion atmosphere is described by Debye-Huckel
theory. In a NaCl solution, ion B− tends to have Na+ around it. The “ion atmo-
sphere” of positive charges “screens” other ions from the potential of B−. The
Debye-Huckel expression for the screened potential in a dilute ionic solution is

V(r) =
zAzBe

2

εr
e−br , (421)

where the fraction might be called V0(r) and 1/b is the “screening length”,
given by

b2 =
4πe2

εkBT
∑
i
c0
i z

2
i , (422)

where c0
i is the bulk concentration of species i. The ionic strength is

I =
1
2 ∑

i
miz

2
i , (423)

where mi is the molal concentration of species i. If we assume that the volume
of 1 kg of solvent does not change when the salt is added (the mass certainly
does), then

∑
i
c0
i z

2
i = 2IρN0 (424)

where ρ is the density of the solvent (not solution as SFH say), and N0 is Avo-
gadro’s number. So

b2 =
8πe2ρN0 I

εkBT
(425)

Since e−br ∼ 1− br for small br, we can evaluate β from

V(r) = V0(r)(1− br) = V0(r)− zAzBr0bkBT (426)

β−1 =
∫ ∞

R

e(V
0(r)−zAzBr0bkBT)/kBT

r2 dr (427)

= e−zAzBr0b
∫ ∞

R

e−V
0(r)/kBT

r2 (428)

β = e−zAzBr0bβ0 (429)
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Using Eq. (426) and Eq. (429) in the general expression for the solution rate
coefficient (Eq. (405)) gives (try it!)

k = k0 exp(zAzBr0b) (430)

k0 is the rate constant at infinite dilution, when β = β0.
Since b ∝

√
I, a plot of ln k vs.

√
I should be a straight line.

log10 k = log10 k
0 +

zAzBr0b
2.303

(431)

= log10 k
0 +

zAzBe
2

(2.303)εkT

(
8πe2ρN0

εkBT

)1/2

I1/2 (432)

For water at 298 K, ρ = 997 kg m−3 and ε = 78.5, so

log10 k = log10 k
0 + 1.02zAzB I

1/2 (433)

Like the dielectric constant, the effect of ion atmosphere screening is to re-
duce the effect of the long-range Coulomb forces between reacting ions. Reac-
tions between charged ions are speeded up and reactions between oppositely
ions are slowed down.

This primary salt effect can be used to find the charge product zAzB for the
rate limiting step of a reaction whose mechanism is unknown. Examples are
shown in the plots from SFH on the next page. Perhaps more important, this
analysis shows that in carrying out kinetic studies on charged reactants in so-
lution, it can be important to maintain constant ionic strength in the solution as
the reactant concentration is varied, in order to avoid confusing rate coefficient
changes due to ionic strength variations with rate chenges due to reactant con-
centrations. Sodium or potassium perchlorate is commonly added to reaction
mixtures for this purpose.
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12.5 “Energetic” and “Dynamic” Solvent Effects

In the previous two lectures I outlined the treatment of “collisional” effects
of solvents, which affect measured rates primarily by modifying the effective
collision rate with respect to the value expected for a gas-phase reaction. That
material can be thought of as treating the changes in A-factor brought about
by the solvent.

Today, I want to give a mostly qualitative discussion of more intrinsic sol-
vent effects. Interactions of solvent molecules directly with reactants in the
encounter complex, either time-averaged (static) or dynamic, are important.

Interactions with solvent always lower the total enthalpy (and, generally,
free energy) of solutes. However, the activation energy Ea or threshold energy
E0 can be either increased or decreased by solvation:

Figure 41:

How might we extend TST to account for solvent effects? In the gas phase,

k =
kBT
h

K‡
c (434)

In solution thermodynamics, the equilibrium constant is defined by a ratio of
activities (not concentrations),

A + B −↽−−⇀− C (435)

Keq =
ac

aBaA
=

[C]γc
[A][B]γAγB

= Kc
γc

γAγB
(436)

The rate coefficient, though, is defined in terms of the concentration of a
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transition state:

A + B −↽⇀− (AB)‡ → products (437)

Rate =
d[products]

dt
= k[A][B] =

kT
h
K‡
c [A][B] (438)

so

k =
kBT
h

K‡
eq

γAγB

γ‡ = Kre f ·
γAγB

γ‡ (439)

where K‡
eq is the thermodynamic equilibrium constant for formation of the

actinated complex. γA and γB are measurable, but γ‡ presents a problem.
Saying the same thing in slightly different language,

k =
kT
h
e∆S‡

0/Re−∆H‡
0 /RT(cΘ)∆m‡

α
kT
h
e−∆G‡

0/RT (440)

