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ABSTRACT Predictive relationships between estimates of functional population connectivity and physical
and biotic landscape features can provide important insights into present and future population responses to
human-mediated landscape change. Quantification of associations between landscape features and dispersal
or genetic surrogates such as gene flow among areas can be particularly challenging for continuously
distributed and highly mobile wildlife species. We assessed the relative influence of natural and human-
altered landscape features on white-tailed deer (Odocoileus virginianus) spatial genetic structure (SGS) in
southern Michigan (USA) using 7 microsatellite markers assayed for 326 adult individuals from 21
contiguous counties (33,284 km2). We used previously collected telemetry data to quantify probabilities of
habitat occupancy and seasonal movements that allowed selection and weighting of landscape features to
create habitat suitability indices (HSI). We assigned individuals to groups (n¼ 13) for statistical analyses
quantifying relationships between measures of SGS (response variable) with Euclidean distance, least cost
distances parameterized using HSI, and presence of natural (rivers) and man-made (roads) barriers to
dispersal. Over the entire study area, genetic differentiation was significant (mean Fst¼ 0.019, P< 0.001) and
increased with increasing inter-group geographic distance (r2¼ 0.381; P< 0.05). We identified features in
the landscape matrix between groups including rivers, high traffic roads, and habitats of intermediate HSI as
inhibiting gene flow. Low HSI was associated with low between-group Fst and appeared to facilitate gene
flow. Quantification of the relative importance of man-made barriers (roads) and habitat suitability to SGS
for white-tailed deer emphasizes the importance of joint use of ecological and genetic analyses in conservation
and control efforts for abundant and mobile wildlife species. � 2014 The Wildlife Society.

KEY WORDS functional connectivity, gene flow, habitat suitability, landscape genetics, least cost distance, white-
tailed deer.

Landscape composition and configuration typically vary over
space and time (Wagner and Fortin 2005) because of natural
processes that have occurred over historical and contemporary
time scales (Anderson et al. 2010) and because of recent human
activities (D-Eonet al. 2002). Increasingly, landscape changes are
occurring on ecological time scalesbecause human activities have
left a more recent and expansive footprint on landscape features
than have natural processes (Kareiva et al. 2007). These recent
events including creation of roads (Forman andAlexander 1998,
Balkenhol and Waits 2009) or changes in environmental
conditions and land-use (Geffen et al. 2004, Coulon et al.
2006) affect probabilities of habitat occupancy and rates of gene

flow among wildlife populations. Understanding how landscape
featuresandaspectsof a species’ ecologyaffectmovementpatterns
and population connectivity is a major challenge facing wildlife
conservation andmanagement programs attempting tomaintain
ecological integrity (Andreasen et al. 2001), functional connec-
tivity (Beier et al. 2008), population viability (Hanski 2002), or to
minimize human conflicts (Henderson et al. 2000). Further,
landscape features can act as agents of selection (Manel et al.
2010). Therefore, characterizing rates of dispersal through
heterogeneous landscapes is important to detect selection along
environmental gradients (DeMita et al. 2013), and is increasingly
possible because genomics data is becoming available for many
organisms, including ungulates (Haynes and Latch 2012).
Natural and anthropogenic processes have affected physical

and biotic landscape features that concurrently have
influenced wildlife population demography and individual
movements (Clobert et al. 2009). These processes can, in
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turn, influence levels of genetic variability within populations
and the degree of spatial variation in population gene
frequency (i.e., operational definition of spatial genetic
structure [SGS]; Waples and Gaggiotti 2006, Boulet et al.
2007). For instance, features of the physical and biotic
environment such as habitat quality may affect the
probability of movements such as dispersal (Bowler and
Benton 2005). Habitat quality considers multiple compo-
nents collectively (i.e., food, cover) to evaluate the capacity of
an area to support individuals. As habitat quality varies
spatially, individuals are likely to remain in areas (patches) of
high habitat quality (Knowlton and Graham 2010) and
disperse into or through areas of lower habitat quality. Thus,
if individuals are philopatric to natal areas, expectations are
that areas of comparatively higher and lower habitat quality
will be characterized by higher and lower measures of genetic
diversity, respectively (Epperson 1993), including mean
relatedness. For example, areas of higher habitat quality may
support higher population densities and individual fitness.
Likewise, areas of lower habitat quality may demonstrate
lower levels of genetic diversity due to smaller population
sizes and decreased fitness (Morris et al. 2004). These lower
quality areas may also exhibit higher levels of gene flow as
individuals disperse through and potentially seek areas of
higher quality habitat (Morris et al. 2004). Other landscape
features such as roads (Balkenhol andWaits 2009) and rivers
(Blanchong et al. 2008) may present barriers to dispersal, and
thus affect SGS.
For species that disperse long distances or are widely

distributed throughout the landscape, measures of genetic
distance or spatial variance in allele frequency (e.g.,
F-statistics; Weir and Cockerham 1984) are often used to
characterize gene flow among groups of animals captured
from different locales (Cushman et al. 2006, McRae and
Beier 2007, Purrenhage et al. 2009). Accordingly, landscape
genetic studies (Manel et al. 2003; Storfer et al. 2007,
Holderegger and Wagner 2008) using estimates of SGS and
remotely sensed spatial data describing landscape features are
increasingly emphasized as an effective means to quantify the
relative importance of factors affecting connectivity among
populations (Cushman et al. 2006, Hall and Bessinger 2014).
As wildlife populations are increasingly affected by human
activities and landscape changes (Fahrig 2007), understand-
ing the complex interactions between measures of SGS,
geographic distance, and landscape permeability is critical
for management or conservation planning (Minor and
Urban 2007, Kool et al. 2010), and population control
(Côté et al. 2004).
The genetic signatures of population responses to human

activities are often dependent on a species’ vagility
(Landguth et al. 2010a,b). White-tailed deer (Odocoileus
virginianus) are highly mobile habitat generalists
(Hirth 1977)that have successfully adapted to human-
altered landscapes including areas interspersed with forest
cover, edge (Marchinton and Hirth 1984, Shi et al. 2006),
agricultural crops that supplement natural forage (Gladfel-
ter 1984), and urban areas (Blanchong et al. 2013). White-
tailed deer population abundance has increased from

historical (pre-settlement) levels in southern Michigan,
USA(Michigan Department of Natural Resources
[MDNR] 2009). In southern Michigan and many areas
in the north-central United States and southern Canada,
historically forested landscapes have been fragmented by
agricultural practices and human developments such as
transportation networks that have created an increasing
footprint of urbanization over the past 150 years (Haw-
backer et al. 2006). High levels of abundance do not alone
imply that dispersal across anthropogenically altered land-
scapes is extensive. Therefore, management and control
activities for natural populations of ecologically and
economically important species such as white-tailed deer
necessitate a greater understanding of how landscape
features affect movements (With et al. 1997, Crooks and
Sanjayan 2006).
Our general objective was to quantify relationships between

natural landscape features and features associated with past
and present human activities and SGS of white-tailed deer in
southern Michigan. We hypothesized that landscape
features reflecting the quality and spatial heterogeneity
(Diefenbach et al. 2008) and degree of habitat fragmentation
(Long et al. 2005), that are common in the north-central
United States and Michigan are associated with SGS.
Specifically, our working hypotheses were 1) habitat

suitability within patches occupied by white-tailed deer
was positively related to genetic diversity and SGS, 2)
measures of habitat suitability and landscape resistance
between populations were better predictors of genetic
diversity and SGS than geographic distance alone, and 3)
natural landscape features including rivers as well as
prominent and recent human construction (highways)
were barriers to movements such as dispersal, as reflected
by estimatesof SGS.

