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1. Types of experimental error 1

Chemistry 541 should teach you how to obtain good experimental data,
how to analyze it quantitatively, and how to present it in written form.

When your future boss asks you to determine the boiling point of some
new product, she doesn’t really care what result you get; she wants to know
what result the customer will get when he measures it. Since your crystal
ball is cloudy, you must do the best you can to predict. Much of 541 is
dedicated to exactly how you do that.

1 Types of experimental error

Several kinds of errors are usually present in experimental data. Their ef-
fects on the desired results can range from insignificant to disastrous, de-
pending on how well they are understood and accounted for.

Some general characteristics of errors are described by two words with
very specific meanings in quantitative work: precision and accuracy. Preci-
sion describes the tendency of several measurements in a set to have val-
ues close to one another; accuracy describes whether the measurements are
close to a “true” or accepted value. A basketball player whose shots always
pass exactly two feet to the right of the hoop shows excellent precision but
suffers from poor accuracy.

1.1 Blunders, mistakes, screwups

These mistakes correspond to the common-English usage of the term “er-
ror”. Some examples are

• using the wrong material or concentration,

• transposing digits in recording scale readings,

• arithmetic errors.

There are no fancy techniques I can teach which will save you from these
sorts of errors; you just have to be careful and keep your wits about you.
In general, you should read a scale, write down the result in your note-
book, then read the scale again, to prevent mistakes. All recorded numbers
should go directly into your notebook; that helps find and fix some kinds
of errors such as arithmetic ones.
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2

1.2 Systematic error

Systematic errors are consistent effects which change the system under
study or the measurements you make on it. They have signs.

• Uncalibrated instruments (balances, etc.)

• Impure reagents

• Leaks

• Temperature effects not accounted for

• Biases in using equipment (even numbers in reading scales, seeing
hoped-for small effects, etc.)

• Pressure differences between barometer and experiment caused by
air conditioning

Systematic error affects the accuracy of an experiment but not the pre-
cision. Repeated trials and statistical analysis are of no use in eliminating
its effects.

Careful experimental design and execution is the sole approach to re-
ducing systematic error. Sometimes systematic errors can be corrected for
in a simple way; for example, the thermal expansion of a metal scale can
easily be accounted for if the temperature is known. Other errors, such as
those caused by impure reagents, are harder to deal with. The most dan-
gerous systematic errors are those that are unrecognized, and therefore can
affect the results in completely unknown ways. The whole field of quan-
titative experimentation is dependent on workers’ ability to recognize and
eliminate systematic errors.

1.3 Random error

Random error arises frommechanical vibrations in the apparatus, electrical
noise, uncertainty in reading of scale pointers, and other “fluctuations”. It
can be characterized, and sometimes reduced, by repeated (at least three)
trials of an experiment. Its treatment is the subject of much of these notes.

Note that random error affects the precision of an experiment, and to a
lesser extent its accuracy. Systematic error affects the accuracy only. Preci-
sion is easy to assess; accuracy is difficult.

notes-1



2. Error distributions and distribution functions 3

2 Error distributions and distribution functions

If you measure some quantity (e.g., the barometric pressure) several times
(say, twenty), you will probably get several different answers. A histogram
of one student’s results is shown in Figure 1:
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Figure 1: One set of barometric pressure measurements.

You can calculate several parameters from your observed collection of
values. Some of the important ones are listed in Table 1, where N is the
number of measurements and the xi are the individual values obtained.

Those are parameters that apply to your particular sample. If you re-
peat the experiment, their new values will probably not be the same, even
if the conditions (temperature in room, atmospheric conditions, etc.) were
the same.

What relation do those parameters have to the actual barometric pres-
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Table 1 Statistical characteristics of a simple data set.
mean

x = 〈x〉 =
1
N

N

∑
i=1

xi (1)

median The median xmed is the “middle” value in a dataset with an odd
number of observations, and the average of the two middle values in
a dataset with an even number of observations. So if the set of N data
points xi is sorted from lowest to highest, then

xmed =
{

x(N+1)/2 (N odd,)
1
2 (xN/2 + x(N/2)+1) (N even.)

(2)

variance

S2 =
1

N − 1

N

∑
i=1

(xi − x)2 (3)

standard deviation

S =
√

S2 =
1√

N − 1

[
N

∑
i=1

(xi − x)2
] 1

2

(4)

average absolute deviation from the mean

ADev =
1
N

N

∑
i=1

|xi − x|. (5)

average absolute deviation from the median

ADevmed =
1
N

N

∑
i=1

|xi − xmed| (6)
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2. Error distributions and distribution functions 5

sure? (We assume that there is an “actual barometric pressure”, though
we have no way to know what it is.) The mean and median each gives
an estimate of the true pressure; other parameters are indicators of the un-
certainty in the true pressure caused by random errors. To understand the
proper use of these estimates, we need some statistical tools.

If each measurement is just like any other so far as you know, then
some unknown mechanism is making changes in your values before you
get them. We assume that the probability of obtaining a certain value xi in
any one trial is given by a probability distribution, P(xi). This distribution
is not known to us, but might be expected to look something like Figure 2.
The data from Figure 1 are shown as open circles, scaled to fit on the plot.

747 748 749 750 751 752

Corrected pressure/torr

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

ba
bi

lit
y

of
ob

se
rv

in
g

Figure 2: Possible parent distribution of pressure readings.

This is a discrete distribution, since each measurement is made only to
the first decimal place. Such a distribution gives the (finite) probability of
obtaining each possible result on any one trial of the experiment.
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If we do the experiment, we must get some answer, so the distribution
must be normalized:

N

∑
i=1

P(xi) = 1. (7)

While the pressure measurements can give only discrete answers (because
of limitations of our eyes), the actual pressure has no such limitation. Pre-
sumably the distribution P(xi) is a “condensed” version of a continuous
probability distribution (or, in strict parlance, probability density function)
P(x). The continuous distribution P(x) has the definition that P(x) dx gives
the probability that a measurement will give a result in the range [x, x +
dx]. So, the probability that a measured value will be between x1 and x2 is

P(x ∈ [x1, x2]) =
∫ x2

x1
P(x) dx. (8)

We do not know P(x). However, we do know that it must be normalized
(unit probability of getting some answer):∫ ∞

−∞
P(x) dx = 1. (9)

Table 2 summarizes important properties of discrete and continuous
probability distributions.

The distribution P(x), or, in the case of measurements which are truly
discrete, P(xi), which controls the probability of getting a particular answer
on any one experimental trial, is called the parent distribution. The distribu-
tion actually obtained by the experimenter is called the sample distribution.
Greek letters are usually used to represent parameters of the parent distri-
bution (mean µ, standard deviation σ, etc.) and Roman letters used for the
sample distribution (x, S, etc.)

The set of values actually obtained in an experiment is simply one of
very many possible sets. That idea underlies all statistical analysis of data.
The “likelihood” of each possible set is controlled by the parent distribu-
tion. The sample distribution will become more and more similar to the
parent distribution as the number of samples become larger, approaching
equality as N → ∞. If we knew the parent distribution P(x), and there
were no systematic errors, we would know the true answer. Instead we
must try to guess the parent distribution from the available samples. Be-
fore I describe how to do that, I want to give some examples of calculations
with probability distributions and discuss several important distributions.

notes-2



2. Error distributions and distribution functions 7

Table 2 Summary of important properties of probability distributions.
• Normalization:

1 =



∫ ∞
−∞ P(x) dx (continuous)

∑N
i=1 P(xi) (discrete)

(10)

• Probability that a single result will lie in a specified interval:

P(x ∈ [x1, x2]) =
∫ x2

x1
P(x) dx (continuous). (11)

• Average value of x:

〈x〉 = x̄ =



∫ ∞
−∞ xP(x) dx (continuous)

∑N
i=1 xiP(xi) (discrete)

(12)

• Average values (expectation values) of functions of x:

〈 f (x)〉 = f (x) =



∫ ∞
−∞ f (x)P(x) dx (continuous)

∑N
i=1 f (xi)P(xi) (discrete)

(13)

• Standard deviation:

σ =
(∫ ∞

−∞
(x− x̄)2P(x) dx

) 1
2

(continuous) (14)

S =

(
N

N − 1

N

∑
i=1

(xi − x̄)2P(xi)

) 1
2

(discrete) (15)
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3 Examples of probability distribution calculations

3.1 A discrete distribution: possible results in throws of 2 dice

All the possible outcomes of a toss of two dice are enumerated in Table
3. Note that the distribution is normalized; the sum of the fractions in the
right column is 1. The average throw, from equation 12, is 2× 1

36 + 3× 1
18 +

4× 1
12 + 5× 1

9 + 6× 5
36 + 7× 1

6 + 8× 5
36 + 9× 1

9 + 10× 1
12 + 11× 1

18 + 12×
1
36 = 7. The average squared throw is 4× 1

36 + 9× 1
18 + 16× 1

12 + 25× 1
9 +

36 × 5
36 + 49 × 1

6 + 64 × 5
36 + 81 × 1

9 + 100 × 1
12 + 121 × 1

18 + 144 × 1
36 =

54.83. Note that the average squared throw is not 49.

Table 3 Possible outcomes in throws of 2 dice.
Result Combinations # Comb. Prob.

2 1+1 1 1/36
3 1+2, 2+1 2 1/18
4 1+3, 2+2, 3+1 3 1/12
5 1+4, 2+3, 3+2, 4+1 4 1/9
6 1+5, 2+4, 3+3, 4+2, 5+1 5 5/36
7 1+6, 2+5, 3+4, 4+3, 5+2, 6+1 6 1/6
8 2+6, 3+5, 4+4, 5+3, 6+2 5 5/36
9 3+6, 4+5, 5+4, 6+3 4 1/9
10 4+6, 5+5, 6+4 3 1/12
11 5+6, 6+5 2 1/18
12 6+6 1 1/36

3.2 A continuous distribution: lifetimes of nuclei

The lifetimes of 241Am nuclei are governed by the distribution

P(t) =
1
τ
e−

t
τ , (16)

where τ has the value 407 yr. We can check that the distribution is normal-
ized:

1
τ

∫ ∞

0
e−

t
τ dt = −

∫ −∞

0
ez dz = 1, (17)

where I made the change of variable z = −t/τ, dz = − 1
τ dt, dt = −τ dz.

Note that since it makes no sense for a nucleus to have a negative lifetime,

notes-2



4. Some important distributions 9

the distribution must have value zero for all t < 0. The normalization
integral therefore goes only from 0 to ∞.

The mean lifetime of a nucleus is

〈t〉 =
1
τ

∫ ∞

0
te−

t
τ dt (18)

=
1
τ

[
e−t/τ

(−1/τ)2
(− t

τ
− 1)

]∞

0
= τ.

The probability that a nucleus will live longer than 3τ is

P(t ≥ 3τ) =
∫ ∞

3τ
P(t) dt = −

∫ −∞

−3
ez dz = e−3 = 0.0498 (19)

after the same change of variable as before.

4 Some important distributions

4.1 Binomial distribution

The binomial distribution is a discrete distribution which may be used to
answer questions such as “if a regular six-sided die is tossed twenty times,
what is the probability that it will land with the 4-spotted side up exactly
seven times?”. In general it describes repeated events which have two pos-
sible outcomes (either a toss gives 4 or it does not), which are often termed
success and failure. In n events, if the probability of success on each event is
p, the probability of having exactly x successes is

PB(x; n, p) =
n!

x!(n− x)!
px(1− p)n−x =

(
n
x

)
px(1− p)n−x, (20)

where the exclamation point indicates factorial. The notation
(n
x

)
for the

binomial coefficient is standard.
The answer to my question about tossing seven 4s out of twenty throws

is therefore

P =
20!

(7!)(13!)

(
1
6

)7 (
1− 1

6

)13

= 0.026. (21)
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4.2 Poisson distribution

The Poisson distribution is a limiting case of the binomial distribution for
small p and large n. It arises most often in counting experiments. If the av-
erage number of events (cosmic rays detected by an apparatus, the number
of cases of rabies observed in a city’s racoon population, etc.) expected in a
given interval is µ, then the probability of observing exactly x events is

PP(x; µ) =
µx

x!
e−µ (22)

When µ � 1, the Poisson distribution looks like a decaying exponen-
tial; when µ  1, it is peaked and looks like the normal distribution to be
described next. More information on the binomial and Poisson distribu-
tions is given in Bevington and Robinson [2].

4.3 The normal distribution

A particularly important continuous distribution is the normal, or Gaus-
sian, distribution, given by

P(x; µ, σ) =
1

σ
√
2π

exp

[
−1
2

(
x− µ

σ

)2
]
, (23)

where x is the independent variable and µ and σ are parameters describing
the distribution. The normal distribution is shown in Figure 3.

