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Abstract

We investigate the convex invariants associated with two-path convexity in clone-
free multipartite tournaments. Specifically, we explore the relationship between
the Helly number, Radon number and rank of such digraphs. The main result is
a structural theorem that describes the arc relationships among certain vertices
associated with vertices of a given convexly independent set. We use this to prove
that the Helly number, Radon number, and rank coincide in any clone-free bipartite
tournament. We then study the relationship between Helly independence and Radon
independence in clone-free multipartite tournaments. We show that if the rank is
at least 4 or the Helly number is at least 3, then the Helly number and the Radon
number are equal.

1 Introduction

Several notions of convexity in graphs and digraphs have been investigated. In each case,
the convex sets are defined in terms of a particular type of path. Let T = (V, E) be
a graph or digraph and let P be a set of paths in T . A subset A ⊆ V is P-convex if,
whenever v, w ∈ A, any path in P that originates at v and ends at w can involve only
vertices in A. The most commonly studied type of convexity is geodesic convexity where
P is taken to be the set of geodesics in T (see [CZ99], [CFZ02], [ES85] and [HN81]).
Other types of convexity that have been studied include induced path convexity where P

is the set of all chordless paths (see [Duc88]), path convexity (see [Nie81] and [Pfa71]) and
triangle path convexity (see [CM99]). In this paper we will consider two-path convexity
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where P is taken to be the set of all 2-paths in a digraph T . Two-path convexity was
first studied in tournaments in [EFHM72], [Var76] and [Moo72] and more recently in
multipartite tournaments in [PWWb], [PWWd], [ADEP05], and [PWWc].

More generally, a convexity space is a pair C = (V, C), where V is a set and C is a
collection of subsets of V such that ∅, V ∈ C and C is closed under arbitrary intersections
and nested unions. Note that the vertex set of a graph or digraph along with the set of
all P-convex subsets forms a convexity space for any set of paths P. For a subset S ⊆ V ,
the convex hull of S, denoted C(S), is defined to be the smallest convex subset containing
S.

Several numerical invariants can be associated to a convexity space C = (V, C). Three
of the most studied are the Helly, Radon and Caratheodory numbers (see [JN84], [Pol95],
and [CM99]). These can each be defined using notions of independence (see [vdV93,
Chap. 3]). Let F ⊆ V . We say F is H-independent if

⋂
p∈F C(F − {p}) = ∅. The Helly

number h(C) is the size of a largest H-independent set. A partition F = A ∪ B with
C(A)∩C(B) 6= ∅ is called a Radon partition of F , and F is R-independent if F does not
have a Radon partition. The Radon number r(C) is the size of a largest R-independent
set. Note that some authors define the Radon number to be the smallest number r such
that every subset of size r has a Radon partition. This results in a Radon number one
larger than ours. It is well-known that if F is H-independent then F is R-independent.
(see [vdV93, p. 163]). This implies Levi’s inequality, which is h(C) ≤ r(C).

A set F is C-independent if C(F ) 6⊆ ∪a∈F C(F − {a}) and the Caratheodory number
c(C) is the size of the largest C-independent set. Equivalently, the Caratheodory number
can be defined as the smallest number c such that for every S ⊆ V and p ∈ C(S), there
is an F ⊆ S with |F | ≤ c such that p ∈ C(F ). One final type of independence we will
consider is convex independence. F is convexly independent if, for each p ∈ F , we have
p /∈ C(F − {p}). The rank d(C) is the size of a largest convexly independent set. Rank
provides an upper bound on the number of elements of a convex set which are needed
to generate the convex set using convex hulls. In [HW96], D. Haglin and M. Wolf used
the fact that the collection of two-path convex subsets in a tournament has rank 2 to
construct an algorithm for computing the convex subsets of a given tournament. Note
that since any set that is H-, R- or C-independent must also be convexly independent,
rank is an upper bound for the Helly, Radon and Caratheodory numbers. In particular,
with Levi’s inequality we have that h(C) ≤ r(C) ≤ d(C).