STUDY AREA

We conducted the study across 21 counties (33,284 km2) in
southernMichigan. The area is a fragmented mosaic of land-
cover and land-use practices, dominated by agricultural
cropland planted predominately in corn and soybeans,
particularly in the central region of the study area. Natural
vegetation including deciduous upland and lowland hard-
wood habitat types were more abundant in the western,
eastern, and northern portions of the study area. The
growing season (i.e., the average annual accumulation of
daily mean temperatures >5.68C) was 150 days, generally
occurring between mid-May to mid-October (Sommers
1977). Average annual snowfall was 120.2 cm between 1999
and 2000 (Midwestern Regional Climate Center,
Champaign, Illinois, USA). Deer densities within the study
area range from 15 to 40 deer/km2; densities were higher in
areas with limited hunting access (MDNR 2010). Because
winter thermal cover may not be necessary for deer in this
area (Torgersen and Porath 1984), individuals tend to be
non-migratory between summer and winter ranges
(Pusateri 2003, Hiller 2007).
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METHODS

Development of Indices of Habitat Suitability
Habitat suitability indices are frequently used to identify
characteristics of areas that are selected by wildlife (Morrison
et al. 2006). Radio-telemetry data are often used to develop
habitat suitability indices (Aebischer et al.1993, Epps et al.
2007, Chietkiewicz and Boyce 2009, review of applications
with genetic data in Spear et al. 2010). We used previous
radio-telemetry data on white-tailed deer within 2
portions of our study area (Pusateri 2003, Hiller 2007) to
identify and weight landscape features that have been
identified as features important for determining deer habitat
selection during all seasons in southern Michigan (Miranda
and Porter 2003, Hiller 2007). The studies used 59 adult deer
captured during winter 2001–2002 (Pusateri 2003,Michigan
State University All-University Committee on Animal Use
and Care approval 01/01–001-00) and 66 adult deer captured
during winter 2004–2006 (Hiller 2007, Michigan State
University All-University Committee on Animal Use and
Care approval 01/04–006-00) located 2–5 times/week
during the entire year using triangulation methods (White
and Garrott 1990). The number of location estimates
averaged 132/deer (Hiller 2007).

We obtained characterization of white-tailed deer habitat
suitability in southern Michigan landscapes using land cover
classifications from the Integrated Forest Monitoring,
Assessment, and Prescription (IFMAP) data (MDNR
2003) at a resolution of 30-m� 30-m in ArcGIS 9.3.1
(Environmental Systems Research Institute, Redlands,
California, USA). We used the specified resolution because
the IFMAP data was classified from Landsat Thematic
Mapper satellite imagery produced in 30-m� 30-m cells.
We estimated a composite habitat suitability value based on
the proportion of area classified as urban, coniferous, upland
deciduous, woody wetland, and agricultural edge within a
circular moving window with a radius of 900m. A 900-m
radius window was comparable to the home range size of a
typical adult female deer in Michigan (Pusateri 2003, Hiller
2007). The value assigned to each pixel was the habitat
suitability within a hypothetical deer’s home range if it were
centered on any 30-m� 30-m pixel within the study area.
Habitat suitability was quantified as:

HSI ¼ ð4CONIFÞ þ ð2DECIDÞ þ ð2AGEDGEÞ þ URBAN þWETL

10

where the habitat suitability index (HSI) was the weighted
average of CONIF, DECID, AGEDGE, URBAN, and
WETL. Weighting coefficients (Spear et al. 2010) were
assigned based on a ranking of importance (relative
occupancy time within each habitat type) to deer habitat
selection in southern Michigan. The variable CONIF was
the suitability index on a scale of 0–100 of the proportion of
coniferous forest type within the evaluation area. The
minimum threshold for high suitability was 10% of the home
range comprised of coniferous forest types (Pusateri 2003,
Hiller 2007). The variable DECID was the suitability index
for the proportion of deciduous forest cover; optimal

conditions occurred between 20% and 70% (Hiller 2007).
AGEDGE was the suitability index quantifying the
proportion of agricultural row crops within 180m from a
forest edge. Agricultural crops provide an abundant food
source for deer (Gladfelter 1984), and comprise the major
portion of their diet (Nixon et al. 1970) and home range
(Pusateri 2003, Hiller 2007) in the mid-west agricultural
region of the United States. Thus, suitability of AGEDGE
increased linearly with percent of agricultural edge. Deer
generally do not select residential or urban areas (i.e., areas
with man-made structures, roads, golf courses, residential
parks; Pusateri 2003, Hiller 2007). However, some low-
density residential areas may provide food sources for deer
(Miranda and Porter 2003). Therefore, the suitability of
URBAN was based on a negative relationship to the percent
of residential/urban area within the moving window. The
variable WETL was an index quantifying the ideal woody
wetland composition within the window, suitability was
optimal between 10% and 25% (Pusateri 2003).
We also included in analyses presence–absence of

natural landscape features including rivers (Blanchong
et al. 2008) and roads (Balkenhol and Waits 2009,
Corlatti et al. 2009) that have been found to affect
SGS. We classified highways according to levels of
use (traffic volume) based on information acquired
from the Michigan Department of Transportation
Traffic Monitoring Information System (http://www.
michigan.gov/mdot-tmis). Specifically, we classified
major (4 lane) highways as high-traffic (>50,000
vehicles/24 hr), medium traffic (20,000–50,000 vehicles/
24 hr), or low traffic(<20,000 vehicles/24 hr). We also
used presence of all water bodies classified as rivers
according to Michigan hydrology maps (Michigan Center
for Geographic Information 2009).