The normal distribution is important in physical science largely because
of the central limit theorem, which states that under certain conditions if a
large number of small fluctuations are added together, their sum will be
approximately described by the normal distribution no matter what their
individual parent distributions are. Many experiments, whose sources of
small random errors are many, do appear to have parent distributions well
approximated by the normal distribution.

4.3.1 Basic properties of the normal distribution

If we insert x = µ ± σ into the normal distribution, we find that the height
of the curve at positions ±σ away from the center is e−1/2/(σ

√
2π). The

height at the maximum (x = µ)is 1/(σ
√
2π), so

P(µ ± σ)
P(µ)

= e−
1
2 = 0.6065. (24)

notes-2



4. Some important distributions 11
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Figure 3: The normal distribution.

A more useful quantity is the fraction of measurements expected to be
within one σ of µ, which we get from Eq. (8) as

P(x ∈ [µ − σ, µ + σ]) =
∫ µ+σ

µ−σ
P(x) dx (25)

=
1

σ
√
2π

∫ µ+σ

µ−σ
exp

[
−1
2

(
x− µ

σ

)2
]

dx

=
1√
2π

∫ 1

−1
e−

1
2 u

2
du,

where the change of variable u = (x − µ)/σ, du = dx/σ has been made.
This integral cannot be done analytically for limits other than [0,±∞] and
[−∞,∞]. Its value can be looked up in tables or calculated numerically
(more on this in a moment), and is 0.68269. Since the total area is 1, about
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68% of the area is contained between µ−σ and µ + σ. So 68% of the samples
taken in a normally distributed experiment should lie in that range about
µ.

We now have a first, simple example of a confidence interval: if samples
are taken from a probability distribution which is normal with a mean µ
and standard deviation σ, we expect that measured values will fall within
σ of µ about 68% of the time. What if we want to give an interval that will
contain more of the measurements? We need a way to evaluate integrals
like Eq. (25) for more general values of the limits, to give larger values of
the integrated probability. That is, we want to do the integral for limits
µ ± zσ, and we will adjust z to give integral values of 0.9 if we want 90%
probability, 0.95 if we want 95%, and so on.

4.3.2 Definite integrals of the normal distribution

There are two popular ways to obtain values for definite integrals of the
normal distribution:

Use a table Tables of integrals of the normal distribution for different lim-
its and for µ = 0, σ = 1 are given in many places, including Beving-
ton and Robinson, p. 253, Young, p. 161, and the Chemical Rubber
Company’s Standard Mathematical Tables [5]. Sometimes the cumula-
tive normal distribution F(t) is tabulated, corresponding to

F(t) =
1√
2π

∫ t

−∞
e−

1
2 u

2
du, (26)

sometimes the symmetric integral values

1√
2π

∫ t

−t
e−

1
2 u

2
du, (27)

and sometimes the integral from 0 to t,

1√
2π

∫ t

0
e−

1
2 u

2
du. (28)

To use these tables with your own values of µ, σ, and z, you change
variables: u = (x− µ)/σ). Don’t forget to adjust the limits of integra-
tion too: if x ran from µ − zσ to µ + zσ, then u will run from −z to
z. Then, depending on which integration limits your table gives, you
might need to do some simple tricks with the symmetry to get the

notes-2



5. Extracting information from limited data sets 13

limits you wanted. For example, if your table gives the integral from
0 to t and youwanted the integral from−t to t, youmust multiply the
value given in the table by 2. If your table gives the cumulative nor-
mal distribution F(t) described in Eq. (26) and you want the integral
from −t to t, you must subtract off the part from −∞ to −t; since the
integral from −∞ to ∞ is 1, you can take F(t)− (1− F(t)) = 2F(t)− 1
to get your result.

Use a computer program Many computer programs can calculate values
of the normal distribution and its integrals. For example, Mathcad
has a function pnorm(x, µ, σ) which returns the cumulative normal
distribution

pnorm(x, µ, σ) =
1

σ
√
2π

∫ x

−∞
e−

1
2 (

t−µ
σ )2 dt. (29)

Worksheet 1 shows a use ofMathcad’s pnorm(x, µ, σ) function to eval-
uate an integral of the normal distribution.

4.3.3 Simple confidence intervals

Now you can do confidence intervals of arbitrary probability for quanti-
ties described by the normal distribution. If you want to find the interval
which will include 99% of the measurements from a normally distributed
sampling process with mean µ and standard deviation σ, you keep evalu-
ating integrals of the normal distribution with ever-widening limits until
the value of the integral equals 0.99. Then the limits you used become the
upper and lower confidence limits.

TheMathcad inverse cumulative probability distribution functions, such
as qnorm(p, µ, σ), can help you do this calculation. Worksheet 2 shows an
example.

5 Extracting information from limited data sets

Finally, we’re back to the point we left on page 6, namely trying to esti-
mate the characteristics of the parent distribution from the observed data.
Our sample distribution is simply one of many possible ones, though we
happened not to find the others. But it’s all we have.

At this point we have several options. Sometimes the best is to use
computer-based techniques known collectively as Monte Carlo methods,
which I discuss in Section 7.2. Classical statistical analysis is based on a
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Worksheet 1 Integrals of the normal distribution.
Evaluate integral of normal distribution with µ=6, σ=0.54 from 4.9 to 6.7

µ 6 σ 0.54 lowlim 4.9 highlim 6.7

int pnorm( ),,highlim µ σ pnorm( ),,lowlim µ σ =int 0.882

i ..,3 3.1 9 j ..,lowlim lowlim .1 highlim

3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

dnorm ,,i µ σ

dnorm ,,j µ σ

,i j

different procedure: we assume a particular form of parent distribution,
and then use the “maximum likelihood principle” to find the parameters of
the parent distribution which give the largest probability that the observed
data set would occur.

Sometimes the form of parent distribution one should assume is well
known from the type of experiment. For example, in experiments which
involve counting the number of events (photons arriving at a detector, de-
cays observed from a radioactive sample, etc.) occurring in different time
intervals, the Poisson distribution is usually appropriate. More often, the
sources of random error in the experiment are not well known, an implicit
appeal to the central limit theorem is made, and the normal distribution is
assumed to apply.

If we assume that the parent distribution is normal, then it is easy to
show (Bevington and Robinson pp. 53–55) that the best estimate of the
mean µ of the parent distribution is just x, the mean of the sample distri-

notes-3



5. Extracting information from limited data sets 15

Worksheet 2 Confidence limits from the normal distribution.
Find limits that will give a 95% confidence interval for a normally distributed 
quantity with µ=6, σ=0.54.  The inverse cumulative distribution function 
qnorm(p,µ,σ)  gives x such that the integral from -infinity to x is p.   

µ 6 σ 0.54 p 0.95

x 1 qnorm ,,
1 p

2
µ σ =x 1 4.942

x 2 µ µ x 1 =x 2 7.058 symmetric confidence interval

Check that calculation is right by doing integral.

int pnorm ,,x 2 µ σ pnorm ,,x 1 µ σ =int 0.95

bution. Now we want to ask the question: How certain are we of the true
value?

If the sample distribution looks like Figure 4, then it seems likewe know
the value of the mean to considerably better precision than ±S at 68% con-
fidence. The sample standard deviation S gives the spread of individual
measurements, so that approximately 68% of them will be within S of the
mean. That is true no matter how many measurements we take. How-
ever, the value of the mean becomes better and better determined as more
measurements are made.

5.1 Uncertainty in the mean value

The standard deviation S (called the sample standard deviation in some texts)
gives an estimate of σ for the assumed parent distribution, and therefore
describes the uncertainty in any individual measurement. The mean x,
which we want to use as an estimate of the parent mean µ, is calculated
from the N individual xi. We will show in the next section how to estimate
the uncertainty in a quantity calculated from several directly measured
quantities. The results for this case, the estimated variance and standard

GCM January 2, 2001



16

747 748 749 750 751 752

Corrected pressure/Torr

-0.02

0.00

0.02

0.04

0.06

0.08

P
ro

ba
bi

lit
y

of
ob

se
rv

in
g

Figure 4: Possible sample distribution.

deviation of the mean, are

S2m =
S2

N
, or (30)

Sm =
S√
N
. (31)

Think of a probability distribution which describes the likely deviation
of the measured x from the true mean µ. Unless we have a very large num-
ber of measurements N, that distribution is not Gaussian but is given by
a different distribution called the Student-t distribution. If N is small, this
distribution is rather wide; our sample might in fact have a mean x rather
far from the true mean µ. As N becomes large, the Student-t distribution
looks more andmore like the normal distribution. Worksheet 3 shows plots
of the Student-t distribution for several different N.
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Worksheet 3 The Student-t distribution.
Show Student-t distribution for different degrees of freedom
Normal distribution is shown as a dashed line for comparison

i ..,5 4.95 5

6 4 2 0 2 4 6
0

0.1

0.2

0.3

0.4

dt( ),i 3

dt( ),i 6

dt( ),i 1

dnorm( ),,i 0 1

i

The Student-t distribution is given by

P(τ) = knorm

(
1+

τ2

N − 1

)− N
2

, (32)

where τ = x−µ
Sm

, and knorm is a normalization constant. (The expression
for knorm is given in equation (31) on p. 47 of SGN.) Confidence limits are
found with this distribution the same way they are found for the normal
distribution. With a table of integrals of the distribution, integration limits
are chosen which make the integral equal to the desired fraction (0.9 for
90%, and so on.) Table 4 gives values of t which give various confidence
intervals:

0.95 =
∫ x+tSm

x−tSm
P(τ) dτ (33)

for a 95% confidence limit, and so on. The table was generated with a series
of Mathcad calculations like that shown in Worksheet 4.
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Worksheet 4 Confidence intervals from the Student-t distribution.
Find value of t that gives a 95% symmetric confidence interval 
from the Student-t distribution with 5 degrees of freedom.

t qt ,
1 0.95

2
5 =t 2.571

Keep in mind what this 95% confidence limit actually means: if you
were to repeat the experiment many times, and each time claim that the
true mean µ was within the limits x ± tSm you obtained on that particular
repetition, you expect to be right 95% of the time.

5.2 Reporting measurements of a single quantity

5.2.1 General guidelines

When you report a value x, you must also report some estimate of its un-
certainty u. No matter how you arrived at x and u (some suggestions are
given in the following sections), you should follow some general rules.

1. The value and the uncertainty should be reported to the same num-
ber of decimal places: (75.63 ± 0.06) kg, not (75.6347 ± 0.06) kg or
(75.63± 0.0629) kg.

I suggest that you report the uncertainty only to one significant fig-
ure if that figure is 3 or larger, and to two if the uncertain digits
are 25 or less. The result is given to the same number of decimal
places as its uncertainty. So if the calculated result had been 752.2083
Torr ± 0.0143 Torr, you would report (752.208 ± 0.014) Torr. Other
conventions are used in some fields.

2. The value and the uncertainty should have the same power of 10 if
you are using scientific notation. One good format is (4.73± 0.08) ×
10−5 J. You confuse your reader with (4.732× 10−5 ± 8.5× 10−7) J.

3. The units should be clear. If you are using SI units (if you aren’t, why
aren’t you?), use the accepted SI symbols; in particular, the symbol
for second is s, not sec, and that for gram is g, not gm. Symbols do
not take an ’s’ to become plural: 12 kg, not 12 kgs. They do not need
periods: 1.2 g, not 1.2 g., unless the symbol ends a sentence. They are
always set in upright type, not italicized.
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5. Extracting information from limited data sets 19

In the examples above, I have used parentheses to make it clear that
the unit applies both to x and to u: (752.208 ± 0.014) Torr. It is also
acceptable to place the unit explicitly on both value and uncertainty:
752.208 Torr ± 0.014 Torr. The form 752.208 ± 0.014 Torr is widely
used but is discouraged by NIST, the U.S. agency with responsibility
for physical measurement standards.

5.2.2 Simplest case: standard deviation only

If you measure some quantity several (say N) times, and the parent dis-
tribution of the measurements is Gaussian as far as you know, the best
estimate of the true value of that quantity is probably the mean of the N
measured values. The simplest measure of the uncertainty in the true value
obtained in that way is the estimated standard deviation of the mean Sm.
So at the very least, quantities obtained in this way should be reported as

X = x± Sm (1 e.s.d. error limit). (34)

For example, if you made 6 measurements of the barometric pressure
and obtained the values 758.23, 757.98, 757.92, 758.09, 758.17, and 758.14
Torr, the calculated mean is 758.088 Torr and the estimated standard devi-
ation of themean is 0.0488Torr. Youwould report the value (758.09± 0.05)
Torr, and specify that the uncertainty was one estimated standard devia-
tion of the mean.