In going from gas phase to solution, or from one solution to another, the ∆G‡
0

might change.

k0 ∝
kT
h

exp
(
−

(
G‡

0 − Greactants
0

))
“reference” rate (441)

k ∝
kT
h

exp
(
−

(
G‡ − Greactants

))
new rate (442)

= k0 exp
(
−

(
G‡ − G‡

0

)
−

(
Greactants − Greactants

0

))
(443)

= k0 exp
(
−

[(
G‡ − Greactants

)
−

(
G‡

0 − Greactants
0

)])
(444)

= k0 exp
(
−δ∆G‡

)
cf. SFH eq. 12-27 (445)

The rate in the “reference” environment gets multiplied by exp(-δ∆G‡),
where δ∆G‡ is the change in Gibbs function of activation.

If the reference environment is the gas phase,

δ∆G‡ = ∆G‡
solv − ∆Greac

solv = ∆H‡
solv − ∆Hreac

solv − T
(

∆S‡
solv − ∆Sreacsolv

)
(446)

Solvation enthalpies and entropies are sometimes available in the literature,
though it is important to check standard-state conventions carefully. For tran-
sition states they are never available (well, almost never.) Generally one can
hope only for a qualitative or semiquantitative understanding. If you want to
try predictive work, you have several options for estimating ∆H‡

solv and ∆S‡
solv:

1) Relation to model compounds, as in gas-phase procedure. Pay particular
attention to differences in polarity between model compound and transition
state.
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2) Create empirical correlations with similar compounds/reactions.
3) Calculate using solvent-solute potentials (not easy; see SFH p. 408).
References on these options:
S.G. Entelis, Reaction Kinetics in the Liquid Phase, Helsted Press, NY (1976).
S.W. Benson and D.M. Golden, in Physical Chemistry, An Advanced Treatise.

Volume VVI. Reactions in Condensed Phases. H. Eyring, editor. Academic, NY
(1975) p. 58.

E. Buncel and H. Wilson, Acc. Chem. Res. 12, 42 (1979).
E. Buncel and H. Wilson, J. Chem. Ed. 57, 629 (1980).
C. Reichardt, Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim

and New York, 1979.
(list from M. Kreevoy and D. Truhlar, in Investigation of Rates andMechanisms

of Reactions, 4th ed., ed. by C. Bernasconi (Wiley)).
There is a fair amount of research activity devoted to developing improved

TST models of energetic solvent effects. Several of the current “solvation mod-
els” are already available in “canned” form in the POLYRATE program. A
bibliography of papers describing these models is available at http://comp.
chem.umn.edu/solvation/solref.html

The initial package was described in JACS 113, 8305 (erratum: 113, 9901)
The most recent model is described in Chem. Phys. Lett. 288, 293 (1998).

The main authors of these papers are Chris Cramer and Donald Truhlar of
the University of Minnesota.

12.6 Hughes-Ingold approach

The classic treatment of solvation is the Hughes-Ingold approach, described in

• C.K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd ed., Cor-
nell Univ. Press, Ithaca, NY 1969;

• A.J. Parker, Chem. Rev. 69, 1 (1969).

• E.D. Hughes and C.K. Ingold, J. Chem. Soc. 244 (1935).

Consider the following figure. The transition state is more polar than the
reactants; a polar solvent will have stronger interactions with the TS than the
reactants and ∆G‡ will be lower (so the rate higher) in more polar solvents.

Reactions with transition states that are less polar than reactants will gen-
erally show the opposite effect. Neutralization reactions between ions are an
example.

In thinking about solvent-transition state interactions, it is useful to remem-
ber the Hammond postulate: the transition state for an elementary step will more
closely resemble the stable state(reactants or products) which is closest to it in
energy.

An endothermic reaction will have a transition state which resembles the
products. An exothermic reaction will have a transition state which resembles
the reactant.
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Figure 42:

This idea is given quantitative meaning in several different contexts, includ-
ing the large fields of “linear free energy relationships” and Marcus theory.

13 Linear Free Energy Relationships

“LFER” are empirical correlations observed between rate coefficients or rate
and equilibrium coefficients, usually among reactions within a series of similar
mechanism.

Nothing makes these correlations necessary. They are a semiquantitative
way of “systematizing” chemist’s ideas about the similarity of reactions. The
most useful examples are the ones with well-defined domains of applicability,
including the Hammett equation and the Bronsted catalysis law.

