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Abstract

We study two-path convexity in bipartite tournaments. For a bipartite tour-
nament, we obtain both a necessary condition and a sufficient condition on the
adjacency matrix for its rank to be two. We then investigate 4-cycles in bipartite
tournaments of small rank. We show that every vertex in a bipartite tournament of
rank two lies on a four cycle, and bipartite tournaments with a maximum number
of 4-cycles do not necessarily have minimum rank.

1 Introduction

Convexity has been studied in many contexts. For graphs and digraphs, the convex
subsets of the vertex set are usually defined using some set of paths within the graph.
More precisely, if T = (V,E) is a (directed) graph and P a set of (directed) paths in T , a
subset A ⊆ V is P-convex if, whenever v, w ∈ A, any (directed) path in P that originates
at v and ends at w only involves vertices in A. Given a subset S ⊆ V , the convex hull of

S, denoted C(S), is defined to be the smallest convex subset containing S.
Several types of convexity have been studied in the literature. If P is the set of

geodesics in T , the resulting convex sets are said to be geodesically convex. Geodesic
convexity was introduced by F. Harary and J. Nieminen in [HN81] and also studied in
[CFZ02] and [CCZ01]. When P is the set of all chordless paths, we have induced path

convexity (see [Duc88]). Other types of convexity include path convexity (see [Pfa71] and
[Nie81]) and triangle path convexity (see [CM99]).
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The most frequently studied parameters in convexity theory are the Helly number,
the Radon number, and the Caratheodory number, which are based on notions of inde-
pendence (see [vdV93]). These are all bounded above by the rank, which is defined as
follows. A set is F ⊆ V convexly independent set if x /∈ C(F − {x}) for all x ∈ F . The
rank d(T ) is the maximum size of a convexly independent set. Rank is also a measure of
how computationally difficult it is to construct the convex subsets of a given convexity
space. Specifically, it is an upper bound on the number of vertices required to generate a
convex subset.

Convexity in tournaments is studied in [Var76], [EFHM72], [EHM72], and [Moo72].
Research in this area has focused on two-path convexity, where P is the set of all directed
2-paths. Other types of convexity lead to less interesting convex structures in most tour-
naments. For example, if all directed paths of length three or less are allowed, then the
only convex subsets of a strong tournament are ∅ and the entire vertex set.

Recall that T is a multipartite tournament if one can partition V into n partite sets
P1, P2, . . . , Pn, n ≥ 2 such that for all i 6= j there is precisely one arc between each vertex
in Pi and each vertex in Pj and no arcs between vertices in the same partite set. When
n = 2, T is a bipartite tournament. As with tournaments, the study of two-path convexity
in multipartite tournaments leads to rich convex structures, see [PWW08], [PWW06],
and [PWW]. Since the results in this paper deal with two-path convexity in bipartite
tournaments all references to convexity will mean two-path convexity.

The work in this paper is motivated by earlier work of Varlet in [Var76] where it is
shown that all tournaments with at least two vertices have rank 2. Since numerous inter-
esting results have been proven about cycles in tournaments (e.g., [GM72]), we consider
whether those results are related to the fact that tournaments have rank 2 by studying
bipartite tournaments with small rank. We first look at bipartite tournaments T of rank
2. Theorem 2.6 gives us a necessary and sufficient condition for T to have rank 2 and
Theorem 2.8 gives a condition on the columns of the adjacency matrix that is sufficient
for T to have rank 2. This result provides a mechanism to generate several examples of
bipartite tournaments of rank 2.

We then investigate the connection between small rank and the number of 4-cycles
present in T . In Theorem 3.4, we prove that if a bipartite tournament has rank 2, then
every vertex of T lies on a 4-cycle. We then consider bipartite tournaments where one
partite set has two vertices. Given partite sets with two and n vertices, we classify all bi-
partite tournaments of minimum rank (Theorem 3.6). We also show that if such bipartite
tournaments have a maximum number of 4-cycles, then they do not have minimum rank
unless n ≤ 4 (Corollary 3.7).