5.2.3 Confidence limits from the Student-t distribution

It is much better to report confidence limits, which carry information about
the number of measurements. In this case, you report

X = x± tSm (95% confidence, ν = 7) (35)

if you have 8 measurements and choose a 95% confidence limit. The value
of t is found in Table 4 below (or in Table 3 on p. 49 of SGN.) Choose your
desired confidence interval from the row labeled P, and choose ν = N − 1.
For N = 6 at 95% confidence, t = 2.57. For the example above, the reported
result would be

(758.09± 0.12) Torr (95% confidence, ν = 5).
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Table 4 Critical values of t. These values make the integral of the Student-t
distribution from −t to t or from −∞ to t equal to the fractions given at the
top in the rows labeled P and P′, respectively. The values were generated
with Mathcad.

P 0.80 0.90 0.95 0.99
ν P′ 0.90 0.95 0.975 0.995
2 1.89 2.92 4.30 9.92
3 1.64 2.35 3.18 5.84
4 1.53 2.13 2.78 4.60
5 1.48 2.02 2.57 4.03
6 1.44 1.94 2.45 3.71
7 1.41 1.89 2.36 3.50
8 1.40 1.86 2.31 3.36
9 1.38 1.83 2.26 3.25
10 1.37 1.81 2.23 3.17
11 1.36 1.80 2.20 3.11
15 1.34 1.75 2.13 2.95
20 1.33 1.72 2.09 2.85
30 1.31 1.70 2.04 2.75
∞ 1.28 1.64 1.96 2.58

5.2.4 Suspected nonnormal parent distributions

If you suspect that the parent distribution of your experiment is not Gaus-
sian, for instance because you have several points that seem unreasonably
far from the others, it is safer to use the median as the estimator of the cen-
tral value. In that case, the absolute average deviation from the median is
the preferred estimator of the uncertainty. So for the barometer data listed
above, you would calculate

xmed =
1
2
(758.14+ 758.09) = 758.115, (36)

and

ADevmed =
1
N

N

∑
i=1

|xi − xmed| = 0.092, (37)

and would therefore report the value as (758.12 ± 0.09) Torr, stating that
the reported values are the median of 6 measurements and average abso-
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6. Rejection of data 21

lute deviation from the median. There is no simple way to estimate con-
fidence limits in this case; you are using the median instead of the mean
because you are admittedly ignorant of the parent distribution. You there-
fore have no way to calculate confidence intervals, and are simply giving
your reader the best information you can.

6 Rejection of data

What do you do if one measurement in a set of supposedly identical ones
seems quite different from the others, so that you suspect that you made a
mistake somehow?

First, you look to see if there is evidence of a problem — an error in
arithmetic done in the notebook, for example. Barring that, you have two
choices to make.

1. In the absence of any real evidence to indicate a problem with the
“outlier”, you might decide that it simply should be kept. You may
want to report the median instead of, or in addition to, the mean as
your measurement of central value. The median is much less sucep-
tible to the influence of outlier points.

2. You may apply a statistical test, discarding the outlier value if there is
less than some critical probability that it came from the same parent
distribution as the others.

The second option – applying a statistical test – is much more palatable
if you actually know something about the parent distribution for your ex-
periment. If you have only a few experimental points, and you don’t have
some good theoretical reason to postulate a particular form of parent dis-
tribution, it is almost certainly safer to retain the outlier point and report
both the mean and median.

I recommend two statistical tests.

6.1 The Q test

This test is extremely easy to perform, and works well for samples with
small numbers of points. It assumes that the experiment is governed by
the normal distribution, but it does not assume that a good estimate of
σ is available. It is not applicable to experiments with nonnormal error
distributions, such as counting experiments with small numbers of counts
per sample.
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To perform a Q test, calculate the value of Q for your sample:

Q =
|xsuspect − xclosest|
|xsuspect − xfarthest|

(38)

(The suspect value will, of course, be either the largest or smallest of the
set.) If the value of Q is larger than the critical value given in Table 5 (from
SGN) for your number N of measurements, you may discard the suspect
value. You should then recalculate x, Sm, and the confidence interval based
on the new (smaller) number of observations.

Table 5 Critical values of Q at 90% confidence (from SGN).
N 3 4 5 6 7 8 9 10
Qc 0.94 0.76 0.64 0.56 0.51 0.47 0.44 0.41

Note that the Q-test can be applied only once to a data set. If you have
more than one screwball value, you must either live with them or redo the
experiment.

In routine practice, the Q test at 90% confidence is acceptable. For par-
ticularly important observations, it is important to decide in advance what
criterion will be used for data rejection. It is very easy to insert bias into the
data analysis if the choice of rejection criterion is not made in advance.

Dean and Dixon [6] and Dixon and Massey [7] give background infor-
mation on the Q test.

6.2 Chauvenet’s criterion

A second statistical test is Chauvenet’s criterion. It has the advantage that
it can be used for any form of parent distribution, but the disadvantage
that the parent distribution and its parameters must be known. (Note that
the Q-test did not require a good value of σ.) The idea is simple: a data
point should be rejected if the parent distribution predicts that fewer than
half an event should appear which deviates as much from the mean as the
questionable experimental point. (Fractions smaller than 1/2 may also be
used, but should be agreed upon beforehand as discussed above.)

For example, suppose that you have performed a particular measure-
ment in an automated way, and made 120 measurements on a sample. The
histogram of your measurements indicates that the experiment does have a
normal parent distribution. The mean of the measured values is 12.637 and
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the estimated standard deviation S, which should be a good estimate of σ
since you have 120 samples, is 0.058. You have one point at 12.872 which
you suspect to be erroneous. Should you reject that point?

You must calculate the number of measurements which are expected to
lie at least as far afield as 12.872 on the basis of your knowledge of the par-
ent distribution. Worksheet 5 shows a Mathcad worksheet which performs
the calculation. It evaluates the probability that an individual measurement
will lie as far away from the mean as 12.872, then multiplies by the number
of measurements. Since the result is < 1

2 , the suspect point is rejected. Look
carefully at the calculation of the probability to make sure you understand
its use of the cumulative distribution function.

Worksheet 5Mathcad worksheet illustrating Chauvenet’s criterion.
Demonstration of Chauvenet's Criterion

An experiment with a normal parent distribution with µ=12.637 and σ=0.058 has
produced one sample (out of 120) with value 12.872.  Shoud that point be rejected?

µ 12.637 σ 0.058 N 120 x 12.872

N expected
..N 2 pnorm( ),,µ x µ µ σ Evaluate probability in both

tails of the distribution

=N expected 0.0061 Since this is less than 0.5,
we reject the point.

The criterion is used in exactly the same way with other distribution
functions. You must know enough about your parent distribution to calcu-
late (or look up) the relevant integral.

6.3 Choice of rejection criterion

For experiments where you have only a few measurements and expect the
parent distribution to be approximately normal, the Q test is better. If you
have at least 10 points, or you already know something about the parent
distribution, Chauvenet’s criterion is a good choice. If you don’t know the
form of the parent distribution and don’t have very many samples, you
have no statistical basis for rejecting the point and so must retain it.
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7 Propagation of error

7.1 Formula approach

A quantity F is calculated from several measured quantities x, y, z:

F = F(x, y, z) (39)

The total differential of F is

dF =
∂F
∂x

dx +
∂F
∂y

dy +
∂F
∂z

dz (40)

(The partial derivative of F with respect to x, ∂F
∂x , is calculated by taking

the derivative of F with respect to x as though all the other variables were
constants. See any introductory calculus text if you are not familiar with
partial differentiation.) The total differential gives the infinitesimal change
in F caused by infinitesimal changes in x, y, or z.

If we approximate the change in F brought about by small but finite
changes in x, y, and z by a similar formula, we obtain

∆F =
∂F
∂x

∆x +
∂F
∂y

∆y +
∂F
∂z

∆z (41)

This is equivalent to saying that the surface F(x, y, z) is a plane over the
region in space [x± ∆x, y± ∆y, z± ∆z]; curvature over that small region is
not important.

If the errors in x, y, and z are small and known (in both sign and mag-
nitude), Eq. (41) can be used to propagate the errors and find the resulting
error in F. On the other hand, in that case, it is both easier and more accu-
rate to simply recalculate F using corrected values of x, y, and z. (Since you
know the errors, you can do that.)

To handle random errors, we must perform averages. The average ran-
dom error in F is zero, so we will calculate 〈(∆F)2〉.

Square both sides of equation 41:

(∆F)2 =
(

∂F
∂x

)2

(∆x)2 +
(

∂F
∂y

)2

(∆y)2 +
(

∂F
∂z

)2

(∆z)2

+2
(

∂F
∂x

)(
∂F
∂y

)
∆x∆y + 2

(
∂F
∂x

)(
∂F
∂z

)
∆x∆z

+2
(

∂F
∂y

)(
∂F
∂z

)
∆y∆z (42)
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Now we need to average (∆F)2 over many determinations of F, each
with different values of the errors in x, y, and z. If the the various errors in
x, y, and z are

1. small,

2. symmetrically distributed about 0, and

3. uncorrelated,

the cross terms such as ∆y∆z are just as likely to be positive as negative
in any one determination. Therefore, when we average the many determi-
nations together, the cross terms will tend to add up to zero. The squared
terms like (∆x)2, though, will not. Therefore, when Eq. (42) is averaged
over many data sets, we obtain the propagation of error equation:

(∆F)2 =
(

∂F
∂x

)2

(∆x)2 +
(

∂F
∂y

)2

(∆y)2 +
(

∂F
∂z

)2

(∆z)2. (43)

In Eq. (43), the partial derivatives are evaluated at the mean values of x, y,
and z. That equation is written for a result calculated from three indepen-
dently measured quantities, but it should be obvious how it changes for
other numbers of variables.

Note that you may use any form of error measure you like for the ∆x;
standard deviation, 95% confidence interval, etc., so long as you use the
same form for each of the independent variables. The result ∆F will then
be of that form.

7.1.1 Example

Say we need to know the number of moles of a gas from measurements of
its pressure, volume, and temperature:

n =
pV
RT

. (44)

We assume that the gas is ideal (a possible source of systematic error!)
Perhaps our measurements of p, V, and T are

p = 0.268± 0.012 atm (e.s.d)
V = 1.26± 0.05 L
T = 294.2± 0.3 K.

GCM January 2, 2001



26

We calculate

n =
(0.268 atm)(1.26 L)

(0.082058 L atm
mol K )(294.2 K)

= 0.013988 mol. (45)

For the propagation of errors formula, we must calculate partial deriva-
tives:

∂n
∂p

=
V
RT

(46)

∂n
∂V

=
p
RT

(47)

∂n
∂T

= − pV
RT2 . (48)

So,

∆n =

[(
V
RT

)2

(∆p)2 +
( p
RT

)2
(∆V)2 +

(
pV
RT2

)2

(∆T)2
] 1

2

=


( 1.26 L(

0.082058 L atm
mol K

)
(294.2 K)

)2

(0.012 atm)2

+

(
0.268 atm(

0.082058 L atm
mol K

)
(294.2 K)

)2

(0.05 L)2

+

(
(0.268 atm)(1.26 L)(

0.082058 L atm
mol K

)
(294.2 K)2

)2

(0.3 K)2




1
2

= 0.000837 mol.

(49)

So we would report

n = (1.40± 0.08) × 10−2 mol (e.s.d).

Always check the units to avoid mistakes. The uncertainty must have
the same units as its quantity.

Note that I used a value of R, the gas constant, accurate to several more
figures than my measurements. (Actually, six digits was overkill; four or
five would have sufficed.) Accurate modern values for fundamental con-
stants such as R can be found at the NIST Fundamental Physical Constants
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web site at http://physics.nist.gov/constants, and in Journal of Physi-
cal and Chemical Reference Data, volume 28, number 6 (1999). A new set of
values, based on measurements done through the end of 1998, appeared
in July 1999. Good tabulations (including the one in every August issue
of Physics Today) give the uncertainties in the values, which are needed for
precise work.

The propagation of error equation, Eq. (43), is useful only if the errors
in the independent variables are uncorrelated; that is, if a positive error in
x is just as likely to be associated with a negative error in y as a positive
one. That will not be true if, for example, one is the slope and one is the
intercept of a line fitted through a single data set. In that case, you may
include the “covariance” terms, as discussed below in Section 7.1.3, or use
the Monte Carlo methods we will discuss shortly.