Let T = (V, E) be a digraph with vertex set V and arc set E. We denote an arc
(v, w) ∈ E by v → w and say that v dominates w. If U,W ⊆ V , then we write U → W
to indicate that every vertex in U dominates every vertex in W . We call T a multipartite
tournament if it is possible to partition V into partite sets P1, P2, . . . , Pk, k ≥ 2 such that
there is precisely one arc between each pair of vertices in different partite sets and no
arcs between vertices in the same partite set. In the case when k = 2 we will also call T
a bipartite tournament. Two vertices are clones if they have identical insets and outsets,
and T is clone-free if it has no clones. In a multipartite tournament, this is equivalent to
every pair of vertices in the same partite set being distinguished by another vertex (i.e.
having a two-path between them). If A, B ∈ C(T ), we denote the convex hull of A ∪ B
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by A ∨ B. If v, w ∈ V , we drop the set notation and write {v} ∨ {w} as v ∨ w. Finally,
we denote by T ∗ the digraph with the same vertex set as T , and where (v, w) is an arc of
T ∗ if and only if (w, v) is an arc of T .

2 Convexly Independent Sets in Multipartite Tour-

naments

In [PWWb], we studied the properties of convexly independent sets under two-path con-
vexity in multipartite tournaments. In this section, we present results from that paper
that will be important in our study of clone-free multipartite tournaments.

Let T = (V, E) be a clone-free multipartite tournament, and let U ⊆ V be a convexly
independent set. We showed in [PWWb, Lem. 3.1(2)] that U can have a nonempty
intersection with at most two partite sets. Thus T has partite sets P0 and P1 such that
A = U ∩ P0 and B = U ∩ P1 with U = A ∪ B. By [PWWb, Lem. 3.1(1)], we must have
A → B or B → A. Note that T and T ∗ have the same convex subsets, so by relabelling
P0 and P1 and reversing the arcs, if necessary, we can assume that |A| ≥ |B| and A→ B
if B 6= ∅.

The following sets of distinguishing vertices are important to us. Let C ⊆ V . We
define

D→C = {z ∈ V : z → x for some x ∈ C, y → z for all y ∈ C − {x}}
D←C = {z ∈ V : z ← x for some x ∈ C, z → y for all y ∈ C − {x}}

The following appears in [PWWd].

Theorem 2.1. Let T be a clone-free multipartite tournament. Let A and B form a
convexly independent set, with A→ B when both sets are nonempty.

1. If A = {x1, · · · , xm}, m ≥ 2, then one can order the vertices in A such that there
exist u2, · · · , um ∈ D→A (resp., in D←A if D→A = ∅) such that ui → xi (resp., xi → ui).

2. If |A| ≥ 3, then D→A 6= ∅ if and only if D←A = ∅, and D→A and D←A each lie in at most
one partite set.

3. Suppose A, B 6= ∅. If |A| ≥ 2, then D→A is in the same partite set as B, and if
|B| ≥ 2, then D←B is in the same partite set as A.

4. If |A|, |B| ≥ 2, then D←B → D→A .

5. Any vertex that distinguishes vertices in A must be in either D→A or D←A and any
vertex that distinguishes vertices in B must be in D←B or D→B . If A, B 6= ∅, then
any vertex that distinguishes vertices in A must be in D→A and any vertex that
distinguishes vertices in B must be in D←B .
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3 Structure of Clone-Free Multipartite Tournaments

Let T = (V, E) be a clone-free multipartite tournament and let U be a convexly inde-
pendent subset of T . As before. let P0 and P1 be partite sets of T , A = U ∩ P0 and
B = U ∩ P1 such that U = A ∪ B. We may assume that |A| ≥ |B| and A → B when
B 6= ∅. By Theorem 2.1(2), one of D→A or D←A is nonempty, and when |A| ≥ 3, the other
is empty. In the case of B = ∅, we choose T or T ∗ such that D→A 6= ∅ and let P1 be the
partite set containing D→A . We will assume these notational conventions and choices have
been made throughout the remainder of the paper.

Ordinarily, the convex hull of a set U ⊆ V is constructed using the sets Ck(U), defined
as follows. Let C0(U) = U and for k ≥ 1, let

Ck(U) = Ck−1(U) ∪ {w ∈ V : x→ w → y for some x, y ∈ Ck−1(U)}

Then C(U) =
⋃∞

k=0 Ck(U). We will construct the convex hull somewhat differently here.
Define ∆k(U) as follows. Let ∆0(U) = A, ∆1(U) = B ∪ C1(A), and for t ≥ 2, let
∆t(U) = C1(∆t−1(U)). Note that C(U) =

⋃∞
i=0 ∆i(U).

Our goal is to create pairwise disjoint subsets of C(U), each of which is associated
with a given x ∈ U . We do this as follows.