Let T = (V,E) be a digraph with vertex set V and arc set E. We denote an arc
(v, w) ∈ E by v → w and say that v dominates w. If U,W ⊆ V , then we write U → W to
indicate that every vertex in U dominates every vertex in W . Two vertices are clones if
they have identical insets and outsets, and T is clone-free if it has no clones. If u, v, w ∈ V
with u → v → w, we say that v distinguishes the vertices u and w. Note that in a clone-
free multipartite tournament, for every pair of vertices u,w in the same partite set there
is at least one vertex (not in that partite set) that distinguishes u and w. If A and B
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are convex, we denote the convex hull of A ∪ B by A ∨ B. If v, w ∈ V , we drop the set
notation and write {v} ∨ {w} as v ∨ w.

To facilitate our study of bipartite tournaments, it will be helpful to study their
adjacency matrices. In the case of a bipartite tournament, however, the adjacency matrix
can be represented more compactly. Let {v1, · · · , vk} and {w1, · · · , wℓ} be the partite sets
of a bipartite tournament T . For each i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ, let mi,j = 1
if vi → wj and let mi,j = 0 otherwise. We will call M = (mi,j) the matrix of T , and we
say that T is the bipartite tournament induced by M . Notice that vi distinguishes wj and
wk if and only if mi,j 6= mi,k and wi distinguishes vj and vk if and only if mj,i 6= mk,i. In
addition, identical rows or columns of the matrix of T correspond to clones.

2 Bipartite Tournaments of Rank 2

In this section we consider bipartite tournaments of rank 2 and give necessary and suf-
ficient conditions under which a bipartite tournament has rank 2. Throughout this sec-
tion, T = (V,E) is a bipartite tournament with partite sets P1 = {x1, · · · , xm} and
P2 = {y1, · · · , yn}.

Lemma 2.1. Suppose T is a bipartite tournament of rank 2.

1. If |P2| ≤ 2, then each pair of vertices in P1 is distinguished by each vertex in P2.

2. If |P2| ≥ 3, then each pair of vertices in P1 is distinguished by at least two vertices
in P2.

3. If |P2| ≥ 2, then there is no vertex v ∈ P1 with either v → P2 or P2 → v.

Proof. Let v, w ∈ P1. If v and w are clones, then it is clear that v, w, and any vertex in
P2 form a convexly independent set. Now suppose that v and w are distinguished by a
unique vertex x ∈ P2. For (1) and (2), it suffices to show that |P2| = 1. If |P2| ≥ 2, then
there is some y ∈ P2 − {x}. We claim that {v, w, y} is convexly independent. Clearly,
v /∈ w ∨ y = {w, y} and w /∈ v ∨ y = {v, y}. Also, v ∨ w = {v, w, x}, since v and w are
distinguished only by x. Thus, y /∈ v ∨ w, and so {v, w, y} is convexly independent, a
contradiction.

For (3), if such a v existed, then v and any two vertices in P2 form a convexly inde-
pendent set, so the result follows.

Since every pair of vertices in the same partite set must be distinguished by at least
one vertex, we have the following.

Corollary 2.2. Every bipartite tournament of rank 2 is clone-free.

It is not generally true that multipartite tournaments of rank 2 are clone-free. For
instance, consider the tripartite tournament whose vertex set V consists of partite sets
P1, P2, and P3 having two vertices each, with arcs given by P1 → P2 → P3 → P1. Any
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set of three vertices must then contain two vertices x and y in different partite sets. But
then x ∨ y = V , which contains the third vertex. Thus, d(T ) = 2. But each vertex is a
clone of the other vertex in its partite set, so T is not clone-free.

If we write Lemma 2.1 and Corollary 2.2 in terms of the matrix of T , we obtain the
following.

Corollary 2.3. Suppose T is a bipartite tournament with rank 2 and matrix M , and
assume that each partite set of T has at least two vertices. Then

1. The rows of M are distinct and the columns of M are distinct.

2. Each pair of rows of M differ in at least two positions. That is, for each 1 ≤ i 6=
j ≤ m, there exists k and l, 1 ≤ k, l ≤ n such that mi,k 6= mj,k and mi,l 6= mj,l.