Sampling for Genetic Analysis
Several aspects of study design and genetic analysis can
improve inferences regarding the influences of landscape
features on spatial genetic structure (Anderson et al. 2010),
including the spatial extent, lag, and grain over which
observations are collected and analyses conducted (Dungan
et al. 2002, Cushman and Landguth 2010). Locations of
individual adult (�1.5 yr) deer samples (n¼ 326; 44% female
and 56% male) collected over the period 1998–2000 were
spatially referenced based on the location of harvest
(township, range, section) provided by hunters.
We assigned individuals to groups that were spatially

arrayed over contiguous geographic areas to achieve
replication for statistical comparisons between measures of
spatial genetic structure, inter-group Euclidean distance,
inter-group measures of habitat quality (HSI), and
presence–absence of dispersal barriers (roads and rivers).
Specifically, we assigned individuals to 13 contiguous groups
that we defined a priori rather than a posteriori (e.g., using
clustering algorithms such as BAPS; Corander Marttinen
2006) because deer in Michigan (e.g., Blanchong et al. 2007)
and elsewhere in the Midwestern United States (e.g.,
Robinson et al. 2012) are continuously distributed and
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exhibit a pattern of isolation-by-distance (Wright 1943).
We used groups rather than individuals for several reasons.
The first is precedence in the landscape genetics literature
(Koyghobadi et al. 2005, Goldberg andWaits 2010, Murphy
et al. 2010, review in Storfer et al. 2007). Secondly, our deer
samples were spatially referenced only to a single (harvest)
location, which makes assigning accurate weights, such as
habitat suitability difficult. Also, uncertainty may exist
regarding the reported harvest locations of individuals, and
our harvest locations were reported only to the level of a
section (a 2.6-km2 area). These problems are less of a concern
when characterizing habitat patches and habitat suitability
for a group of individuals inhabiting those patches. Mean
area sampled per group was 734 km2, range 259–1,277 km2;
Fig. 1). We assumed the groups were a representative sample
to understand the spatial genetic structure of deer within the
study area.
We identified boundaries of deer groups in ArcMap using

the minimum convex polygon (MCP) method with Hawth’s
Analysis Tools (Beyer 2004) and connecting points of the
outer coordinates of clustered (i.e., based on proximity) deer
samples. Group size averaged 25 individuals (range 14–42).
Mean inter-group distance was 101 km (range 30–189 km).
We calculated the average HSI within the polygon defining
the boundary of each group to quantify mean habitat
suitability associated with landscapes within each group
polygon.

Genetic Analysis
We extracted DNA from archived tissue samples collected
from white-tailed deer using QIAGEN DNeasy extraction
kits (Qiagen, Valencia, CA). We genotyped all individuals at
7 nuclear, bi-parentally inherited microsatellite loci
(BM1225, BM4107, BM4208, BM6506, CSN3, Bishop
et al. 1994; RT23, RT27,Wilson et al. 1997). We conducted
polymerase chain reactions (PCR) and genotyping following
protocols described in Blanchong et al. (2006,2008). We
screened PCR products using either a Li-COR Instruments
Li-COR IR2 DNA Sequencer (NENTM, Lincoln, NE) or
Hitachi Instruments FMBIOII sequencer (Hitachi Software
Engineering Co., Ltd., Yokohama, Japan). We ran
individuals of known genotype and size standards concur-
rently on each gel. Two experienced laboratory personnel
scored all genotypes. We genotyped 10% of all samples a
second time for all loci as a means of quality control. Scoring
errors rates were <0.5% (1 of 231 genotypes were erroneous
during error check).
For each group of deer, we tested genotype frequencies at

all loci for Hardy–Weinberg (HW) expectations using the
exact HW test of Guo and Thompson (1992) implemented
in GENEPOP version 4.0 (Rousset 2008). We conducted
tests for evidence of genotypic linkage disequilibrium (i.e.,
whether genotypes at 1 locus are independent of genotypes at
a second locus) using the log-likelihood ratio test, with
probabilities computed based on the Markov chain method
of Raymond and Rousset (1995) implemented in GENE-
POP.We used a Bonferroni correction (Rice 1989) to adjust
alpha levels for multiple tests. We calculated estimates of

allele frequencies and expected and observed heterozygosity
(HE, HO) for each group using MICROSATELLITE
ANALYSER v 3.12 (Dieringer and Schlötterer 2003). We
calculated group estimates of allelic richness (Ar) and the
inbreeding coefficients (FIS) using FSTAT version 2.9.3
(Goudet 2001). We derived estimates of pairwise relatedness
among individuals within each group using maximum
likelihood methods (Wagner et al. 2006) implemented in
program ML-Relate (Kalinowski et al. 2006). We selected
this method because maximum likelihood methods are
typically more accurate than other methods (Milligan 2003).
Using GENECAP (Wilberg and Dreher 2004; based on the
methods of Evett and Wier 1998), we estimated a multi-
locus probability of identity at the level of full siblings was
0.000498 over 7 loci.
The quality of habitat within an area occupied by an

individual can contribute to decisions to disperse (either
immigration or emigration) owing to condition or pheno-
type-dependent factors (Clobert et al. 2009). Hence, we
quantified the relative quality of landscape features (HSI)
associated with areas occupied by each group. We used
multiple linear regression implemented in SAS (v 9.2 SAS
Institute, Inc., Cary, NC) to associate within-group
measures of genetic diversity (HE, mean relatedness and
percentage of inter-individual pairs related at half-sibling
[HS], full-sibling [FS], or parent-offspring [PO] levels) to
HSI . We also used group size (N) and size of the MCP area
(km2) encompassing each group as predictor variables to test
for their effects. We used Bayesian methods (Foll and
Gaggiotti 2006) implemented in program GESTE to
determine the influence of mean habitat quality (HSI)
within the MCP of each group to genetic differentiation
(using point-estimates of Fst from GESTE) between the
focal group and all other groups. We used a burn-in of
50,000 replicates, a thinning interval of 20, and a sample size
of 10,000. We conducted analyses over 250,000 iterations.

Analyses of Spatial Genetic Structure Among Groups
We derived estimates of SGS (Fst, Weir and Cockerham
1984) from FSTAT and used them as a measure of SGS for
all pair-wise comparisons between the 13 groups. We used
Bonferroni corrections (Rice 1989) to adjust alpha levels to
account for multiple tests.
To test the hypothesis that the degree of SGS among

white-tailed deer in southern Michigan was a function of
geographic proximity (isolation-by-distance; Wright 1943,
Rousset 1997), we performed a Mantel test of Euclidean
distance between group centroids on Fst/(1�Fst) in
PASSaGE version 2 (Rosenberg and Anderson 2011).
We assessed statistical significance based on 1000
permutations.
Bayesian clustering methods can have difficulty identifying

contiguous genetic clusters of individuals in species and
landscape contexts characterized by isolation-by-distance
(Waples and Gaggiotti 2006, Guillot et al. 2009). However,
to further examine any strong effects of putative barriers
(e.g., major highways) that may have overwhelmed an
underlying signal of isolation-by-distance, we employed
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Bayesian clustering methods that incorporated information
on individual harvest location to estimate cluster member-
ship (e.g., Corander and Marttinen 2006, Guillot et al.
2009). We performed analyses using BAPS version 4.0
(Corander et al. 2004), implemented using the spatial genetic
mixture analysis to assign individuals to genetic clusters. We
completed 10 independent runs of K¼ 1–13, and compared
results for consistency.
We tested for spatial genetic autocorrelation using all

individuals in GenAlEx 6.5 (Peakall and Smouse 2012) to
better understand the distances below which dispersal may be

restricted, and individuals are more genetically related than
expected by chance. We tested for significance using 9999
random permutations of the data, and 95% confidence
intervals; estimates of r were determined by 9999 bootstraps.
We used 10 distance classes at 20-km intervals.