7.1.2 Numerical differentiation

If the function F(x, y, z) is complicated, but you have a programmable cal-
culator or computer in front of you, you can often save time by evaluat-
ing the partial derivatives numerically rather than analytically. In general,
evaluation of numerical derivatives is a dicey business, but error calcula-
tions don’t need to be very precise so you can get away with pretty simple
evaluations.

First: what you do not do is to calculate the upper and lower error limits
on F as follows:

∆+F = F(x + ∆x, y + ∆y, z + ∆z)
∆−F = F(x− ∆x, y− ∆y, z− ∆z)

and report that the correct value of F lies between ∆+F and ∆−F. That
procedure will give all sorts of ridiculous error estimates, depending on the
particular functional form of F(x, y, z). (Actually, it isn’t so bad if F depends
only on one variable, but I still don’t recommend it. It’s completely wrong
if F depends on two or more variables.)

The correct technique is to evaluate the partial derivatives numerically,
and use the regular propagation of error formula. Program your calculator
to evaluate F given input variables x, y, z. Then evaluate the derivatives:

∂F
∂x

≈ F(x + ∆x, y, z) − F(x− ∆x, y, z)
2∆x

(50)

(with similar formulas for y and z.) For each derivative you evaluate F
twice, so if you have three independent variables you will evaluate it six
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times. (It’s therefore almost imperative that you have an easy way to eval-
uate F(x, y, z); thus the suggestion of a programmable calculator.) Then
insert the numerical values of the partial derivatives you found into the
propagation of errors formula, and calculate the uncertainty in F the nor-
mal way.

This technique saves you the trouble of doing all those analytic deriva-
tives. On the other hand, if you found F several times with different val-
ues of the independent variables, you must recalculate the partials for each
different value. In that case, it’s often more efficient to just work out the
analytic formula.

7.1.3 Full covariant propagation

If the independent variables you are using did not result directly from dif-
ferent independent measurements, then the assumption of equation 43 that
the errors are uncorrelated may be violated. For instance, if the “indepen-
dent” variables are parameters which resulted from a fit of a model func-
tion to some (x, y) data, the errors in the values will be correlated. (You
might calculate some result from the slope and intercept of a least-squares
line, for example.) In that case the cross terms will not cancel. Bevington
and Robinson show on pp. 42–43 that the formula for propagation of errors
is then

σ2
F =

(
∂F
∂x

)2

σ2
x +

(
∂F
∂y

)2

σ2
y + · · ·

+2
(

∂F
∂x

)(
∂F
∂y

)
σ2
xy + · · · , (51)

where the errors in x and y are expressed as variances σ2 and their correla-
tion is expressed by the covariance

σ2
xy = lim

N→∞

[
1
N

N

∑
i=1

[(xi − x)(yi − y)]

]
(52)

Very often, the error in a calculated result will be far too large if the
covariances are not included. For example, one student’s data from Ex-
periment 8, Heat of Vaporization of Water, gives a result for the heat of
vaporization of 35.3 ± 0.4 kJ/mol at 350 K if the covariances are properly
included, while the result is 35± 18 kJ/mol if they are left out of the calcu-
lation.
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A good least-squares fitting routinewill provide the covariance between
x and y as one of its outputs. TheMathcad templatewe provide, genlinls.mcd,
reports the covariances. In fact, the covariances are a natural result of a lin-
ear least-squares fitting procedure, and can therefore be provided with no
additional computational effort. Far too many fitting programs which oth-
erwise are perfectly fine for scientific use do not provide covariances. If you
need to calculate a result involvingmore than one parameter obtained from
the same fit, and you do not have the covariances available, you should use
Monte Carlo estimation to do the propagation of error.

7.2 Monte Carlo approach

A second, and in fact superior, way to evaluate errors in a calculated quan-
tity is to use aMonte Carlo simulation of your experiment and analysis. The
idea is simple. Use a computer to generate many (perhaps 100–1000) syn-
thetic data sets, just as we averaged over many hypothetical data sets in the
section above. The data sets should have values of the independent vari-
ables drawn as closely as possible from the same parent distribution that
applied in your experiment. Then, for each synthetic data set, calculate a
value of F the same way you did for your real data set. Look at the list of
resulting values of F. Find two values in that list which enclose 90%, 95%,
or whatever of all the values. Those two values give your confidence limits.

The Monte Carlo method has several advantages over classical propa-
gation of error.

• Often the errors in F are not normally distributed, even though the
raw data x, y, z are normally distributed. The Monte Carlo method
gives the correct distribution for F. That means it works correctly
even when the assumption that the errors are small is violated.

• Even if the errors in the independent variables are not symmetrically
distributed about 0, this method works correctly as long as the simu-
lations are done with the correct parent distribution.

• Monte Carlo analysis can be done evenwhen the evaluation of F from
the data involves very complicated calculations such as nonlinear fits
and Fourier transforms, so long as the calculations are automated.

The disadvantage is that onemust both (1) have a computer with a good
random number generator available, and (2) be pretty handy with it. It
is possible to do Monte Carlo analysis “by hand”, but I’ve never known
anyone to actually do it.
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7.2.1 Generating synthetic data sets

The idea is to use the computer to simulate many experiments. Perhaps
you measured the pressure, temperature, and volume of a gas sample in
order to calculate the number of moles. You perform each of the measure-
ments several times, so that you have some idea of the parent distribution
for each quantity. If you have made many measurements with your appa-
ratus, and know that the results are normally distributed and their stan-
dard deviations, you can use the normal distribution for generating your
synthetic data sets. If you are new to the apparatus, and have only a few
measurements of each quantity, then you can still use the normal distribu-
tion but you must use your estimated standard deviations of the mean Sm.
(Occasionally, other parent distributions are needed because of the nature
of the experiments.) From your measurements, you calculate the average
values of p, V, and T, their estimated standard deviations, and the e.s.d. of
the mean values, just as you have done in the past.

Then you need to use the computer to generate many (p,V, T) triples to
subject to analysis. Each generated value should be drawn randomly from
the parent distribution that controls your experimental results. Usually you
use a normal distribution with the appropriate mean (the mean value x̄
from your experiment) and standard deviation σm (the known standard
deviation of the mean for your experiment).

The generation of “random” numbers from specified distributions be-
longs to an interesting branch of computer science called “seminumerical
algorithms.” I will not discuss the rather deep mathematics behind con-
struction of good random number generators, but will assume that you
have one available. Mathcad 6.0 has a built-in function rnorm(m, µ, σ) that
generates m random numbers drawn from the normal distribution with
mean µ and standard deviation σ.

Many other programs provide only a function that provides uniformly
distributed random numbers on the domain [0, 1]. In that case, is not too
difficult to obtain numbers drawn from other distributions. Numerical Recipes
and Bevington and Robinson discuss the techniques. In particular, it is easy
to obtain normally distributed numbers from uniformly distributed ones
by using the Box-Muller method, discussed in both the above references.

If you have random numbers ri from a normal distribution with mean
zero and standard deviation one, it is easy to get numbers si from a distri-
bution with mean µ and standard deviation σ; just evaluate si = σri + µ.

Now we have enough information to generate synthetic data sets with
appropriately distributed errors. For each independent variable, which
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in your experiment had mean p and estimated standard deviation of the
mean Smp, generate lots of random numbers ri from the normal distribu-
tion (mean p, s.d. Smp). Do this for each of your independent variables, and
you now have many computer-generated data sets.

If the relevant uncertainties were given to you by someone else as frac-
tional uncertainties (“the pressure measurement is uncertain by 0.4%”),
then calculate your synthetic data sets as

pi = p(1+ ri(0.004)), (53)

where the ri are random numbers from the normal distribution with mean
0 and standard deviation 1.

7.2.2 Analyzing synthetic data

This is easy: you just do exactly the same things to each synthetic data set
that you did to your real data set. Since you have hundreds or thousands
of synthetic data sets, clearly the analysis procedure should be automated.
In the end you should have a long list of values of F.

7.2.3 Analyzing resulting collection of Fs

There are at least two ways of using the list of F values you obtain to get
confidence limits. I recommend you do both. One is good at giving you a
feeling for the importance of errors in your experiment and the probability
distribution of the result, and the other is more convenient for getting out
numerical error limits.

Histogram method You now have a collection of calculated Fs. You can
make a histogram of them, by making a plot of the number of values which
fall within various intervals. (Many programs can do this for you; it’s usu-
ally called a “histogram” or a “frequency plot.”) Often a choice of interval
width which gives a total of 15-20 bins works well. That histogram gives
you a visual description of the probability distribution of F. If the his-
togram looks like a normal distribution, you can crudely estimate σF just
by picking values off the x axis where the histogram has about 60% of its
maximum height. More accurately, you can directly evaluate the standard
distribution of your collection of Fs in the same way you do for regular
experimental data. The real reason for making the histogram, though, is to
see whether F really is distributed normally; often it isn’t.
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Sorting method This method is quick and easy, and gives good confi-
dence limits, but doesn’t give as good a feel for the F distribution as the
histogram method. Get the computer to sort the collection of Fs from low-
est to highest. Then just read confidence limits from that list. If you want
95% confidence limits, for example, and you have 1000 simulated points,
the 25th value from each end of the list (values 25 and 975) give the lower
and upper confidence limits. You can also do this graphically; plot the F
values on the y axis vs. their positions in the sorted list, and find the po-
sitions on the x axis which correspond to the desired confidence interval.
The corresponding y values give the upper and lower limits.

7.2.4 Example

I will treat the same example I used in the analytic case, the calculation of
number of moles in a gas sample from its pressure, volume, and tempera-
ture. Look back at page 25; there we had the experimental results

p = 0.268± 0.012 atm(e.s.d)
V = 1.26± 0.05 L
T = 294.2± 0.3 K.

Worksheet 6 shows a Monte Carlo error propagation on these data with
Mathcad.

Most data analysis and plotting programs will be able to do simulations
in a style very similar to that I used in the example. Modern programmable
calculators can also do a nice job; you need to be able to accumulate the
simulated results in an array, and the calculator may or may not be able to
perform sorts and histograms, but you can usually evaluate the standard
deviation of the array of F values to get an error estimate.

In a spreadsheet, it is easiest to make each synthetic experiment a single
row; you will then have as many rows as you have simulated experiments.
Most spreadsheets offer a uniform random number generator; only a few
have a built-in normal distribution generator, so you must use the Box-
Muller method mentioned above. Nonetheless, Monte Carlo simulations
in spreadsheets are fairly easy.

I encourage you to use Monte Carlo error analysis on at least one of
your laboratory experiments. It’s a good skill to have.
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Worksheet 6Monte Carlo calculation in Mathcad.
Monte Carlo Error Analysis

Define index and constants npts 1000 i ..0 npts 1 R 0.0821

Establish means and std. devs from expt pbar 0.268 σpbar 0.012

Vbar 1.26 σVbar 0.05

Tbar 292.4 σTbar 0.3

Set up vectors of synthetic data p rnorm( ),,npts pbar σpbar

V rnorm( ),,npts Vbar σVbar

T rnorm( ),,npts Tbar σTbar

the number of moles is ni

.pi Vi

.Ti R

0 500 1000
0.01

0.01

0.02

ni

i

calculate the mean and standard 
deviation of the number of moles

nbar mean( )n σnbar stdev( )n

Make a histogram

nbins 20 binwidth
max( )n min( )n

nbins

index for number of bins define bins count occurences in n
between c(j) and c(j+1)

make x-index at
center of bin

k ..0 nbins 1j ..0 nbins cj min( )n .j binwidth b hist( ),c n dk ck
binwidth

2
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0

100

200

number of moles

nu
m

be
r o

f o
cc

ur
en

ce
s

bk

dk

GCM January 2, 2001



34

Worksheet 6 (continued)
Sorting method

ns sort( )n conf .95

upindex ceil .npts 1
1 conf

2
lowindex floor .npts

1 conf

2

=lowindex 25 lowlim nslowindex =lowlim 0.012

=upindex 975 uplim nsupindex =uplim 0.016

0 200 400 600 800 1000
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

lowlim

uplim

nsi

lowindex upindex

i
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7.3 Reporting computed quantities

The mean, standard deviation of the mean, and confidence limits are the
standard language for reporting of calculated quantities. If you have done
analytic or numerical propagation of error where you used the standard
deviations of x, y, etc. as the uncertainties, then you must report the uncer-
tainty in the calculated result as the estimated standard deviation. (There is
no simple way to get confidence limits then, since it’s not clear what num-
ber of degrees of freedom, ν, to use.) If you used confidence limits as the
uncertainty inputs to the propagation of error, report the resulting uncer-
tainty in F as its confidence limit.