My general advice:
Correlations which apply to well-defined groups of reactions, and which

use primary data (such as measured rate and equilibrium constants) can be
very useful. Two good references are Connors’ kinetics book (on reserve) and
Correlation Analysis in Chemistry, N.B. Chapman and J. Sharler, eds., (plenum,
1978).

Correlations among derived quantities, such as enthalpies and entropies
obtained from rate or equilibrium constants, or activation energies and A fac-
tors, should be regarded with strong skepticism. In particular, most discus-
sions of “kinetic compensation” are useless.
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Figure 43:
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Most LFERs take the form of relations among rate or equilibrium constants
along a reaction series.

For example:

ln k = m ln Kc + b (447)

The plot of ln k vs. ln Kc would be made for a series of similar reactions.
Since

ln k = ln
(
kT
h

)
− ∆G‡

RT
(448)

and

ln Kc = −∆G0

RT
(times a pressure-to-concentration factor), (449)

∆G‡ = m′∆G0 + b′. (450)

These are “extrathermodynamic relationships” - they are not necessary but
are relatively common.

The utility is that if rates are measured for some reactions in a series, and
equilibrium constants for all, the rates for the remaining ones can be estimated.
A common application in organic chemistry is prediction of rates in series of
reactions with the same mechanism.

13.1 Hammett equation

The most famous example of an LFER is the Hammett equation:

log10

(
k

k0

)
= ρσ, (451)

where k is the rate coefficient for some reaction of a substituted aromatic com-
pound, and k0 is the rate for the same reaction of an unsubstituted compound.
σ is the “substituent constant”, defined for a particular aromatic ring sub-
stituent as

σ = log10
Ka

K0
a

(452)

where K0
a is the acid dissociation constant for ordinary benzoic acid and Ka is

the acid dissociation constant for benzoic acid with the substituient of interest.
A given substituent will have different σ for the meta and para positions. ρ
is the “reaction constant”, obtained by making rate measurements on several
reactions with different substituents and setting ρ equal to the slope of a plot
of log10 k vs. σ. ρ varies not only with reaction type but also with solvent.
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The following page gives a table of σ and ρ values for several substituents
and reactions. As an example, let us predict the rate of

(453)

σ for m-CH2CH3 is -.07, and ρ for base-catalyzed hydrolysis of esters is
2.229, with log10 k

0 = −2.075. So we have

log10

(
k

k0

)
= σρ (454)

k = k010σρ = 10−2.07510(−0.7)(2.229) (455)

= 5.87× 10−3 M−1 s−1 (456)

The Hammett equation only works for m- and p- substituted aromatics.
Other LFERs include the Taft equation, which is like Hammett but for aliphatic

compounds, the Swain-Scott equation for nucleophilic substitution, and the
Bronsted acid catalysis law.

13.2 The Marcus Equation

“Marcus theory” describes a quadratic free energy relationship. It is a semiem-
pirical theory intended mostly to correlate solution reaction rates for electron
transfer. It has been extended, with considerable success, to atom, proton, hy-
dride, and group transfers as well.

The “reaction coordinate” includes both changes in internal structure of the
donor (D) and acceptor (A) complexes, and motion of the solvent molecules.
The simple version of Marcus theory we shall describe assumes that it is useful
to define the reaction coordinate x so that the two free energy curves, for D + A
and for D+ + A−, are parabolas with minima at xR and xP, and that the “force
constant” f is the same in both the reactant and product wells.

With these assumptions we want to find a relation between ∆G‡ and ∆G0.
At the TS, GR and GP are equal:

1
2
f (xTS − xR)2 − ∆G0 =

1
2
f (xTS − xP)2 (457)

Define ∆x = xP − xR. Then

1
2
f (xTS − xR)2 − ∆G0 =

1
2
f (xTS − (∆x + xR))2 (458)

Expand, cancel terms, and solve for xTS:

xTS = xR +
∆x
2

+
∆G0

f∆x
(459)

104



Figure 44: Reaction coordinate diagram for electron transfer with definitions
of Marcus parameters.

We have now “found” the location of the transition state for a given ∆G0. If
∆G0 = 0 (for a symmetric reaction), xTS = xR+xP

2 . As ∆G0 becomes more
negative, xTS looks more and more like xR; this is a quantititave version of the
Hammond postulate.

Now use this value of xTS to find ∆G‡.

∆G‡ =
1
2
f (xTS − xR)2 (460)

=
1
2
f (xR +

∆x
2

+
∆G0

f∆x
− xR)2 (461)

=
1
2
f
(

∆x
2

)2
(

1 +
2∆G0

f∆x2

)2

(462)

Define the “reorganization energy” λ:

λ =
1
2
f (∆x)2 (463)
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Then

∆G‡ =
λ

4

(
1 +

∆G0

λ

)2

(464)

which is the Marcus equation.
If ∆G0 = 0, ∆G‡ = λ

4 . λ
4 is called the intrinsic barrier.