Quantifying Landscape Effects on Measures of Spatial
Genetic Structure
To quantify the influence of landscape features on deer SGS,
we used cost-distance analysis implemented in ArcMap and
the multivariate optimization approach of Pérez-Espona

Figure 1. Estimates of habitat suitability (light shade¼ low; dark shade¼high), boundaries of defined deer groups (inset), and collection locations (points) of
individuals genotyped in southern Michigan, USA 1998–2000. Membership to 1 of 2 distinct genetic clusters is shown by pink circles or yellow squares. The
high-traffic highway refers to the location of Interstate-75 (bold red line).
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et al. (2008) to calculate the least cumulative cost of moving
through landscapes between the geometric centroids of deer
groups. We used several landscape features to calculate the
cost distance to assess their influence on deer population
structure: major interstate highways (highways classified as
high, medium, or low based on traffic volume; see above),
rivers (Michigan Center for Geographic Information 2002),
and habitat suitability (HSI).We classified habitat suitability
into low (0–35.9), intermediate (36–57.9), and high(58–100)
by optimizing the goodness of variance fit, and separated
classes using Jenk’s optimization in ArcMap, which
minimized the sum of the variance within each suitability
category (Jenks 1967). We classified suitability into the 3
categories to evaluate the specific contribution of different
measures of suitability to SGS. Because linear features
can become discontinuous when converted to 30-m raster
cells in the resistance surface, we buffered rivers, streams,
and roads by 50m prior to converting the linear features to
30-m� 30-m raster format.
We calculated least cost-distance matrices for each

landscape feature by developing several cost surfaces and
assigning each grid cell a cost¼ 1, except for those containing
the landscape feature of interest (Pérez-Espona et al. 2008).
Considerable uncertainty exists associated with weights
assigned to landscape variables (Spear et al. 2010, Manel and
Holderegger 2013). To address this uncertainty in a
systematic and quantitative manner, for the landscape
features of interest, we assigned a range of 8 cost values
(0.0001, 0.001, 0.01, 0.1, 10, 100, 1,000, 10,000). The range
in cost values were as described in other ungulate studies
(Pérez-Espona et al. 2008). Values increased incrementally
by a power of 10 to ensure we evaluated an adequate range of
values to determine whether the features were acting as
barriers (cost> 1) or facilitating (cost< 1) gene flow. We
used Mantel tests and permutation testing (n¼ 1,000
permutations) in Program R v 3.2.1 to determine which
cost value best quantified the effect of each landscape feature
on deer SGS, and to quantify the probability the observed
results would occur by chance. Additionally, we constructed
inter-group matrices of Euclidean distance and genetic
distance and used Mantel tests to quantify this relationship.
We determined which cost value for each landscape feature
maximized the r2 value and thus explained more of the
variability (relative to Euclidean distance alone) in
the relationship between genetic differentiation and land-
scape features (Pérez-Espona et al. 2008).
We then created resistance surfaces for all possible

combinations of landscape features using the cost values
for each feature that maximized r2. We ran 10 Mantel and
partial Mantel tests (i.e., partialling out Euclidean distance)
to compare which surface best explained SGS. Because of the
problem of non-independence of data points, Mantel tests
are one of the most appropriate analyses for distance-based
data (Legendre and Fortin 2010).
Because the Mantel and partial Mantel tests tend to have

high type 1 error rates (Balkenhol et al. 2009) and tend not to
correctly estimate r, we also tested the relationship between
SGS and all possible combinations (n¼ 31) of landscape

features (with the optimal cost weighting) using Akaike’s
Information Criterion (AIC; Burnham and Anderson 2002)
for multiple regression models. Using multiple methods
reduced the chances of leading to erroneous method-
dependent conclusions (Balkenhol et al. 2009). We
calculated AIC, relative AIC (DAIC), model likelihoods,
and Akaike weights for each model. We then used the
Akaike weights to determine parameter estimates and
unconditional standard errors (Burnham and Anderson
2002) and the best-cost model for explaining the relationship
between genetic differentiation and landscape features.
Because we compared each group with all other groups,
spatial autocorrelation in measures of inter-group differen-
tiation may exist and affect evaluations of model fit via AIC
(Goldberg and Waits 2010). Thus, we used multiple tests
(i.e., Mantel, partial Mantel, AIC) used for analyses to
combat shortcomings of any single method.

RESULTS

Spatial Heterogeneity in White-Tailed Deer Habitat
Suitability
The quality of deer habitat as reflected in measures of habitat
suitability (HSI) varied widely at multiple spatial scales
across the study area (Fig. 1) and within areas occupied by
each group of deer (Table 1). The central portion of the study
area, generally extending from southwest to northeast, was
predominantly agricultural lands. Mean HSI estimates for
white-tailed deer groups collected from these areas (e.g.,
groups 2, 6, 12, and 13) were considerably lower than for
groups collected in peripheral areas (Table 1). Large
contiguous areas of crops were interspersed with compara-
tively smaller patches composed of small woodlots and
woody vegetation associated with wind-rows and riparian
corridors as well as highways. Areas to the northwest, south,
and east of this central region were composed of higher
proportions of woody vegetation and were of comparatively
higher habitat quality. The entire study area was bisected by
several major highways and rivers (Fig. 1).