If you used Monte Carlo estimation, then look at the histogram; if the
distribution of F is approximately Gaussian, you can report its standard
deviation or confidence limits from the sorting method, as you choose. If
the distribution of F does not look Gaussian, then at least you should use
the sorting method to provide confidence limits. You might also want to
report something about the shape of the F distribution (you could even
include a plot.). In any case, you should report that your error estimates
were obtained by Monte Carlo simulation of your experiment.

8 Significance tests for differences

Often it is useful to know whether two independent results are “signifi-
cantly different”. In some cases one result is known to be of high accuracy,
and can be regarded as correct. Then the second result is generally com-
pared to determine whether some more convenient measurement method
is free of systematic error. In that case the “significance test for the dif-
ference” is just what you expect: you calculate the confidence interval at
the desired confidence level (95% or whatever) x ± ∆ on the unsure result,
and if it contains the accurate value then no significant difference has been
shown to exist.

In the second case, two results are being compared which may both be
“unsure”. Then a value D, the difference between the two, is calculated,
with its own confidence interval ∆D. If the confidence interval includes
the value 0, then the observed difference is not significant.
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To find ∆D, use propagation of error:

D = x1 − x2 (54)

S2D =
(

∂D
∂x1

)2

S2x1 +
(

∂D
∂x2

)2

S2x2 (55)

= S2m1 + S2m2 (56)

Now choose a confidence level P; 95% is typical, and the appropriate
ν = N1 + N2 − 2. Find t in Table 4, or evaluate it with the Mathcad function
qt(p, d):

t = −qt(1− P
2

, ν). (57)

Then ∆D = tSD, and

D = (x1 − x2) ± tSD (58)

Therefore, if tSD ≥ |D|, the confidence interval on the difference in-
cludes 0 and the difference is not significant.

SGN andNumerical Recipes give a somewhat more complicated formula
for SD, which is better if N1 and N2 are not nearly the same. If N1 ≈ N2, the
two formulas give nearly the same result.

There is a subtlety in this testing of differences. If the question is simply
one of difference (“Did these two students get significantly different results
for the barometric pressure?”), then in finding the value of t in Table 4, use
the confidence intervals in the row labeled P, or the Mathcad formula given
above. If, though, the question “has a direction” (“Is Sue’s result smaller
than John’s result?”), then choose from the row labeled P′, or use

t = qt(P′, d). (59)

The different values of t come from different areas being evaluated under
the Student-t distribution. The first question uses the integral of the dis-
tribution from −t to t, and gives a so-called “double-tailed confidence in-
terval”; the second uses the integral from −∞ to t, and gives the “single-
tailed” interval. See Worksheet 7.

9 Modeling of data

(The material in this section comes largely from Numerical Recipes chap. 15,
SGN (6th ed.) chapter XXII, and Bevington and Robinson. The notation is
closest to that of SGN.)
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Worksheet 7 Two types of difference tests.
x ..,4 3.9 4 y ..,1.5 1.4 1.5 z ..,4 3.9 1.5 ν 4

5 0 5
0

0.2

0.4
P

dt( ),x ν

dt( ),y ν

,x y

5 0 5
0

0.2

0.4
P'

dt( ),x ν

dt( ),z ν

,x z

We have a data set {yi, σi, xi}. The yi are values of a “dependent” vari-
able which we measured at N different values of the “independent” vari-
able(s) x. The σi are the standard deviations of the yi; I will assume through-
out this discussion that the xi contain no error.2

We also have (usually) a physical model of the system, implying a func-
tional relationship between y and x :

y(x) = f (x; α) (60)

In Eq. (60) the independent (measured or controlled) variables are rep-
resented by x; the M components of α, that is, α0, α1, · · · αM−1, are adjustable
parameters.

An example is the integrated Clausius-Clapeyron equation describing
the variation of the vapor pressure of a pure liquid with T:

ln
(

p
p0

)
= C−

∆Hvap,m

RT
(61)

Here x corresponds simply to T, and the model parameters are C and
∆Hvap,m.

In a modeling problem we want to find
2Numerical Recipes discusses fitting a straight line with errors in both coordinates; for the

general case, see Jefferys, Astronomical Journal 85, 177 (1980), and 86, 149 (1981), and the
errata in 95, 1299–1300.
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1. the “best” values of the model parameters α1 · · · αM−1

2. uncertainties (confidence limits) of those parameters

3. an indication of whether the model actually “fits” the data at all.

We can’t calculate from a data set the probability that any particular
parameter set is correct. The approach is to calculate the probability of ob-
taining our actual data given any set of parameters, and choose the param-
eter set which gives the greatest probability of finding that data set. That
corresponds again to the principle of maximum likelihood: we proceed by
assuming that our data set is the most probable one.

If the error distributions of the yi are normal, there is no or negligible
error in the values of the xi, and we know that the model is correct, the
probability density for obtaining a single one of the yi is

P(yi) =
1

σi
√
2π

exp

{
−1
2

[yi − f (xi; α)]2

σ2
i

}
. (62)

Since the different yi measurements are independent, calculating the proba-
bility density of the entire data set given the parameters is straightforward:
it’s just the product of the probability densities for obtaining each yi inde-
pendently.

P({yi}) =
N

∏
i=1

P(yi) (63)

=

(
N

∏
i=1

1
σi
√
2π

)
exp

{
−1
2

N

∑
i=1

[yi − f (xi; α)]2

σ2
i

}

We want to maximize this probability by varying the components of α.
Since the part outside the exponential is independent of the values of the
αj, we can just maximize the exponential, which is the same as minimizing
the value of χ2:

χ2 =
N

∑
i=1

[yi − f (xi; α)]2

σ2
i

(64)

This is called least-squares fitting, or χ2 fitting. Its algorithm is to adjust
the parameters to minimize the sum of the squared vertical deviations of
the data from the model. Some things to be noted:
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• If your data are not really described by a normal error distribution, a
least-squares fit will always pay too much attention to the “outlier”
points. This can be a real problem.

• If the errors are not normally distributed but you know the error dis-
tribution, you can still use the principle of maximum likelihood. This
will give much better results for non-Gaussian systems (for instance,
“counting” experiments with small numbers of counts.) Chapter 10
in Bevington and Robinson discusses the technique.

9.1 Linear least squares

Least squares fitting problems generally fall into two groups, the linear and
the nonlinear problems, which require somewhat different numerical ap-
proaches. I’ll deal with the linear problems first. In a linear fitting problem,
the model function (Eq. (60) above) has the special form

y(x) = f (x, α) =
M−1
∑
j=0

αj f j(x). (65)

Note that in the linear problem the fj “basis functions” do not depend on
α.

The most familiar example of such a model function is the straight-line
model, where there is only one independent variable x, and themodel func-
tion is

y = α0 + α1x. (66)

The basis functions are f0(x) = 1 and f1(x) = x. It is easy to see how to
extend this example to fitting functions which are polynomials of arbitrary
order, by adding terms to the model which look like αjxj.

Another example which occurs often in physical chemistry is

y = α0 +
α1
x
, (67)

where the basis functions are f0(x) = 1 and f1(x) = 1/x.

9.1.1 Finding α

We need to minimize χ2 by varying the αj. The standard way to do that is
to take its derivative with respect to each of the αj and set it equal to 0. In
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the linear least squares problem, we can solve the resulting M equations to
get α0 · · · αM−1. That solves the first part of the problem (finding the best
values of the model parameters.)

Inserting the linear model function (65) into the definition of χ2 (64), we
obtain

χ2 =
N

∑
i=1

[yi − ∑M−1
j=0 αj f j(xi)]2

σ2
i

(68)

Taking the partial derivative with respect to a particular adjustable param-
eter αk gives

∂χ2

∂αk
=

N

∑
i=1

(
1
σ2
i

)
(2)

[
yi −

M−1
∑
j=0

αj f j(xi)

]
(− fk(xi)) (69)

Setting that derivative equal to 0 and dividing both sides by −2 gives

0 =
N

∑
i=1

fk(xi)
σ2
i

[
yi −

M−1
∑
j=0

αj f j(xi)

]
(70)

=
N

∑
i=1

yi fk(xi)
σ2
i

−
N

∑
i=1

fk(xi)
σ2
i

M−1
∑
j=0

αj f j(xi). (71)

Now, separating the sum which involves the yi, and moving the fk(xi)
σ2i

term
inside the sum over j, we obtain

N

∑
i=1

M−1
∑
j=0

fk(xi)
σ2
i

αj f j(xi) =
N

∑
i=1

yi fk(xi)
σ2
i

. (72)

Interchanging the order of summations (which is legal since both sums are
over finite numbers of terms) and rearranging slightly gives

M−1
∑
j=0

N

∑
i=1

fk(xi) fj(xi)
σ2
i

αj =
N

∑
i=1

yi fk(xi)
σ2
i

. (73)

We have one equation like Eq. (73) for each value of k, that is, for each
basis function. We therefore have M of these equations for the M unknown
parameters αk. They are called the normal equations of the least-squares
problem.
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The normal equations can be written in a compact form by defining the
matrix A and the vector h as follows:

Akj =
N

∑
i=1

fk(xi) fj(xi)
σ2
i

, (74)

hk =
N

∑
i=1

yi fk(xi)
σ2
i

. (75)

Note that all the components of A and h can be calculated directly from the
data. Now the normal equations are simply

Aα = h. (76)

Manymethods are available for solving Eq. (76). For our purposes, it is best
to invert the matrix A with a technique such as Gauss-Jordan elimination
(which is built into Mathcad) and then multiply both sides of Eq. (76) by
the inverse matrix B = A−1, obtaining

α = Bh (77)

Thus we obtain the values of the best-fit model parameters α0 · · · αM−1.

9.1.2 Uncertainties in the parameters

The value of a single parameter αk is given by Eq. (77) as

αk =
M−1
∑
j=0

Bkjhj. (78)

Only the yi, which are used to compute h, have errors. We therefore find
the standard deviation in αk by propagation of error, using the yi as our
“independent variables”:

σ2
αk

=
N

∑
i=1

(
∂αk

∂yi

)2

σ2
i (79)

It takes about one page of work to show that

σ2
αk

= Bkk, (80)

and similarly, the covariances are

σ2
αjαk

= Bjk. (81)
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(I will spare you the details; Bevington and Robinson do the calculation
explicitly on p. 123.) The matrix B is therefore called the variance-covariance
matrix: its diagonal elements give the variances (squared standard devi-
ations) of the individual fitting parameters, and its off-diagonal elements
give the covariances between pairs of parameters.

Note that B does not depend at all on the yi; it comes from inverting A
which is calculated just from the xi and σi. Its information about the un-
certainties in α comes therefore purely from the stated uncertainties in yi,
namely the σi. If the σi were misstated, the calculated uncertainties in the
parameters will be wrong. If the model function is known to provide a
good description of the data, then the calculated uncertainties can be “cor-
rected” by estimating the standard deviation in y from the deviations of the
yi from the best-fit model. This correction will be described in Section 9.1.4
below. Using true standard deviations in the fit, though, has a very impor-
tant advantage: it permits you to determine whether the model function
actually describes the data. That is the next topic.

9.1.3 Goodness of fit

We need a goodness-of-fit measure, in order to have some indication of
whether the model describes the data in a reasonable way at all. It is pos-
sible to apply the formulas above to any set of (x, y) data, whether or not
they resemble the model function! We obtain the goodness of fit by deter-
mining the probability that we would get a χ2 as bad as the one we have
even though the model was correct.

Mathcad provides a cumulative chi-squared distribution function called
pchisq(x, d). To estimate a goodness-of-fit parameter Q, evaluate

Q = 1− pchisq(χ2,N − M). (82)

If the errors are normally distributed, the model is correct, and your esti-
mates of the measurement errors σi are good, you should get Q ≥ 0.1 or
so. If you have underestimated the errors, or your experiment does not re-
ally have normally distributed errors, correct models can sometimes give
values of Q as low as perhaps 10−3. Genuinely wrong models often give
Q � 10−3. This method of checking goodness-of-fit works for all linear
least squares problems, and works decently for nonlinear problems as well.
If you don’t have Mathcad handy, tables of the cumulative chi-squared dis-
tribution are given in many books including Young (p. 163) and Bevington
and Robinson (Table C.4).
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9.1.4 Fitting with unknown errors

Everything up to now has assumed that you know the correct standard
deviations for your yi, and have put them into the fitting program as the σi.
Sometimes the standard deviations for all the measurements are the same.
That’s okay, as long as each y really does have that standard deviation.