3. Each pair of columns of M differ in at least two positions. That is, for each 1 ≤
k 6= l ≤ n, there exists i and j, 1 ≤ i, j ≤ m such that mi,k 6= mi,l and mj,k 6= mj,l.

4. No row or column of M consists entirely of 0s or 1s.

Now we are able to characterize bipartite tournaments of rank 2 with small partite
sets.

Corollary 2.4. If T is a bipartite tournament of rank 2 such that one of its partite sets
has at most two vertices, then T can be represented by one of the following matrices: [1],
[

1 0
]

, or

[

1 0
0 1

]

.

Proof. If one of the partite sets has at least three vertices, then it is impossible for each
of these vertices to be distinguished by a single vertex in the partite set with at most
two vertices. This violates Lemma 2.1(1), and so each partite set can have at most two
vertices. The result follows easily from this.

To determine which bipartite tournaments have rank 2, we can ask which binary
matrices represent bipartite tournaments of rank 2. In the case of |P1| or |P2| = 3, there
are no such matrices. However, there are such matrices satisfying Corollary 2.3 (and thus
Lemma 2.1). This indicates that Corollary 2.3, while being necessary for rank 2, is not
sufficient.

Theorem 2.5. There are no bipartite tournaments of rank 2 with three vertices in one
partite set. Up to isomorphism there is a unique bipartite tournament with three vertices
in each partite set that satisfies the conclusions of Corollary 2.3.

Proof. Suppose that |P2| = 3 and let M be the matrix of T . By Corollary 2.4, |P1| ≥ 3.
By Corollary 2.3(4), the only possible columns for M are 100, 010, 001, 110, 101 and 011.
It is then easy to check that the only matrices that satisfy the remaining conditions of
Corollary 2.3 up to reordering of rows and columns are
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1 0 0
0 1 0
0 0 1



 and





0 1 1
1 0 1
1 1 0



.

In each case, {x1, x2, x3} is convexly independent, so d(T ) = 3. Note that these bipartite
tournaments are isomorphic.

The following theorem gives necessary and sufficient conditions on T to guarantee rank
2.

Theorem 2.6. Let T = (V,E) be a bipartite tournament. Then d(T ) = 2 if and only if
for all vertices x and y in the same partite set, we have x ∨ y = V .

Proof. In view of Corollary 2.4, we may assume each partite set of T has at least three
vertices. Assume d(T ) = 2 and x and y are in the same partite set of T . Without loss
of generality we may assume that x and y are in partite set P1. If z ∈ P2 − (x ∨ y) then
{x, y, z} is convexly independent and d(T ) ≥ 3. Thus P2 ⊆ x ∨ y. If z ∈ P1 then by
Lemma 2.1(3), there exist vertices u, v ∈ P2 with u → z → v. Since P2 ⊆ x ∨ y, we have
u, v ∈ x ∨ y, and so z ∈ x ∨ y. The converse is clear.

Given a bipartite tournament T , the columns of the matrix of T form a subset of
Z

m
2 . Theorem 2.6 gives a method for finding vector subsets of Z

m
2 that represent bipartite

tournaments of rank 2. Let us introduce some notation. Given a vector v = v1v2 · · · vm ∈
Z

m
2 , we define the complement vector vc = v′

1v
′

2 · · · v
′

m ∈ Z
m
2 to be the vector with v′

i =
vi + 1 for all i. With the notation introduced earlier, if yi and yj are in partite set P2

of a bipartite tournament T and the corresponding columns ci and cj in the matrix of T
are complementary then P1 ⊆ yi ∨ yj as each vertex in P1 distinguishes yi and yj. This
observation motivates the following.

Definition 2.7. A subset S ⊂ Z
m
2 is called rank 2 complementary (RTC) when the

following hold.

1. v ∈ S ⇒ vc ∈ S.