This equation relates rate and equilibrium constants for series of reactions.
In the simplest application, we measure ∆G‡

BB for a symmetric reaction

B− + B → B + B− (465)

(for instance from nmr lineshapes for proton exchange). We make the same
measurement for the other symmetric reaction

A− + A → A + A− (466)

to get ∆G‡
AA. Then for the reaction

B− + A → B + A−, (467)

we calculate

λAB =
λBB + λAA

2
(468)

= 4
(∆G‡

BB + ∆G‡
AA)

2
(469)

and then

∆G‡
AB =

∆G‡
AA + ∆G‡

BB
2

(
1 +

∆G0
AB

λ

)2

(470)

So, in a reaction series, if we can measure the kinetics for all the symmet-
ric reactions, and measure or look up ∆G0 for the unsymmetric ones, we can
calculate ∆G‡ for the unsymmetric reactions. This gets us n(n− 1) rate coeffi-
cients in a series of n different reactants. Several other forms of this equation
(sometimes called the “Marcus cross relation”) are also used; see Espenson for
some examples.

13.3 The inverted region

Note that the most basic Marcus expression,

∆G‡ =
λ

4

(
1 +

∆G0

λ

)2

(471)
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makes a very interesting prediction: as the reactions become more exothermic,
the rate will increase until ∆G0 = −λ. Beyond that, the rate will begin to
decrease again.

The effect is easy to understand graphically; the idea is illustrated in Fig-
ure 45. In the “inverted” region, the solvent must move away from the equilib-
rium product configuration in order to allow an energetically neutral electron
transfer.

Figure 45:

The existence of this inverted region, now well accepted, was in dispute
until about 1986. One confirming set of data is shown in Figure 46.

Figure 46:
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14 Reactions on Surfaces

Heterogeneous catalysis is a 2 × 109 /yr industry in the US, and most of it is
done with solid catalysts.

An important distinction: “adsorption” implies molecules sitting on a sur-
face, while “absorption” implies molecules inside the bulk solid structure.

Molecules can be adsorbed with various strengths, but two broad classes
are generally recognized.

Physisorption weak bonds caused by van der Waals interactions join surface
atoms and adsorbate. Binding energies are low (� 20 kJ/mol), surface-
molecule distances are large (∼ 4− 10 Å), and there is only a small over-
lap between surface orbitals and orbitals on adsorbed species.

Chemisorption - there is a chemical interaction between surface atoms and ad-
sorbed species. Binding energies are 200− 500 kJ/mol, surface-molecule
distances are those of normal chemical bonds (1–3 Å), and there is large
overlap between surface and adsorbate orbitals.

In some systems and experiments there appears to be a clear barrier be-
tween physisorption and chemisorption wells.

Figure 47:

Molecules adsorb on “sites”. Typically chemisorption is more important for
catalysis. Sites can be

• Individual surface atoms in smooth planes (“terraces”)

• Atoms at steps, kinks, or vacancies

• Spaces between 2 or 3 surface atoms (“bridge” sites)
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14.1 Langmuir isotherm

Here I develop a simple model of adsorption equilibrium.
Catalyst has a number S0 of sites per unit area. We define the coverage θ as

the fraction of those sites which are occupied by adsorbate molecules:

θ =
# of A-S pairs per unit area

S0
(472)

If the molecules can “pile up”, θ can have any value from 0 to ∞; if they can
only adsorb on unoccupied sites, 0 ≤ θ ≤ 1. Assume the latter for the moment.
Consider the reaction

A + S
ka−↽−−⇀−

k−a

AS (473)

It’s a little hard to define [S], but the rate of adsorption should be propor-
tional to the number of A-S collisions, so say

Rate→ = ka[A](1− θ) (474)
Rate← = k−aθ (475)

At equilibrium k−aθ = ka[A](1− θ)

Kads =
ka
k−a

=
θ

[A](1− θ)
(476)

the “Langmuir isotherm”, also written as

θ =
Kads[A]

1 + Kads[A]
(477)

If our mechanism looks like

A + S
ka−↽−−⇀−
k−a

AS
k2−−→ P, (478)

then

d[P]
dt

= k2[AS] = k2θS0 (479)

The L. isotherm gives

θ =
Kads[A]

1 + Kads[A]
, (480)
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so

d[P]
dt

=
k2KadsS0[A]
1 + Kads[A]

(481)

At low [A], this looks 1st-order in A. At high [A], it’s zero-order in A. The
behavior is similar to that found in enzyme kinetics. If a finite number of active
sites is available, a saturation behavior is observed in either case.