If you do not know the true errors σi, then it is not possible to obtain
an estimate of goodness of fit, and you have no statistical arguments avail-
able to help you claim that your model function is a realistic one. How-
ever, from the deviations of the individual points from the fitted function,
it is still possible to estimate the uncertainties in the parameters, assuming
that the model is correct for the data. To do that, set all σi = 1, do the
fit described above, then multiply each element of the resulting variance-
covariance matrix by χ2/(N − M). The standard deviations of the individ-
ual fitted parameters are then the square roots of the diagonal elements of
the new variance-covariance matrix. An estimate of the standard deviation
of the yi is then

σy ≈
√

χ2/(N − M). (83)

Keep in mind that this estimate is only sensible if the model function is
known in advance to be a good description of the data.

9.1.5 Fitting with relative errors

Occasionally you will not know the absolute standard deviations for indi-
vidual ymeasurements, but you will know that some of the measurements
have higher precision than others. You need to be able to “tell” the fitting
algorithm to pay more attention to the more precise points and worry less
about not passing close to the more uncertain points. In that case, you can
generate a list of “relative standard deviations” for the points, which pre-
sumably are all related to the true standard deviations by multiplication by
some unknown constant. Put the values of your relative σi into the fitting
routine above. At the end of the fit, scale the variance-covariance matrix
B as described above in section 9.1.4 to get error estimates for the param-
eters, and multiply your relative standard deviations by

√
χ2/(N − M) to

get estimates of the true standard deviations of the yi. This procedure still
does not allow you to make an independent assesment of goodness of fit,
but it does give better values of the fitted parameters α than you would get
by setting all the σi = 1. If your assigned relative uncertainties were in fact
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close to the true ones, and the model is good, then
√

χ2/(N − M) will be
close to 1.

9.1.6 Mathcad implementation

Worksheet 8 shows the program genlinls.mcd, which performs almost ex-
actly the calculations described here. It uses a single independent variable
x rather than a vector x, as is appropriate for most physical chemistry ap-
plications. It uses a variable abserrs to determine whether you have put
in the absolute uncertainties. If abserrs is 1, it does not scale the variance-
covariance matrix. If abserrs is zero, the errors in the parameters and their
covariances are estimated from the deviations of the data from the fit, as-
suming the model is correct, as described in Section 9.1.4 and 9.1.5.

9.1.7 Pathologies

The normal equations approach to linear least squares is relatively easy to
understand, and programs implementing it are compact and fast. How-
ever, it is suceptible to one common disease of least-squares procedures. If
the data do not clearly distinguish between two of your basis functions, it is
possible for the fitted coefficients of those functions (the fitted parameters
α) to have nearly meaningless values even though the fit through the data
looks reasonable. You should suspect this problemwhen some pair of your
fitted parameters have very large covariances. In this case, it is necessary
to use a different least-squares procedure based on singular value decompo-
sition. See Numerical Recipes for details. Mathcad Plus has SVD built in, so
it can be used for the task.

9.2 Nonlinear models

Often the physical model function will vary nonlinearly with one or more
parameters; one common example is the exponential model,

y = ae−kx , (84)

where a and k are the parameters to be obtained by fitting a set of (x, y)
data. Differentiating χ2 with respect to a and k and setting the derivatives
equal to 0 gives a set of nonlinear equations, which cannot be solved in
a simple way. The algebraic methods useful for fitting linear models are
therefore not applicable.
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Worksheet 8 Linear least squares calculation in Mathcad.
General Linear Least Squares Fits 

G. McBane, 3/24/1998 
from polynomial fit template by A. Earhardt
Least squares calculation from Shoemaker, Garland, and Nibler, 6th ed.
with help from Numerical Recipes and Bevington and Robinson
Last change 3/24/98 GCM

This template does a linear least-squares fit of (x,y) data to a function 
of the form 
f(x) = α0*f0(x) + α1*f1(x) +α2*f2(x) + ...,
where α0, α1,  and α2 are the fitting parameters and f0(x), f1(x), etc 
are any functions of x which do not involve the fitting parameters.
Individual uncertainties for the y values are used.
You need to set npts, npar, the vector of basis functions F,
the Boolean variable abserrs, and the values of the data.

npts 100 The number of data points (x-y pairs)

npar 3 The number of fitting parameters (basis functions) 

My example fits to a + bx + c cos(x).  You should 
change this vector of basis functions to match your 
problem.

F( )x

1

x

cos( )x

Set abserrs to 1 if you are supplying accurate standard deviations in 
the ∆y vector, 0 otherwise.  If abserrs=1, the errors in parameters 
reported below use your stated standard deviations, and the 
goodness of fit will be meaningful.  If abserrs=0, errors in parameters 
will be estimated from the residuals, assuming the model is correct.

abserrs 1

Create vectors here with npts rows (x, y, standard deviation in y)
You should use true standard deviations as your ∆y values, and set abserrs = 1, if you can.  
If you cannot do that, set abserrs = 0 and set the ∆y values to numbers you think are 
proportional to the true errors.  As a last resort, set abserrs=0 and all the ∆y values to 1.  In 
that case, the template will estimate the standard deviations  from the quality of fit, but you 
are then assuming that your model function is correct.

I'm creating test data that fits my model function exactly, but has some added
noise.  If you have only a small number of data points, you will probably just type
in  vectors of data here.  Otherwise, you might read the x and y data from a file 
using the Mathcad function readprn:  D := readprn(filename.dat), then
set x and y (and maybe ∆y) vectors to be different columns of D.

i ..0 npts 1 noise rnorm( ),,npts 0 1

x
i

i y
i

.2 .0.05 x
i

.2 cos x
i

.0.5 noise
i

∆y
i

0.5 Put your data here

j ..0 npar 1 indices for fitted 
parameters and basis 
functions

w
i

1

∆y
i

2
Transform standard 
deviations to weights

k ..0 npar 1
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Worksheet 8 (continued)
Construct the A matrix and H vector

A
,j k

i

..w
i

F x
i j

F x
i k

h
k

i

..w
i

y
i

F x
i k

Solve least squares problem and obtain parameters
B A 1

α .B h

ycalc
i

k

.α
k

F x
i k

Calculated values of y

chi-squared of fit
Chisq

i

.y
i

ycalc
i

2 w
i

Estimated standard deviation of an observation of unit 
weight (see SGN 6th ed. p. 719).  If your assigned std. 
deviations were correct, the errors are normally 
distributed, and the model is right, should be near 1.  

S 1
Chisq

( )npts npar

Q 1 pchisq( ),Chisq npts npar Goodness of fit parameter.  If abserrs=1, gives probability 
that Chisq would be this bad if the errors are normally
distributed, the std. deviations in y have been properly
assigned, and the model is correct. Otherwise 
meaningless.

VCovar if ,,abserrs B .B S 1
2 Variance-covariance matrix.  If  abserrs=0,

matrix is scaled to estimate errors from residuals.

∆α
j

VCovar
,j j

Uncertainties in individual  fit parameters.

9.2.1 “Linearizable” models

In the example above, it is possible to transform the data in a way that gives
a linear model:

ln y = ln(a) − kx (85)
= a′ − kx,

so that plotting ln(y) vs. x should give a straight line with intercept ln(a)
and intercept −k. Linear least squares may be used to fit the transformed
data. This is a completely legitimate trick, and is often useful for simple
models. However, to use it correctly, you must use the appropriate weight-
ing (uncertainties) for the “transformed” y values.
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Worksheet 8 (continued)
Results

Parameters and individual 
uncertainties

Variances and covariances

α
j

0.231732
0.047838
1.97936

∆α
j

0.09929

.1.733159 10 3

0.070762

α0
α1 =VCovar

0.01

0

0

0

3.004 10 6

4.211 10 6

0

4.211 10 6

0.005α2

Goodness of fit parameter, Q =Q 0.571

Estimated σ of an observation of unit weight =S 1 0.98371
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If you make a linear fit to transformed data, you must do a simple
propagation of error calculation to find the appropriate uncertainties in the
transformed data. Often, as far as you know, the uncertainties in the raw
measurements are all the same. In that case, the uncertainties in the trans-
formed data ( the values you use in the fit) are usually not all the same.

For example, say you have a measured data set {xi, di, σi}, where the σi
give the (relative or absolute) uncertainties in the di. You expect the data to
fit the exponential model

d = ae−kx , (86)

and you would like to estimate k and a by doing a linear least squares fit of
ln(di) vs. xi.

You must evaluate the uncertainty in yi = ln(di):

∂y
∂d

=
1
d

(87)

σ2
y =

1
d2

σ2
d . (88)

The correct uncertainties in a least-squares fit of ln(d) vs. x are therefore
σi/di, rather than σi. If you think about it, that makes sense: the logarithm
function is very sensitive (steep) to errors in d if d is small, but much less
steep at large d.

Figure 5 shows a simulated set of data created from Eq. (84), with a =
2.3 and k = 2.5, and normally distributed noise with standard deviation
0.1 added to the y values. Also shown are the results of three least-squares
fits: one nonlinear fit with uniform weighting, one linear fit to Eq. (85) with
uniform weighting, and one linear fit with correct weighting (wi = y2i /σ2

i ).
Note that the unweighted linear fit diverges from the other two at the

early part of the decay. That’s a crucial error, since those early points carry
the most information about the k parameter (usually the one you’re most
interested in.) Since the weighted fit pays most attention to those, it does a
much better job.

The weighted linear and nonlinear fits, while close together, are not ex-
actly the same. There are two reasons. First, both methods are subject to
numerical errors (accumulated roundoff errors, incomplete convergence,
etc.) Second, andmore important, the parent error distribution of the trans-
formed data is not exactly normal, even though the parent distribution of
the raw data was normal. The technique of χ2 fitting is therefore not strictly
applicable to the data once it has been transformed. Usually this subtlety is

notes-7



9. Modeling of data 49

0.0 0.5 1.0 1.5 2.0

X Axis

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Y
A

xi
s

data
unweighted
weighted
nonlinear

Figure 5: Fits of exponential function to noisy data.

not particularly important, since the transformed parent distribution is still
close to Gaussian. It does, however, produce small errors in the parameters.

9.2.2 Nonlinear fitting

If there is no simple transformation of the model which produces a linear
fitting problem (or even if there is but you want to avoid the problems al-
ready mentioned), then you must find a way to do the χ2 minimization
without the benefit of linear least squares. Generally you must resort to
iterative minimization techniques. You imagine a “terrain” where the dis-
tance north-south and east-west correspond to the values of your param-
eters (the image only works for two parameters, but the math works for
any number). The altitude corresponds to the value of χ2. Your task is to
find the lowest point in this terrain. To make the metaphor more realistic,
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you cannot “survey” the terrain by looking all around; you must be sat-
isfied with evaluating the altitude at specific points. Several methods are
available to you. They are outlined in Chapter 8 of B&R.

Grid search This is the most obvious (and usually one of the slowest)
techniques. You hold all but one of your parameters fixed, and you vary
that one, looking for the value which produces the minimum value of χ2.
You then fix that one at the optimum value you just found, choose another
parameter, and vary it. When you have worked your way through all the
parameters once, you usually find that the value of the first one is no longer
optimum, so you start over. This method corresponds to limiting yourself
to moving only north-south or east-west along your unknown terrain; you
never permit yourself to move northeast, say. When you find that all your
parameters seem to be optimum, you quit.

Gradient search, or steepest descent search In this technique you start
at some position and evaluate the gradient (the vector of partial derivatives
of χ2 with respect to the parameters). The gradient shows you the direc-
tion which is steepest downhill. You move in that direction until you find
yourself moving uphill again. You then reevaluate the gradient, and repeat.
When you can find no downhill directions (the gradient is zero), you stop.
This method is almost always faster than the grid search, but it can still be
pretty slow, especially near the true minimum. It has the advantage that it
always finds someminimum (assuming the surface has one.)

Expansionmethods Here you assume that you are already pretty close to
the minimum, and therefore a low-order Taylor expansion of the χ2 func-
tion with respect to the parameters is likely to be pretty good. By evalu-
ating several derivatives at your current position, you can obtain enough
information to model the function as a paraboloid or ellipsoid. You then
move to the position you calculate to be the minimum of that surface, and
start over. Implementation of this technique is easy; it’s almost identical to
a linear least squares calculation that just gets repeated over and over. (See
SGN.) When you are in fact close to the minimum, this works great and is
very fast. When you are far away, though, it is unstable and can carry you
on awful wild goose chases.