2. For each 1 ≤ i 6= j ≤ m, there exists v ∈ S with vi 6= vj.

3. Each pair of vectors in S differs in at least two components.

4. 00 · · · 0, 11 · · · 1 /∈ S.

Except for (1), these conditions appear almost identical to those in Corollary 2.3. In
fact, (3) and (4) are identical to Corollary 2.3(3) and (4). In addition, while (2) looks
like a slightly weaker condition than Corollary 2.3(2), it is not. If v satisfies (2) in the
definition, so does vc, so there are at least two vectors with vi 6= vj. We have the following.

Theorem 2.8. Let T be a bipartite tournament and let S ⊆ Z
m
2 be the set of columns

of the matrix of T . If S is RTC, then d(T ) = 2.

5



Proof. If xi, xj ∈ P1 then by Definition 2.7(2) there is a yk ∈ P2 such that ai,k 6= aj,k. Then
yk ∈ xi ∨xj. By Definition 2.7(1), there is a yℓ ∈ P2 such that ck and cl are complements.
Then ai,l 6= aj,l and yℓ ∈ xi ∨ xj. Since ck and cl are complements, P1 ⊆ yk ∨ yℓ ⊆ xi ∨ xj.
It then follows from Definition 2.7(4) that xi ∨ xj = V .

Let yk, yℓ ∈ P2. By Definition 2.7(2), yk ∨ yℓ contains at least two vertices xi, xj ∈ P1.
By the above argument, V ⊆ xi ∨ xj ⊆ yk ∨ yℓ so yk ∨ yℓ = V . Thus d(T ) = 2 by
Theorem 2.6.

Example 2.9. This gives us a way to produce several examples of rank 2 bipartite tour-
naments. For instance, when m = 4, we can have S = {1000, 0111, 0100, 1011, 0010, 1101,
0001, 1110}, which gives us a bipartite tournament of rank 2 with partite sets of order 4
and 8.

We can get some examples with partite sets of odd cardinality as well. In the case
m = 5, we can use S = {11000, 00111, 01100, 10011, 00010, 11101} to get a bipartite
tournament with partite sets of order 5 and 6.

Example 2.10. For some infinite classes of examples, let m be even, and let S be the
set of all vectors with equal numbers of 0’s and 1’s. Since the degrees are balanced, S
satisfies Definition 2.7(1). The other conditions follow similarly.

A set of examples of this is the following. Let T be the tournament with partite sets
P1 = {x1, · · · , x2r}, P2 = {y1, · · · , y2r}. For i ≤ j, we let x2i−1 → y2j−1 → x2i → y2j →
x2i−1. For i > j, we let y2j−1 → x2i−1 → y2j → x2i → y2j−1. Since the (2j − 1)st and
(2j)th columns of the matrix of T are complements it is not difficult to verify that the
set of columns of the matrix of T is RTC and thus d(T ) = 2. Note that T is also regular.

3 Four-cycles and Small Rank

The examples of bipartite tournaments of rank 2 given in the previous section all contain
relatively large numbers of 4-cycles. The reason is related to Definition 2.7(1). If v is a
vector with vi = 0, and vj = 1, then v′ = vc has entries v′

i = 1 and v′

j = 0. The vertices
represented by v, v′, and the ith and jth rows of the vectors then form a 4-cycle.

In this section, we show that every vertex of a bipartite tournament of rank 2 with
at least four vertices is a part of a 4-cycle. Thus all rank 2 bipartite tournaments have
relatively large numbers of 4-cycles. We also carefully examine bipartite tournaments
with two vertices in one partite set and a maximum number of 4-cycles.

Let u and v be vertices in the same partite set of T . We define

T u,v
10 = {x ∈ V : u → x → v}

T u,v
01 = {x ∈ V : v → x → u}

T u,v
11 = {x ∈ V : u → x, v → x}

T u,v
00 = {x ∈ V : x → u, x → v}

The connection with 4-cycles is given by the following.
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Lemma 3.1. Two vertices u and v in a bipartite tournament T lie on a common 4-
cycle if and only if T u,v

10 , T u,v
01 6= ∅. In fact, the number of 4-cycles containing u and v is

|T u,v
10 | · |T u,v

01 |.