Measures of Genetic Diversity Within Groups
Genotypic frequencies at all loci within each white-tailed
deer group conformed to HW expectations, and we did not
detect any evidence of genotypic disequilibrium. Mean
estimates of group genetic diversity varied among groups
(allelic richness, Ar: 6.58–9.46, observed heterozygosity HO:
0.761–0.887, expected heterozygosity HE: 0.797–0.845,
Wright’s inbreeding coefficient Fis: �0.089 to 0.103;
Table 1). We did not observe latitudinal or longitudinal
trends in measures of diversity among groups (P> 0.05).
Mean habitat quality (HSI) within group sampling areas did
not predict group measures of genetic diversity (HE, mean
relatedness); however, we found a significant positive
relationship between mean group relatedness and group
sample size (r2¼ 0.67, P< 0.01). Collectively, measures of
within group genetic diversity were associated with the
sample size and/or area but not the quality of habitat within
the area encompassing groups.
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Analyses of Spatial Genetic Structure
Genetic differentiation over the entire study was significant
(mean inter-group Fst¼ 0.019, P< 0.01, range 0.000–0.053;
Table 2). Deer sampled in the eastern portion of the study
area (groups 9 through 11; Fig. 1) were particularly divergent
from deer across the central, northern, western, and southern
portion of the study area (Table 2). Inter-group genetic
differentiation increased when inter-group geographical
distance increased (r2¼ 0.186, P< 0.05; Fig. 2).
At the level of individuals, Bayesian clustering revealed

evidence for 2 genetic clusters. One cluster consisted of
individuals primarily centered in the eastern region of the
study area predominantly associated with groups 9 through
11 (Fig. 1). The other genetic cluster consisted of
individuals that were more widely distributed throughout
the south, east, and northern regions of the study area.
Individual relatedness among individuals was signifi-

cantly spatially autocorrelated over distances within the
boundaries of the sampling groups (Fig. 3). However,
evidence for gene flow over geographically more expansive
areas (Fig. 2) suggests that multi-generational gene flow or

long-distance gene flow is also important to SGS at larger
spatial extents.

Effects of Within Patch Habitat Quality on SGS
Deer collected from groups inhabiting areas of lowest and
highest habitat quality as reflected by mean group HSI were
less genetically differentiated from other groups than
groups of deer inhabiting areas of intermediate quality
(Fig. 4). However, estimated group HSI was not a
significant predictor of SGS (P> 0.05), likely owing to
the non-linear nature of the relationship between HSI and
inter-group Fst values. The addition of a quadratic term in
the regression of inter-population genetic variation and
mean population HSI (r2¼ 0.436; P< 0.05) had a better fit
than the linear model (r2¼ 0.013; P> 0.05) suggesting that
the relationship between patch habitat quality and
propensity for gene flow were neither linear nor positive
across the range of the mean HSI values of the 13 sampled
groups. This result was consistent with analyses of high,
intermediate, and low HSI and SGS (see below). Mean
inter-group Fst differed among groups (Table 2). For

Table 2. Pair-wise genetic differentiation (Fst; above diagonal) and Euclidean distance (km; below diagonal) between white-tailed deer sampled from 13
groups in southern Michigan, 1998–2000. Values with an asterisk (*) indicate pairwise Fst values that are significantly different from (P< 0.05).

White-tailed deer groups

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0115 0.0204 0.0127 0.0165* 0.0224* 0.0204 0.0105 0.0286* 0.0299 0.0093 0.0014 0.0039
2 70.53 0.013 0.0185 0.0103 0.0071 0.0151 0.0121* 0.0493* 0.0347* 0.0134 0.0033 0.0086
3 92.44 35.42 0.0152 0.0291 0.0117 0.0325 0.0309* 0.042 0.0279* 0.0092 0.0099 0.0181
4 115.53 45.3 37.68 0.0291* 0.0192* 0.0368* 0.0269* 0.009 0.0056 0.0074* 0.0131* 0.016
5 128.7 76.43 99.76 72.13 0.0099 0 0.0122 0.0444* 0.0435* 0.0304* 0.0073 0.0082
6 102.73 73.39 105.84 91.03 39.15 0.0164 0.0142 0.0469* 0.0362* 0.0248* 0.0038 0.0105
7 151.82 117.49 145.58 121.02 49.11 49.47 0.013 0.0528* 0.0498* 0.0265* 0.0125 0.0012
8 134.57 126.62 160.64 146.9 84.74 56.03 52.09 0.0436* 0.041* 0.0153* 0.0132* 0
9 116.78 151.55 186.07 188.67 148.8 110.01 131.68 81.78 0.006 0.0213* 0.0350* 0.0322*

10 89.91 137.48 169.83 179 152.31 113.49 146.15 101.92 34.47 0.0100* 0.0296* 0.0231
11 65.14 122.96 152.31 167.04 152.82 116.13 156.17 118.56 63.66 29.89 0.0137* 0.0043
12 49.05 64.33 98.35 105 89.95 64.33 104.8 85.96 87.77 74.01 65.16 0.0031
13 95.04 102.69 138.11 133.92 89.67 50.82 79.28 41.76 59.19 67.03 78.49 48.52

Table 1. Summary measures of genetic diversity including estimates of inter-individual relatedness within 13 groups of white-tailed deer sampled in
southern Michigan, 1998–2000, minimum convex polygon estimates of areas (km2) encompassing all individuals within a group, and mean habitat suitability
indices (HSI) in areas encompassing each group. We measured HSI on a scale of 0–100; 100 represents optimal conditions.

Measures of genetic diversitya

Group Sample size k A HO HE Fis Mean relatedness Group area Mean HSI/group area

1 19 8.86 9.085 0.887 0.817 �0.089 0.0456 663.02 48.30
2 30 10.14 7.072 0.830 0.844 0.017 0.0556 1,277.16 34.06
3 13 8.14 9.463 0.810 0.831 0.026 0.0341 259.66 46.19
4 17 8.71 6.765 0.787 0.849 0.103 0.0376 390.61 49.75
5 38 10.71 7.648 0.817 0.817 �0.001 0.0525 978.13 45.13
6 14 8.43 7.916 0.837 0.844 0.009 0.0384 541.23 29.28
7 16 8.86 8.402 0.809 0.813 0.005 0.0369 659.72 46.45
8 26 10.43 7.554 0.818 0.815 �0.003 0.0504 702.65 59.59
9 38 10.43 6.577 0.761 0.797 0.045 0.0524 808.06 49.83
10 19 9.57 8.754 0.864 0.838 �0.021 0.0470 342.59 46.34
11 42 11.14 8.611 0.830 0.845 0.018 0.0526 1,129.76 53.34
12 31 10.71 7.669 0.844 0.833 �0.026 0.0535 672.77 35.97
13 19 9.57 8.277 0.807 0.815 0.023 0.0305 1,116.53 37.25

ak, mean number of alleles; A, allelic richness; HO, observed heterozygosity; HE, expected heterozygosity; Fis, Wright’s inbreeding coefficient.
Statistical significance of Fis (P< 0.05).
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example, groups located in the center of the study area
inhabiting areas of generally poorer habitat (groups 12 and
13) and peripheral groups with comparatively higher HSI
(e.g., groups 1 and 11) were characterized by lower and less
variable inter-group Fst values (Fig. 4).