Marquardt method The Marquardt method is a way of going smoothly
from the gradient search method to the expansion method as you get closer
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to the minimum. It works very well, and is the industry standard. It’s a lit-
tle complicated to program (though not actually difficult), but there are lots
of available programs which already include it. The shareware programs
NONLIN (for DOS) and Datafit (for Windows) and the public domain pro-
grams Fudgit, Gnufit, and GLE (all for DOS, OS/2, and UNIX) all provide
implementations. Most commercial data-treatment programs such as Igor,
SigmaPlot, and PsiPlot also use the Marquardt method. Mathcad’s func-
tion minerr uses Marquardt, but unfortunately provides absolutely no er-
ror information so it’s largely useless by itself. (You can use minerr to find
parameter values, and then construct and invert an A matrix to get uncer-
tainties, though.) For those who can compile their own programs, the disk
which comes with B&R has a Pascal program which does nonlinear fits, as
does the disk which can be purchased to accompany Numerical Recipes in
FORTRAN or C.

NONLIN is easy to use and versatile, and (unlike many other pro-
grams) will provide the variance-covariance matrix from the fit when it
is needed. Its main weakness is that it does not allow you to specify the
errors for the yi; that is sometimes a problem, though not as bad a one for
nonlinear models as for linear ones.

Worksheet 9 shows a NONLIN input file for fitting data to the function
y = axe−kx, Worksheet 10 shows part of the resulting output (.LST) file, and
Figure 6 shows the data, the curve corresponding to the intial guesses for
the parameters, and the final result of the fit.

Note the line “Stopped due to: Both parameter and relative function
convergence” in the NONLIN output file. It’s important to look for that;
if it insteads says “Stopped due to: iteration limit reached”, or something
similar, then the algorithm has not converged and the output values are
probably meaningless. You should choose better starting parameter values
and start over, or you should set the ITERATIONS command in your NON-
LIN input file to a number higher than 50 to see whether more iterations
will eventually help.

9.3 Recommendations

AMarquardt fit is almost always fastest and is easy to perform. Many pro-
grams will calculate the required derivatives ∂χ2/∂aj numerically for you,
leaving you to specify only the model function, the list of parameters to
vary, and the data. Good implementations will let you specify individual
uncertainties for the data points and will provide the variance-covariance
matrix if you wish. If you have no Marquardt program available, grid-
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Worksheet 9 Typical NONLIN input file.
title Nonlin example
register ! you should register NONLIN if you like it
variable X ! independent and dependent variables (observations)
variable Y
parameter a=5 ! parameters are what gets adjusted
parameter k=0.1 ! it’s best to give initial guesses
covariance ! ask for covariance matrix
function Y = a*x*exp(-k*X)
plot !ask NONLIN to produce a picture on the screen
data ! in order listed in Variables

0 -0.02802838
2 6.107835
4 8.233952
6 8.526069
8 7.438673

10 6.297892
12 5.045212
14 3.989115
16 3.077397
18 2.355075
20 1.582216

search (easy but slow) and gradient-search methods work pretty well. The
expansion method is easy to implement in Mathcad and works well if you
are quite sure that you are starting with very good guesses for the parame-
ter values (that is, you are already quite close to the minimum).

9.4 After the fit

Okay, you have now performed a Marquardt fit and your program has
kicked out “optimum” values of the parameters and their standard devia-
tions. What do you do now?

Don’t believe the program’s answer yet. It may have converged to a
false minimum; your model may not actually fit the data; the stated stan-
dard deviations may be garbage because of correlations between different
parameters.

First, make a plot of the residuals, the differences between the data points
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Worksheet 10 Part of resulting NONLIN output file.
---- Final Results ----

Nonlin version 2.5
Copyright (c) 1992-1993 (shareware) Phillip H. Sherrod.

Nonlin example
Function: Y = a*x*exp(-k*X)
Number of observations = 11
Maximum allowed number of iterations = 50
Convergence tolerance factor = 1.000000E-010
Stopped due to: Both parameter and relative function convergence.
Number of iterations performed = 8
Final sum of squared deviations = 6.23905E-002
Standard error of estimate = 0.0832603
Average deviation = 0.0568523
Maximum deviation for any observation = 0.16646
Proportion of variance explained (R^2) = 0.9992 (99.92%)
Adjusted coefficient of multiple determination (Ra^2) = 0.9991 (99.91%)
Durbin-Watson test for autocorrelation = 2.273

---- Calculated Parameter Values ----

Parameter Initial guess Final estimate Standard error t Prob(t)
---------- ------------- ---------------- -------------- --------- -------

a 5 4.59155865 0.04403474 104.27 0.00001
k 0.1 0.198761219 0.001140971 174.20 0.00001

---- Variance-Covariance Matrix ----

Parameter a k
---------- ------------- -------------

a: 0.0019391 4.4165E-005
k: 4.4165E-005 1.3018E-006

GCM January 2, 2001



54

-5 0 5 10 15 20 25

Time/s

-5

0

5

10

15

20

V
al

ue
data
initial guess
fitted curve

Figure 6: Data for Worksheet 9, with initial guess and final fit curves.

and your model: ri = yi − f (xi, a1, a2, · · · ). The residuals should bounce up
and down randomly about zero. If they have a big hump in them some-
where, then either your model does not describe the data well or you have
not found the true minimum in χ2.

Second, if the residuals look okay, do a goodness-of-fit test as described
in Section 9.1.3. (You must have used true standard deviations in your
weighting to have a useful absolute magnitude of χ2). You should come up
with a reasonably large value of Q, certainly at least 0.001.

Finally, you need to evaluate the uncertainties in the values of your
fitted parameters. (If the first two tests fail, the uncertainties (and probably
the fitted parameters too) will be meaningless.)
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9.4.1 Uncertainties in fitted parameters

Once again, you have several options. Good fitting programs will pro-
vide you with estimated standard deviations for individual parameters,
and should also provide you with covariances giving their correlations.

1. You can use the standard deviations for the parameters which your
nonlinear fitting program provided. Those will be meaningful if the
errors in your experiment were truly normal, your model function is
an accurate description of the data, and the goodness of fit is okay.
Then the calculated standard deviations are good for individual pa-
rameters, that is, are useful if you care about only one of the parame-
ter values. To get confidence intervals on any one of the values, you
can use the t-table as we did with simple averages.

2. You can use a projection method, described in SGN 6th ed. on page
726. That will give you more accurate confidence limits when the pa-
rameters are strongly correlated or the errors are slightly nonnormal.

3. You can do a Monte Carlo simulation, generating many synthetic
data sets and subjecting each of them to your nonlinear fit. The re-
sulting lists of parameter values can then be treated separately (as
discussed before in Section 7.2) to obtain individual confidence inter-
vals, or plotted together to get joint intervals. The latter treatment
allows you to say “I am 95% confident that a lies between 1.1 and 1.5
units and that b lies between 3.2 and 4.1 units.”

4. You can find the boundaries of the error ellipsoid for your data. This,
too, will permit you to make statements about more than one of the
values. See Numerical Recipes section 15.6 (second edition in C) for
details.

10 Interpolation

Interpolation problems appear when you know the value of some func-
tion f (x) only at some discrete values of x (x1, x2, · · · , xn), and you want
to know the value at some x not equal to one of the xi. If x1 < x < xn
you have an interpolation problem; otherwise it’s an extrapolation prob-
lem. You might have this problem because

• You measured some property only at discrete values of x;
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• You have a table of values in a book, but no analytic formula for f (x);

• You calculated values of f at several xi, but each calculation is difficult
or expensive and you don’t want to do it any more.

The interpolation techniques I will describe in this section assume that
you do not have any real, physical idea about the true form of f (x), and
therefore assume that it’s just as well to use any convenient mathemati-
cal form. That convenient form is usually (though not always) a polyno-
mial. Since many real functions are not well approximated by polynomials
over finite distances, there’s some danger in “blind” polynomial approxi-
mations. Therefore I must offer two important caveats:

1. If you have a physical model that gives an expected functional form
for f (x), it is always better to fit your data (experimental, looked-up,
or calculated) to that form with least squares, and then calculate the
interpolated values from your best-fit model parameters.

2. In the absence of such a physical model, extrapolation to x values more
than about one x-spacing away from the available data is likely to
give complete nonsense.

I will discuss two kinds of interpolation procedures: polynomial and
spline. Polynomial interpolation is easiest to do with pencil and calculator.
Spline interpolation is easy to do with a computer and is not as suceptible
to noise in the data, but is not as flexible. Both assume that your function
is tabulated at evenly spaced xi. Neither works well when the underlying
(unknown) function is not well approximated by polynomials.

10.1 Polynomial interpolation with difference tables

The idea behind polynomial interpolation is to find the polynomial of de-
gree n − 1 that goes exactly through n tabulated points near x, and then
evaluate the resulting polynomial at x. In general, though, it’s best not to
find the coefficients of the interpolating polynomial and then evaluate f (x)
from them. Rather, one chooses one of the xi which is close to the desired
x, then “corrects” the value f (xi) by incorporating information from the
function values at other nearby xj.

You have a set of {xi, yi} data points where i runs from 1 to N. I will
“renumber” the points so that x0 is one of the tabulated xi close to your de-
sired x; the yi corresponding to x0 becomes y0, the preceding xi will become
x−1, etc.
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Now construct a central difference table, as shown in Table 6. The left-
most two columns are just your tabulated data points. Each δ is found by
subtracting the value above and left of it from that below and left. For
example,

δ− 1
2

= y0 − y−1 (89)

δ20 = δ 1
2
− δ− 1

2
(90)

Table 6 Central difference table.

x−2 y−2
δ−1 1

2

x−1 y−1 δ2−1
δ− 1

2
δ3− 1

2

x0 y0 δ20
δ 1
2

δ31
2

x1 y1 δ21
δ1 1

2
x2 y2

Table 6 shows only a small part of the difference table. If you need an
interpolated value at only one x, you need only construct the table in that
region. If you need interpolated values at many different x, it is very easy
to generate the difference table in a spreadsheet or in Mathcad.

As an example, I’ll construct a difference table from data in the CRC giv-
ing the velocity of sound in dry air at different temperatures, in meters per
second. The data in the table are available at 10◦C intervals. The difference
table is shown in Table 7.

Note that the signs of the columns tend to alternate. In a precise tabu-
lation such as this one, the differences remain pretty smooth even far out
to the right (implying higher-order interpolating polynomials). In a tabula-
tion of noisier data, the differences will rapidly stop being smooth. When
you construct a difference table, you should stop going farther to the right
as soon as the numbers in any column stop varying smoothly.

There are many different interpolation formulas which use the differ-
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Table 7 Central difference table for velocity of sound

x v δ δ2 δ3 δ4

−30.00 312.72
6.37

−20.00 319.09 −0.13
6.24 0.01

−10.00 325.33 −0.12 0.00
6.12 0.01

0.00 331.45 −0.11 0.00
6.01 0.01

10.00 337.46 −0.10 −0.01
5.91 0.00

20.00 343.37 −0.10 0.00
5.81 0.00

30.00 349.18 −0.10
5.71

40.00 354.89

ences in Table 6. Two well-known ones are Stirling’s formula,

f (x) ≈ y0 +
1
2
p(δ 1

2
+ δ− 1

2
) +

1
2
p2δ20 + · · · , (91)

and Bessel’s formula,

f (x) ≈ y0 + pδ 1
2
+

p(p− 1)
4

(δ20 + δ21) +
p(p− 1

2 )(p− 1)
6

δ31
2
+ · · · . (92)

The variable p in those formulas is the fraction of an x-spacing your
desired x is away from x0:

p =
x− x0

∆x
, (93)

where ∆x is the spacing between adjacent xi. In Stirling’s formula, it’s best
to choose x0 to be the tabulated xi closest to your desired x. Then− 1

2 < p <
1
2 . In Bessel’s formula, you usually choose x0 to be the largest tabulated xi
less than your desired x, so that 0 < p < 1. In either formula you can
use as many terms as you want; as you go out, the successive corrections
should get smaller and smaller. You should stop adding terms when the
next term is smaller than you care about, or when the differences in the
next column do not vary smoothly. Note that interpolation cannot add
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precision to your original data: hoping to get more significant figures than
the tabulated points have is not reasonable!

Either formula works well for quick work with a calculator and pencil.
Note that if you just take the first two terms in Bessel’s formula, you are do-
ing an ordinary linear interpolation. In general Bessel’s formula is slightly
better if your desired x lies nearly halfway between two tabulated xi, while
Stirling’s formula is better if x is very close to one of the xi. In most cases
there’s almost no difference.

Say I need to know the velocity of sound at 17 ◦C. The closest tempera-
ture in the table is 20◦C, so for Stirling’s formula I choose that as x0. Then
p = x−x0

∆x = 17−20
10 = −0.3. From Eq. (91), I find

v17 = 343.37+
1
2
(−0.3)(5.81+ 5.91) +

1
2
(−0.3)2(−0.10) (94)

= 343.37− 1.758+ −0.005
= 341.61 m/s

If I want to use Bessel’s formula instead, I choose x0 = 10, p = x−x0
∆x =

17−10
10 = 0.7 and get

v17 = 337.46+ (0.7)(5.91) +
(0.7)(−0.3)

4
(−0.10+ −0.10) (95)

= 337.46+ 4.137+ 0.011
= 341.61 m/s

In fact, the table in the CRC is given at intervals of 1◦C, so I can check
whether these interpolations are accurate: the value for 17◦C is exactly
341.61.