The role of T u,v
00 and T u,v

11 is important in the proof of the main result.

Lemma 3.2. Let T be a bipartite tournament of rank 2 with at least 4 vertices and let
u, v ∈ V be in the same partite set. If u and v are not part of the same 4-cycle then
T u,v

11 , T u,v
00 6= ∅.

Proof. Let P1 be the partite set containing u and v and let P2 be the other partite set.
Assume T u,v

11 = ∅. Since u and v are not in a common 4-cycle, then, without loss of
generality, we may assume T u,v

01 = ∅. Thus, P2 = T u,v
10 ∪T u,v

00 so P2 → v. By Corollary 2.4,
each partite set of T must have at least three vertices, contradicting Lemma 2.1(3). The
proof for T u,v

00 is similar.

For the proof of our next theorem, we require the following notation from [HW96].

Definition 3.3. Let U ⊆ V , and define Ck(U) inductively by

C0(U) = U, Ck(U) = Ck−1(U) ∪ {w ∈ V : x → w → y for some x, y ∈ Ck−1(U)}, k ≥ 1

Note that C∞(U) is the convex hull of U .

We can now prove the following.

Theorem 3.4. If T is a bipartite tournament with at least four vertices and d(T ) = 2,
then every vertex of T is part of a 4-cycle.

Proof. Since |V | ≥ 4, Corollary 2.4 implies that each partite set of T has at least two
vertices. Let u ∈ V and assume u is not part of a 4-cycle. Let P be the partite set
containing u and let v ∈ P − {u}. By Lemma 3.2, T u,v

11 , T u,v
00 6= ∅. Without loss of

generality, we may assume T u,v
01 = ∅. Let U = {u, v}. By Theorem 2.6, u ∨ v = V . Let

k be minimal so that b ∈ Ck(U) for some b ∈ T u,v
00 . Then there exist x, y ∈ P ∩ Ck−1(U)

such that x → b → y. Note that x 6= u, v. Thus, there exist z, w ∈ Ck−2(U) such
that z → x → w. By the minimality of k, we cannot have z, w ∈ T u,v

00 , which forces
z, w ∈ T u,v

11 ∪ T u,v
10 , and so u → z. We then have u → z → x → b → u, and so u is part of

a 4-cycle.

Theorem 3.4 suggests that there may be a correlation between the number of 4-cycles
and the rank of a bipartite tournament. Consequently, it makes sense to ask if maximizing
the number of 4-cycles minimizes the rank. With this in mind, let T be a bipartite
tournament with partite sets of order 2 and n. We have partite sets P1 = {x1, x2} and
P2 with disjoint subsets T x1,x2

01 , T x1,x2

10 , T x1,x2

00 , and T x1,x2

11 . To simplify notation we write
Tij instead of T x1,x2

ij and set tij = |Tij| for i, j ∈ {0, 1}. If T has a maximum number of
4-cycles, then T00 = T11 = ∅ and T10 and T01 are as close to the same order as possible.
Then the union of the larger of T01 and T10 and either {x1} or {x2} is a maximum convexly
independent set in V . Regardless of whether n is even or odd, we get the following.
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Theorem 3.5. Let T be a bipartite tournament with a maximum number of 4-cycles.
Then d(T ) = ⌊n+1

2
⌋ + 1.

To minimize d(T ), we must consider each possible convexly independent set. They
are precisely the nonempty subsets of T10 ∪ T11, T10 ∪ T00, T01 ∪ T11, T01 ∪ T00, T01 ∪ {x1},
T01 ∪ {x2}, T10 ∪ {x1}, T10 ∪ {x2}, T00 ∪ T11, T00 ∪ {x1, x2}, T11 ∪ {x1, x2}, T00 ∪ {x1, y},
T00 ∪ {x2, z}, T11 ∪ {x2, y}, T11 ∪ {x1, z}, T00 ∪ {y, z} and T11 ∪ {y, z} where y ∈ T01 and
z ∈ T10.