Effects of the Landscape Matrix on Spatial Genetic
Structure
Four landscape features explained more of the variability
in genetic differentiation among groups, as indicated by a
higher r2 value than Euclidean distance alone. The high-
traffic highway (i.e., Interstate highway 75), rivers, and
intermediate habitat suitability appeared to act as barriers
to gene flow, and the cost values maximizing r2 for these

features were 10,000, 1,000, and 100, respectively
(Table 3). Low habitat suitability facilitated gene flow;
the cost value that maximized r2 was less than 1
(estimated resistance weight 0.1). Medium- and
low-traffic highways and areas classified as high habitat
suitability did not explain more of the variation in genetic
differentiation than Euclidean distance alone, and thus
we did not include them in final resistance surfaces to
explain SGS.
The Mantel and partial Mantel tests indicated that the

best models for explaining genetic differentiation included
rivers, intermediate habitat suitability, and low habitat
suitability (Table 4). However, the confidence intervals for

Figure 2. Analysis of isolation by distance showing the relationship between inter-group genetic differentiation as a function of distance (R2¼ 0.186; P< 0.05)
for white-tailed deer in southern Michigan (USA) harvested between 1998–2000.
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Figure 3. Correlograms of correlation coefficients (r) of geographic and genetic distance at variable distance classes (km) for individual white-tailed deer
harvested in southernMichigan, USA (1998–2000). Upper and lower error bars are bound by 95% confidence intervals around each r, and dashed lines indicated
95% confidence limits (upper [U] and lower [L]) around the null hypothesis of a random spatial distribution of genotypes.
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the cost value (cost¼ 100) maximizing r2 (r2¼ 0.555,
lower¼ 0.33, upper¼ 0.71) for intermediate habitat suit-
ability overlapped the confidence limits for the r2 value at a
cost of 0.1, thus suggesting that the inhibiting relationship
to genetic differentiation may be weak (Table 3). Likewise,
the confidence limits for the cost value (cost¼ 0.1)
maximizing r2 (r2¼ 0.430, lower¼ 0.31, upper¼ 0.57) for

low habitat suitability overlapped that of the r2 value for a
cost of 10, thus suggesting that the facilitating relationship
to genetic differentiation may be weak (Table 4). The
second-best model according to the Mantel and partial
Mantel tests included the high-traffic highway and rivers.
The lower confidence limit of the maximum r2 value for the
high-traffic highway was greater than the upper limit for

Figure 4. Graphical relationship between mean genetic differentiation (natural log of point estimates over all pairwise comparisons) between groups of white-
tailed deer harvested in southern Michigan, USA (1998–2000) and average habitat suitability index (HSI) estimates for the sampling area encompassing each
white-tailed deer group.

Table 3. Estimates of r2 from Mantel tests among measures of inter-group genetic differentiation [Fst/(1�Fst)] between groups of white-tailed deer
harvested in southern Michigan, USA (1998–2000) and each of several landscape features assessed at each of several resistance values. Values with a dagger
(†) indicate features and costs that improved model predictability over Euclidean distance alone (r2¼ 0.381). Upper and lower 95% confidence limits are
given in parentheses below significant cost values (P< 0.05) with higher r2 values than Euclidean distance. Hwy, highway; HSI, habitat suitability index.

Cost values

Facilitate gene flow Inhibit gene flow

0.0001 0.001 0.01 0.1 10 100 1,000 10,000

All hwy (same weights) 0.375 0.375 0.243 0.241 0.375 0.369 0.226 0.151
High traffic hwy
(I-75)†

0.213 0.213*

(0.12 – 0.33)
0.216* (0.13 – 0.34) 0.243*

(0.15 – 0.37)
0.382*

(0.26 – 0.52)
0.424*

(0.30 – 0.57)
0.593*

(0.46 – 0.74)
0.631†*

(0.47 – 0.74)
Medium traffic
hwy

0.175 0.176 0.182 0.239 0.381 0.341 0.131 �0.138

Low traffic
hwy

0.231 0.254 0.297 0.318 0.381 0.375 0.319 0.237

Rivers† –0.133 –0.133 –0.125 0.000 0.378*

(0.26 – 0.51)
0.372*

(0.27 – 0.52)
0.396†*

(0.25 – 0.49)
0.382

High HSI –0.013 0.02 0.031 0.111 0.361 0.326 0.029 –0.125
Intermediate
HSI†

–0.147 –0.101 0.043 0.326*

(0.22 – 0.43)
0.399*

(0.28 – 0.54)
0.555†*

(0.33 – 0.71)
0.547*

(0.08 – 0.84)
0.506*

(0.50 – 0.78)

Low HSI† 0.307 0.294 0.32 0.430†*

(0.31 – 0.57)
0.352*

(0.23 – 0.49)
–0.057 –0.168 –0.143

Euclidean distance 0.381
(0.27 – 0.51)

* Indicates significant cost values (P< 0.05).
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cost values <1. For rivers, cost values <1 were not
significant. Thus, the presence or absence of rivers in the
landscape matrix between populations was predictive of
inter-group Fst (r2¼ 0.396) and significantly exceeded
relationships based on Euclidean distance alone (r2¼ 0.381;
Table 3). The strongest inhibitor of gene flow (i.e.,
significant improvement over the model with Euclidean
distance alone) was when we conducted the cost analysis
using the high-traffic highway (i.e., Interstate highway 75;
Fig. 1) that separates groups 9 through 11 from the rest of
the study area. This highway also separated the majority of
members of the 2 inferred genetic clusters (see above;
Fig. 1).
According to AIC, the final model of best fit included the

high-traffic highway, rivers, intermediate habitat suitability,
and Euclidean Distance (AIC¼�704.7, r2¼ 0.426; Ta-
ble 5), and also explained more of the variation in genetic
differentiation than Euclidean distance alone (r2¼ 0.186).
The second best model contained the high-traffic highway

and rivers (r2¼ 0.384) and also explained more of the genetic
variation than Euclidean distance alone. Permutation testing
revealed that these relationships did not occur by random
chance (P< 0.001). Final model averaged parameter
estimates were b̂0 ¼ 0:004(SE¼ 0.003), b̂1 ¼ 2:65E� 9
(SE¼ 7.01E�10), b̂2 ¼ 1:60E� 7 (SE¼ 5.13E�8),
b̂3 ¼ 7:39E� 8(SE¼ 4.12E�8), b̂4 ¼ 2:29E� 7(SE¼ 1.01
E�7) for high traffic highways, rivers, medium HSI, and
Euclidean distance, respectively (Table 5).

DISCUSSION

Evaluation of landscape features associated with connectivity
between patches has wide applications in wildlife conserva-
tion planning at multiple spatial scales (Calabrese and Fagan
2004, Urban et al. 2009).We developed a connectivity model
for white-tailed deer and evaluated multiple least cost models
to measure associations between landscape features and
measures of genetic diversity within and among deer groups

Table 4. Correlation coefficients, lower and upper confidence limits from Mantel and partial Mantel tests on the relationship between resistance surfaces
containing various landscape features and spatial genetic structure [Fst/(1�Fst)] among white-tailed deer groups in southern Michigan, 1998–2000. Hwy,
high traffic highway (Interstate highway I-75); HSI, habitat suitability index; EucDist, Euclidean distance.