Figure 48:

Since metal catalysts are purchased by weight, and only their surfaces are
active, they are usually very finely divided in order to maximize the surface-
to-volume ratio.

The assumptions made in this derivation included the following:

1. No interactions among molecules (AS→ AS or A→ AS)

2. Single layer coverage only

3. All surface sites are equivalent.

If molecules dissociate on the surface,

A2 + 2S −↽−−⇀− 2AS (482)

rate→ = ka[A2](1− θ)2 (483)

rate← = k−aθ
2 (484)

At equilibrium,

(
θ

1− θ

)2
=

ka
k−a

[A] (485)
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so that

θ =
K1/2
ads [A2]

1/2

1 + K1/2
ads [A2]

1/2
(486)

Now, at low [A2], θ ∼ [A2]
1/2.

At high [A2],

1− θ =
1

1 + K1/2
ads [A2]

1/2
(487)

so that at high [A2],

Kads[A2]
1/2 � 1 (488)

and

1− θ =
1

K1/2
ads [A2]

1/2
(489)

This P−1/2 dependence of the free sites is characteristic of dissociative chemisorp-
tion.

14.2 Kinetics of reactions on surfaces

The basic mechanism of a surface reaction includes 5 steps:

1. Diffusion to surface

2. Adsorption

3. Reaction

4. Desorption

5. Diffusion away

The “Langmuir-Hinshelwood mechanism” treats step 3 as a reaction be-
tween two adsorbed molecules. It assumes equilibrium between gas-phase
and adsorbed species, and assumes 2) and 4) are fast so 3) is the rate determin-
ing step.

For unimolecular reactions, we have

A(g) + S −↽−−⇀− AS fast (490)
AS → XS slow (491)
XS −↽−−⇀− X(g) + S fast (492)
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With the rapid equilibrium assumption for both A and X, and defining
pressure-unit equilibrium constants KA

p and KX
p ,

dPx
dt

= k[AS] = k′θA =
k′KA

p pA
1 + KA

p pA + KX
p PX

(493)

from the Langmuir isotherm for competitive adsorption.
For large pressure of A, low X coverage, if the reactant is adsorbed strongly

and the product weakly, that is,

PAK
A
p � 1 + KX

p PX , (494)

then dPX
dt = k′ and we have zero-order kinetics. The kinetics are (again) con-

trolled by the available number of sites and the time required for A-X to react.
For PAK

A
p 	 1 and PXK

X
p 	 1, dPX

dt = k′KA
p PA and the reaction appears first

order. Here the kinetics are controlled by the amount of A available to populate
the sites.

For PXK
X
p � 1 + PAK

A
p , dPX

dt = k′
KA
p PA

KX
p PX

. Here the product refuses to let go of

sites, and inhibits the reaction.
For bimolecular reactions we have slightly different behavior.
Assume the Langmuir-Hinshelwood mechanism:

A + S −↽−−⇀− AS (495)
B + S −↽−−⇀− BS (496)

AS + BS → XS + S (497)
XS −↽−−⇀− X + S (498)

where the third reaction is the rate-determining one, and all equilibria are con-
sidered fast (“established”). Then

dPX
dt

= k′θAθB =
k′KA

p PAK
B
p PB

(1 + KA
p PA + KB

p PB + KX
p PX)2 (499)

If PB is held constant while PA is varied, the rate passes through a maximum
because we need to have both A and B present on the surface.

At low pressure of both A and B, and PXK
X
p 	 1

rate = k′KA
p PAK

B
p PB ordinary 2nd order. (500)

If B is adsorbed much more strongly than A,

rate ∼
k′KA

p PA
KB
p PB

(501)
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Figure 49:

Here the reaction is inhibited by B, because it takes up sites needed by A.
Note that the rate at which AS and XS diffuse on the surface is implicitly

included in k′.

14.3 Rideal-Eley mechanism

An alternative gas-surface mechanism is the Rideal-Eley one:

A + S −↽−−⇀− AS (502)
(B + S −↽−−⇀− BS) (503)

B + AS → XS (504)
XS −↽−−⇀− X + S (505)

B molecules “divebomb” A stuck to surface. No example of a pure Rideal-
Eley reaction is known, though it is certainly possible to have Rideal-Eley steps
as parallel processes with the more common reaction between two adsorbed
species.
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