Note that since |P2| = n, it follows that one of T10 ∪ T11 and T01 ∪ T00 must have
at least n

2
vertices. Thus, d(T ) ≥ max(2, ⌊n+1

2
⌋). Assume n ≥ 3 and let r = ⌊n+1

2
⌋.

In order to be of minimum rank, we must have one of t10 + t00 and t01 + t11 equal to r
(otherwise, one or the other is larger than r). If necessary, we can reverse the arcs of T
(which does not change the convex subsets of T ), so we can assume t10 + t00 = r, which
means t01 + t11 = n − r.

By similar reasoning, one of t10 + t11 and t01 + t00 must be r. We take each of these
cases in turn. If t10 + t11 = r, then we subtract t10 + t00 = r from this to get t11 = t00 = s.
We then get t10 = r − s and t01 = n − r − s. Since T00 ∪ T11 is a convexly independent
set, then t00 + t11 ≤ r so 2s ≤ r and s ≤ r

2
. Since T00 ∪ {x1, y} is a convexly independent

set for y ∈ T01 then s ≤ r− 2. Finally, T10 ∪{x1} is a convexly independent set, so s ≥ 1.
Putting all of this together we have that 1 ≤ s ≤ min( r

2
, r − 2). This also implies that

r ≥ 3, so n ≥ 5.
A similar argument in the case t01 + t00 = r yields t00 = s, t11 = n − 2r + s, t01 =

t10 = r − s, and 1 ≤ s ≤ min( r
2
, r − 2) when n is even and 1 ≤ s ≤ min( r+1

2
, r − 2) when

n is odd. Again, r ≥ 3, so n ≥ 5. Putting this together and taking into account bipartite
tournaments obtained by reversing all arcs, we obtain the following.

Theorem 3.6. Let T be a bipartite tournament with partite sets P1 = {x1, x2} and
P2 = T01 ∪ T10 ∪ T00 ∪ T01, with |P2| ≥ 5. Then d(T ) ≥ ⌊n+1

2
⌋ and if d(T ) = ⌊n+1

2
⌋, then

1. if n is even, then T is isomorphic to the bipartite tournament with t00 = t11 = s
and t01 = t10 = n

2
− s, where 1 ≤ s ≤ min(n

4
, n−4

2
).

2. if n is odd, then T is isomorphic to one of the following bipartite tournaments:
(a) t00 = t11 = s, t10 = n+1

2
− s, t01 = n−1

2
− s and 1 ≤ s ≤ min(n+1

4
, n−3

2
)

(b) t00 = t11 = s, t01 = n+1

2
− s, t10 = n−1

2
− s and 1 ≤ s ≤ min(n+1

4
, n−3

2
)

(c) t00 = s, t11 = s − 1, t10 = t01 = n+1

2
− s and 1 ≤ s ≤ min(n+3

4
, n−3

2
)

(d) t11 = s, t00 = s − 1, t10 = t01 = n+1

2
− s and 1 ≤ s ≤ min(n+3

4
, n−3

2
)

When n = 1 or n = 2 there are bipartite tournaments T with rank 2. They are
x1 → z → x2 and x1 → z → x2 → y → x1. When n = 3 or n = 4 there are no bipartite
tournaments T with rank 2, but there are a number of tournaments with rank 3. These
are precisely the bipartite tournaments T with t00 ≤ 1, t11 ≤ 1, t01 ≤ 2 and t10 ≤ 2. This
and Theorem 3.5 give us the following.

Corollary 3.7. Let T be a bipartite tournament having partite sets with two and n
vertices, n ≥ 1. Then T can have a maximum number of 4-cycles and minimum rank
subject to having partite sets with two and n vertices, respectively, if and only if n ≤ 4.
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Thus, while having a large number of 4-cycles does guarantee small rank, it does not
correspond to minimum rank.
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