Features

Mantel Partial Mantel

r2 Lower Upper r2 Lower Upper

River, medium_HSI, low_HSI 0.712 0.629 0.793 0.652 0.563 0.731
Hwy, river 0.673 0.521 0.833 0.602 0.418 0.788
Medium_HSI, low_HSI 0.652 0.509 0.774 0.584 0.41 0.722
River, medium_HSI 0.639 0.541 0.763 0.586 0.466 0.719
Hwy, river, low_HSI 0.632 0.477 0.805 0.554 0.383 0.76
Hwy, river, medium_HSI 0.629 0.495 0.841 0.544 0.399 0.783
Hwy, river, medium_HSI, low_HSI 0.626 0.485 0.831 0.546 0.395 0.777
Hwy, low_HSI 0.624 0.464 0.813 0.544 0.36 0.757
Hwy, medium_HSI 0.615 0.469 0.829 0.528 0.352 0.77
EucDist 0.381 0.266 0.513

Table 5. Akaike’s Information Criterion (AIC), relative AIC (DAIC) values, model likelihood, and Akaike weights (wt) for various models explaining
spatial genetic structure [Fst/(1�Fst)] among white-tailed deer groups in southern Michigan, 1998–2000. Hwy, high traffic highway (Interstate highway
I-75); Low_HSI, low habitat suitability; Med_HSI, medium habitat suitability; Hi_HSI, high habitat suitability; EucDist, Euclidean distance.

Parameter R2 AIC DAIC Likelihood Akaike wt

Hwy, river, med_HSI, EucDist 0.426 �704.7 0 1.00 0.47
Hwy, river 0.384 �703.2 1.5 0.47 0.22
Hwy, river, low_HSI 0.387 �701.6 3.1 0.21 0.10
Hwy, river, med_HSI 0.385 �701.4 3.3 0.19 0.09
Hwy, river, low_HSI, med_HSI 0.393 �700.4 4.3 0.12 0.06
Hwy, med_HSI 0.347 �698.7 6.0 0.05 0.02
Hwy, low_HSI 0.342 �698.1 6.6 0.04 0.02
Hwy, low_HSI, med_HSI 0.351 �697.1 7.6 0.02 0.01
Hwy 0.297 �694.9 9.8 0.01 0.00
River, med_HSI 0.270 �690.0 14.7 0.00 0.00
Med_HSI 0.244 �689.2 15.5 0.00 0.00
Low_HSI, med_HSI 0.270 �688.2 16.5 0.00 0.00
River, low_HSI, med_HSI 0.253 �688.0 16.7 0.00 0.00
Low_HSI 0.239 �687.0 17.7 0.00 0.00
River, low_HSI 0.222 �686.8 17.9 0.00 0.00
River 0.220 �686.8 17.9 0.00 0.00
EucDist 0.186 �683.6 21.1 0.00 0.00
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in southern Michigan. Our global analysis using multiple
methods (Mantel tests and AIC model evaluation) to
quantify effects of factors influencing SGS provided evidence
that landscape features between groups, such as rivers and
high-traffic highways, were barriers to movement and were
significant predictors of SGS (Tables 3 and 5). Natural
landscape features such as rivers have previously been
documented as imposing a barrier to white-tailed deer gene
flow (Blanchong et al. 2008, Robinson et al. 2012). Man-
made features of more recent (<65 years) origin such as
highways were also found to inhibit gene flow (Long et al.
2010) although white-tailed deer adapt well to urbanization
and fragmentation (Ditchkoff et al. 2006). The largest
(highest traffic volume) and oldest highway (Interstate
highway 75 in the eastern portion of the study area
constructed in the mid 1950–1960s) represented a significant
impediment to gene flow (Table 3), and coincided with the
boundaries of the 2 genetic clusters (Fig. 1). Roads
have frequently been shown to have negative effects on
wildlife movement (Foreman and Alexander 1998,
Trombulak and Frissell 2000, Underhill and Angold
2000, Balkenhol and Waits 2009). With increasing human
populations, transportation networks and highway traffic
volume are likely to increase with expansion of urban and
suburban areas (Borda-de-Aqua et al. 2011). Given the
relationships between SGS and presence of roads for highly
vagile white-tailed deer, spatial genetic structure of species
with lower vagility and lower variance effective population
size would be expected to be more dramatically affected by
anthropogenic disturbance.
Interpreting results from statistical tests of spatially

distributed phenomena is challenging because of issues
with spatial autocorrelation and strengths and weaknesses of
each test. For instance, partial Mantel tests and their
associated analyses (e.g., Multiple Regression on Distance
Matrices, MRM) have high type 1 error rates (Balkenhol
et al. 2009, Legendre and Fortin 2010), and information
theoretic approaches assume data independence (Burnham
and Anderson 2002). However, landscape genetic studies
commonly employ a number of analytical methods, and the
challenge is then to interpret several different model
results while taking into account the limitations of the
approaches. Both of our modeling approaches converge on
the results that rivers and high-traffic highways were
significant predictors of SGS. The relationship between
genetic diversity and landscape-level habitat suitability
metrics was less obvious. However, measures of habitat
quality quantified within and between areas occupied by deer
groups were also associated with SGS, as exemplified by
regression analysis of HSI for sampling areas encompassing
white-tailed deer groups and Fst (Fig. 4) and the results of
Mantel tests (Table 3), but to a lesser degree than rivers and
the high-traffic highway. For example, groups collected from
areas where habitat was of intermediate quality were more
highly differentiated from deer in other groups relative to
deer collected from areas of high and low habitat quality
(Fig. 4). Thus, the permeability of intermediate quality
habitat may be lower, meaning these areas inhibit gene flow,

whereas areas of low habitat suitability may facilitate gene
flow (Tables 3 and 5). In addition to the comparison of mean
genetic differentiation and HSI, model selection based on
AIC suggested that intermediate habitat suitability (inhibi-
tor) and low habitat suitability (facilitator) were significantly
better predictors of genetic differentiation than Euclidean
distance alone. Although the Mantel tests suggested these
habitat relationships may not be significant (Table 3), the
partial Mantel test andmodel selection based onAIC alluded
to their significance (Tables 4 and 5). Alternatively, the
habitat classes may not correctly reflect permeability or gene
flow, or may not be sufficient to detect patterns at the scale of
analysis. For instance, the variability inHSI is diluted as scale
becomes coarser. The variation in significance of habitat
suitability with different analysis methods warrants further
investigation of the effects of habitat on spatial genetic
structure at large landscape scales.
One important assumption underlying the approaches used