Higher terms in these two formulas, and many more formulas, can
be found in the Chemical Rubber Company’s Standard Mathematical Tables.
The formulas there extend to quite high orders, meaning that high-degree
polynomials are being fitted throughmore andmore points of your data ta-
ble. That is a little dangerous. Small bits of noise in the tabulated data can
make a high-order polynomial take large “unphysical” swings, in order to
go exactly through the data points. You can tell how high is safe by look-
ing at the difference table itself: once the numbers in successive columns
have stopped varying smoothly, noise has taken over and it is wrong to
carry an interpolation formula out that far. If you need something more
sophisticated than the quadratic or cubic formulas above, then have a look
at the CRC math tables or at Numerical Recipes, which gives programs for
polynomial interpolation of arbitrary order.

GCM January 2, 2001



60

Worksheet 11 Cubic spline interpolation in Mathcad.
Example of cubic spline interpolation with speed-of-sound data

npts 8 i ..,0 1 npts 1

x

30

20

10

0

10

20
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40

y

312.72

319.09

325.33

331.45

337.46

343.37

349.18

354.89

vs lspline( ),x y

speed interp( ),,,vs x y 17

=speed 341.607

10.2 Cubic spline interpolation

Spline interpolation is more complicated than simple polynomial interpo-
lation, but it does not have so strong a tendency to oscillate wildly between
data points and is very efficient for large data sets. Splines, unlike the inter-
polating polynomials used in the last section, have continuous derivatives
up to some given order (continuous first and second derivatives for cubic
splines.) The most popular splines are the cubic ones, and that is the ver-
sion that Mathcad provides. There’s no convenient way to go to higher
order; you just have to take what you get. On the other hand, what you get
is often pretty good.

To use the cubic spline routines in Mathcad, you first call a function
lspline that sets up the spline coefficients; you do this just once for your
entire data set. Then for each value of x where you want an interpolated y
value, you call a second function interp. Worksheet 11 demonstrates the
procedure for the same data set we used above.

My recommendations are

1. Use Bessel’s or Stirling’s formulas for simple linear or quadratic in-
terpolations with a calculator.

2. Use cubic splines when you need lots of interpolated points.

3. Use routines from Numerical Recipes for higher order interpolation
should you need them.

4. For extrapolation, stick with low-order (n ≤ 2) fits, unless you have a
good physical reason to believe that the underlying function really is
a polynomial whose order you know.

notes-8



11. Smoothing of data 61

I’ll say it again: completely ignore this section, and interpolate with a
least-squares fitted model function, if you have a sensible physical model.
That’s much better, especially for extrapolation.

11 Smoothing of data

The purpose of “smoothing” is to remove some random fluctuations in
data to make later analyses more robust. It depends on the assumption that
some underlying “real” quantity is varying slowly, so that any rapid fluctu-
ations observed in the data are due to random error. Smoothing techniques
try to remove the rapid fluctuations while preserving the slowly-varying
signal. At least two procedures are better than smoothing:

1. Least-squares fitting of a model function to the raw data, followed by
analysis using the fitted parameters;

2. Digital filtering, a technique which uses knowledge of the different
characteristics of the “signal” and the “noise” to systematically re-
move the noise and retain the signal. SeeNumerical Recipes for leading
references.

Most “smoothing” algorithms amount to naive applications of filter-
ing, which make assumptions about the relative characteristics of signal
and noise, and which typically let the user adjust the assumptions until he
gets something he likes. This should strike you as somewhat ad-hoc and
dicey, and subject to bias. It is; that’s why the techniques listed above are
preferable. Nonetheless, smoothing is sometimes useful as a preliminary
to noise-sensitive procedures such as numerical differentiation or interpo-
lation of a data set, or as a visual guide to help you pick the slow trend out
of a graph of a noisy data set.

One of the best generic smoothing techniques is the class of moving-
average filters know as Savitsky-Golay filters. These filters amount to doing
least-squares fits of polynomials through each segment of the data set. A
polynomial of degree n is fit through more than n + 1 points, so it does
not go through all the points but tends to reduce variations among them.
Because of the special characteristics of evenly-spaced data, it is not nec-
essary to perform an actual least-squares fit in each data segment. Instead,
the “new” values of the data points are calculated by special weighted aver-
ages of the “old” values. The formula which comes from fitting a quadratic
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to 5 points is

y′i =
1
35

[17yi + 12(yi+1 + yi−1) − 3(yi+2 + yi−2)]. (96)

Other formulas of higher order are given in SGN andNumerical Recipes.
However, you can get a long way just on this one, because the smooth is
“stable”, that is, you can apply it more than once to get more and more
smoothing. So if you have things set up so you can do a smooth, plot
a graph, and do another smooth, you can keep applying this one formula
until you are happy. Eventually, if you keep going, you’ll smooth the whole
data set into an uninteresting blob; the technique really has no understand-
ing of what is “signal” and what is “noise”.

Worksheet 12 shows a Mathcad implementation of this Savitsky-Golay
smoothing function and its application to a noisy test data set. The model
function is y = cos(x2), corrupted with Gaussian noise of standard devi-
ation 0.3. The upper plot shows the corrupted data as dots and the result
of applying Eq. (96) once as a smooth line; the lower plot shows the under-
lying test function and the result of applying the smoothing function six
times in succession. You can see that as you smooth more and more, the
noise does decrease, but the quickly-changing parts of the true signal are
lost.

Mathcad contains a built-in function to do smoothing called medsmooth.
It replaces each data point with the median of itself and some surrounding
points (you choose howmany surrounding points). For data with normally
distributed noise it is inferior to Savitsky-Golay, though it is quite reliable
and can be used easily for quick projects. It only works once on a data
set; successive applications don’t do anything. Mathcad Plus has a more
sophisticated smoothing routine, supsmooth, similar to Savitsky-Golay.
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Worksheet 12Mathcad version of Savitsky-Golay smoothing.
Savitsky-Golay smoothing
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A The laboratory notebook

Several sorts of errors can be more easily tracked and eliminated if careful
and thorough records are kept. To quote fromWilson [8]: “An experimental
scientist without his [or her] laboratory notebook is off duty.”

You should purchase a bound, quadrille-ruled laboratory notebookwith
alternating white and yellow pages, identically numbered. At the end of
each laboratory period you must get a teaching assistant to date and ini-
tial each notebook page you have written on. You should then hand in the
yellow copies of the notebook pages.

All primary data should be recorded in ink in your lab notebook (not on
paper towels, to be transferred to the notebook!) In addition, you should
do preliminary analysis, such as graphing the points and eyeball-fitting a
line, in the notebook while you are doing the experiment. This way you will be
able to notice whether something is amiss right away, rather than after you
have done the whole experiment or (worse) at midnight the night before
your report is due. You’ll also be much further along when you begin your
detailed analysis.

When primary data are accumulated on a computer and stored in a
file, it is important to be able to associate the notebook entry describing
the experimental conditions with the data file. I recommend naming the
file with a code giving the location (notebook, page, entry) of the notebook
entry. The second entry on page 14 of my notebook (GM) would describe
the data contained in computer file GM014B.dat, for example. If you are
accumulating your data in computer files, it is very important to copy all
the day’s files to a separate disk at the end of each laboratory period, and
to take the disk with you.

When you perform experiments with a partner, record primary data in
both notebooks if you can. If that is impractical (if one student is holding
a stopwatch and writing down readings while the other repeatedly reads a
meter, for instance) then photocopies of the data pages from one notebook
may be made immediately after the lab and pasted into the other. The
students should each perform a complete analysis of the data (though they
may discuss the proper way to do that between themselves), and the two
reports must be prepared independently.
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B Laboratory reports

Your reports will be read by the TAs and me, who generally know more
about the experiments than you do. However, to write a good report, you
must pretend that you are writing for someone else. The imaginary reader
knows a fair amount of chemistry, but is unfamiliar with the particular ex-
periments you do. He does have access to a good library and to the in-
structional handouts we use in the lab. He might be a professor at another
institution or in another department at OSU, a group leader at Amoco, a
colleague who needs your result for some of her own work, or whoever.
The object of the report is to convey as concisely and clearly as possible

• what you were trying to measure,

• what experiments you performed,

• what results you saw,

• how you analyzed those results to reach a conclusion,

• how confident you are that other people measuring the same thing
will get the same answer, and

• what (if any) things you think are interesting about your results.

Generally that list translates into a pretty standard technical report/article
format.

In Chemistry 541 we will use two report formats. The informal one is
designed to show that you did the experiment properly, analyzed its results
correctly, and understand the technique you used. In preparing these short
reports you will use many of the mathematical and statistical techniques
discussed in lecture and in these notes.

The short format we use in 541 is a condensed version of that used in
engineering and science research journals, though it is less demanding in
terms of background citations and requires less discussion since you will
not be obtaining “new” results.

A short report has the following parts:

Title and Abstract The abstract is a very concise summary. It gives, in
about three sentences, the objective of the experiment, the experi-
mental technique used, and the results. Important numerical results
should be given, with uncertainties and units.
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Results The Results section contains the data you obtained and the analy-
sis you used. Probably your data will be presented in tables or graphs
(or both). You should include an analysis of random errors in this sec-
tion, though long derivations should be placed in an appendix and
cited here. When your imaginary reader finishes the Results section,
he should know what data you obtained and how you analyzed it.

Discussion Here you may put pretty much whatever you think is impor-
tant that you have not yet said. In particular, I recommend the fol-
lowing:

• Discussion of any sources of systematic error in the experiment,
how they might be eliminated in a better experiment, and your
judgement about their importance.

• Comments about the likely sources of random error, and possi-
ble ways of reducing it.

• Your best values for the sought-after quantities and their uncer-
tainties.

• Comparisons of your result with values obtained by others.
• Any other observations youwant to make about the experiment,
the analysis, or the results.

Questions Answers to any questions asked in the laboratory handout.

Bibliography Citations of other sources, including unpublished ones such
as fellow students who helped you. Use a consistent citation style
such as that used in Shoemaker, Garland, and Nibler (SGN).

Appendix This contains long, mostly nontextual, material which would
unnecessarily break up the main report, and which is not important
to a reader who just wants to know what you did and what results
you got. Examples are long tables of raw data and long mathematical
derivations. If you presented tables of calculated quantities in the
Results section, you should show a sample calculation here.

Your report is an essay; it should read smoothly, and have the same
quality of exposition that you would use in (say) a literature class. The first
person is appropriate when you are describing actions you took. Please do
not fall into the old trap of removing all the subjects from your sentences.

The report for one of the experiments you do should be prepared in the
style used in the Journal of Physical Chemistry, including an introduction,
a clear experimental section, and more extensive discussion.
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C Tables, graphs, and units

Tables and graphs should have identifying numbers and captions, and should
give both values and units for all quantities. Two different ways of specify-
ing units are acceptable.

1. Make the numbers or points in your table or graph dimensionless,
and provide labels which show exactly how the dimensionless values
were obtained. For example, a table column might be labeled T/K
to indicate that the (dimensionless) numbers listed in the table were
obtained by dividing the measured temperatures by 1 Kelvin. In a
graph, the T/K should be the axis title, and should not be attached to
a particular tick mark label on the axis. This is the style I prefer.

2. Tabulate or plot dimensioned quantities, and attach the appropriate
units to the first item in the table column or to one of the tick-mark
labels on the graph axis. The column heading or axis title should
name only the quantity being plotted or tabulated and should have
no reference to units.

Examples of these two styles are shown in Figure 7. Note that I do not
recommend the common style of placing the axis units in parentheses after
the axis label, as in “Concentration (M)”. That notation becomes ambigu-
ous when the units must be scaled. If a graph axis is labeled “Concentration
(104 M)”, and the numbers on the axis tick marks run from 0 to 4, it is not
clear to the reader whether the true range runs from 0 to 4×104 M or from
0 to 4×10−4 M.
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Temperature/K Vapor pressure/Torr
200 0.14
220 0.45
240 0.81
260 1.09
280 1.25
300 1.37
320 1.63
340 1.79
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Vapor pressure of mcbanicium

Temperature Vapor pressure
200 K 0.14 Torr
220 0.45
240 0.81
260 1.09
280 1.25
300 1.37
320 1.63
340 1.79

Figure 7: Examples of plot and table styles.
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