in this study, and those commonly used in landscape genetic
analyses (Hall and Beissinger 2014), is that the relationships
of interest are stationary or homogeneous spatially. The non-
random distributions of habitats of comparatively higher and
lower quality across the study area (Fig. 1) and the prominent
effects of interstate highway 75 on SGS (i.e., based on the
abrupt discontinuity in genetic cluster; Fig. 1) suggests non-
stationarity of effects of landscape features and barriers
affecting SGS. Alternative analytical methods such as
geographically weighted regression (GWR; Fotheringham
et al. 2002) can account for spatial components of the data
including local regression. However, GWR analyses requires
large datasets (ideally at least 40 measurements in weighted
regressions for each set of points (distance intervals;
Fotheringham et al. 2012), and for this reason, GWR has
not often been applied in landscape genetic studies. Across
our study area, the number of groups and inter-group
comparisons within and between patches were not sufficient
to use this approach. Other approaches such as multiple
regression on distance matrices (MRM; Lichstein 2007)
would allow the examination of how landscape features affect
patterns of genetic variance at varying distances; however, the
restricted number of groups precluded use of this or other
similar approaches.
The low inter-group genetic differentiation in groups of

deer inhabiting lower quality habitats may be due to lower
deer density in these areas, especially if the low suitability
areas were isolated or surrounded by intermediate habitat
quality, which may inhibit gene flow (Table 3). For example,
Roseberry and Woolf (1998) reported a positive curvilinear
relationship between white-tailed deer densities and habitat
suitability in an agricultural region in the mid-western
United States similar to our study area. Genetic differentia-
tion may be low in areas of higher quality habitat if deer were
able to meet life requisites and therefore, were less likely to
disperse (King 1938, Clobert et al. 2004), particularly if
immigration into these areas was also concurrently low. For
instance, Felix et al. (2007) found that non-migratory deer in
Michigan occupied areas of comparatively higher quality
winter and summer habitat than migratory deer that
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occupied areas where at least 1 critical habitat component
was missing from their seasonal home range. Deer in
Pennsylvania dispersed greater distances in areas with less
forest cover, which was related to lower habitat quality (Long
et al. 2005). Social organization of white-tailed deer (i.e.,
differences in degree of male and female philopatry) may also
explain SGS (Chesser 1991, Scribner et al. 2001). To
substantiate theses hypotheses, future research should
investigate the interrelationships among habitat suitability,
deer densities, movement patterns including dispersal and
migration, social organization, and SGS.
Evidence for multi-generational or long-distance dispersal

in our study is based on the dispersion of individuals with
high posterior probabilities of affiliation with the genetic
cluster whose members are predominately found in the
eastern portion of the study area (Fig. 1) and the significance
associated between inter-group genetic differentiation and
geographic distance across the entire study area (Fig. 2).
Although the effects of habitat suitability on long-distance
movements are unknown, long-distance movement of white-
tailed deer does occur. For instance, in our study area,
distances up to 60 km approximates the extent of detectable
positive genetic structure. In upper Michigan, seasonal
movements of greater than 50 km have been documented
(Verme 1973). Although the presence of the highway likely
impedes movement, underpasses and natural drainages or
waterways may facilitate deer passage in some instances
(Donaldson 2007, Corlatti et al. 2009, Ford et al. 2009).
Although quantitative data pertaining to population

density are not available, density certainly varies across the
large southern Michigan study area and throughout the
course of a year and could affect interpretations of results.
Spatial and temporal variability in deer density is likely due in
part to habitat quality and thus we expected collinearity
between site- (or group-) specific density and habitat quality.
For example, Roseberry andWoolf (1998) found that 81% of
the variation in local deer density was attributed to habitat
quality. Density likely also varies spatially and temporally in a
sex-specific manner (Bowyer 2004). Dispersal, migration,
and human activities such as baiting during hunting season
would also affect densities in localized areas as well as SGS
(Blanchong et al. 2006). Samples were collected during the
annual firearms harvest period but no data are available on
hunter effort or method of harvest. Movements of deer and
changes in local densities throughout the course of the year
may be a source of variability in our data. However, the fact
that the results showed relationships between measures of
SGS, barriers, and HSI in the absence of information on
variation in density suggests the results are likely robust.
Our analyses relied on measures of potential resistance of

landscape features to deer gene flow. Development of
predictive measures of resistance is challenging. Dispersal is
frequently conditional upon resource availability (e.g., food,
access to mates), and population density (Ronce et al. 2001,
Clobert et al. 2009), which vary spatially and temporally.
Resource availability can be estimated with measures of
habitat suitability, which are generalized estimates not
reflecting inherent variation at the microhabitat scale or may

vary because of factors such as drought, flooding, crop
rotations, or other events. Spatial and temporal scales over
which samples are collected (Anderson et al. 2010) and cost
surfaces (Spear et al. 2010) associated with landscape features
should be considered in experimental designs. Our estimates
of habitat suitability were based on data independent of
this study using telemetry data on deer in several portions of
our study area in southern Michigan (Pusateri 2003, Hiller
2007). Generalizations of the relative effects of habitat
features on SGS documented in Michigan to other areas of
the species range will require additional study.
Weighting of landscape features for the development of the

least cost distances is based on perceived measures of
permeability. Relative cost values assigned to different
landscape features are usually arbitrary because the true cost
to wildlife is unknown (Pérez-Espona et al. 2008). The cost
value assigned to each landscape feature will also affect the
modeled relationship between genetic structure and land-
scape features (Spear et al. 2010, Manel and
Holderegger 2013). Our approach of evaluating model fit
using a range of cost values for each feature and identifying
the weighting value that improved model fit associated with
variation in the relationship between genetic structure and
landscape features explicitly addresses the question of
uncertainty in a systematic manner, and allowed us to
identify relative influences of landscape features on genetic
structure of white-tailed deer in Michigan.

MANAGEMENT IMPLICATIONS

Evaluating impacts of anthropogenic activities on natural
systems is becoming increasingly critical as human pop-
ulations are expanding and affecting animal movements and
habitat occupancy. Studies documenting the effects of
landscape features on gene flow in highly mobile species
of conservation and management interest are limited,
particularly in human-altered landscapes. The relative
impacts of natural and man-made landscape features on
gene flow in white-tailed deer speak to the importance of
joint ecological and genetic analyses in present and future
conservation efforts of landscapes and wildlife species using
them. We quantified the importance of roads and rivers on
gene flow of white-tailed deer. Based on our data, these
predominant features of human-modified landscapes are
barriers to gene flow and can be used in delineating
management units and to direct efforts to control immigra-
tion into and emigration from areas bounded by these major
barriers. Future studies quantifying the influence of
landscape features on wildlife, both within and between
locales will help managers and planners design landscapes to
meet human needs while understanding potential implica-
tions of anthropogenic activities on wildlife.
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