Definition 3.1. Let U = A ∪ B be a convexly independent set with A → B. For each
x ∈ U , define Dt(x) for t ≥ 0 as follows. If x ∈ A, then D0(x) = {x}, and if x ∈ B, then
D0(x) = ∅ and D1(x) = {x}. Otherwise, we have

D2k(x) = {v ∈ ∆2k(U) : u→ v for some u ∈ D2`−1(x), ` ≤ k}
D2k+1(x) = {v ∈ ∆2k+1(U) : v → u for some u ∈ D2`(x), ` ≤ k}

We then define Dt(x) =
⋃

k≤t Dk(x) and D(x) =
⋃∞

t=0 Dt(x).

Notice that Dk(x) ⊆ Dk+2(x) for k ≥ 1 if x ∈ A, and for k ≥ 2 if x ∈ B. The following
lemma relates the notation introduced above to the notation used in Section 2.

Lemma 3.2. Let U = A ∪ B be a convexly independent set. Then D→A =
⋃

x∈A D1(x)

and D←B =
⋃

x∈B D2(x).

Proof. Clearly, D→A ⊆
⋃

x∈A D1(x). Let u ∈ D1(x) for some x ∈ A. Then u ∈ C1(A)

and u → x. By Theorem 2.1(5), u ∈ D→A . To show that D←B =
⋃

x∈B D2(x), note that

D←B ⊆
⋃

x∈B D2(x) and if u ∈ D2(x) for some x ∈ B then u ∈ C1(B ∪C1(A)) and x→ u.
If u ∈ C1(B) then u ∈ D←B by Theorem 2.1(5) and if |B| = 1 then by default u ∈ D←B . If
not, then |B| ≥ 2, B → u and there is a y ∈ C1(A) such that u → y. Since x → u → y
and A→ B → u then B ⊆ C(A ∪ {x}) which is a contradiction.

Given a convexly independent set U with |U | ≥ 3, the next two lemmas allow us to
replace vertices in U ∩ P0 with related vertices in P1 or vertices in U ∩ P1 with related
vertices in P0 without changing the structure of the D(x)’s.
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Lemma 3.3. Let U = A ∪ B be a convexly independent set with |A| ≥ 3. Let x ∈ U ,
w ∈ Di(x), where i = 1 if x ∈ A and i = 2 if x ∈ B. Let W = (U − {x}) ∪ {w}.

1. If x ∈ A, then ∆k(W ) ⊆ ∆k(U) ⊆ ∆k+2(W ) for all k ≥ 0.

2. If x ∈ B, then ∆k(U) ⊆ ∆k(W ) ⊆ ∆k+2(U) for all k ≥ 0.

Proof. For (1), first note that ∆0(W ) = A − {x} ⊆ A = ∆0(U). Since |A| ≥ 3, Theo-
rem 2.1(1) implies D→A−{x} 6= ∅. Then w → x→ D→A−{x} gives us x ∈ C1(D

→
A−{x} ∪{w}) ⊆

∆2(W ), which proves the case k = 0. Since w ∈ ∆1(U), ∆k(W ) ⊆ ∆k(U) for any k ≥ 1.
Moreover, x ∈ ∆2(W ) implies C1(U) ⊆ ∆3(U), and thus ∆1(U) ⊆ ∆3(W ). The fact
that ∆k(U) ⊆ ∆k+2(W ) for k ≥ 2 follows easily by induction. The proof of part (2) is
similar.

Lemma 3.4. Let U = A ∪ B be a convexly independent set with |A| ≥ 3. Let x ∈ U ,
w ∈ Di(x), where i = 1 if x ∈ A and i = 2 if x ∈ B.

1. (U − {x}) ∪ {w} is convexly independent.

2. If we replace U with W = (U−{x})∪{w} and let D
′
t(y), D′(y) be the analogous sets

for y ∈ W , then ∪∞k=0D2k(y) = ∪∞k=0D
′
2k(y) and ∪∞k=0D2k+1(y) = ∪∞k=0D

′
2k+1(y) for

y ∈ W − {w} and ∪∞k=0D2k(x) = ∪∞k=0D
′
2k(w) and ∪∞k=0D2k+1(x) = ∪∞k=0D

′
2k+1(w).

Proof. For (1), we need only show that w /∈ C(U − {x}) and that, for all y ∈ U − {x},
y /∈ C([U ∪ {w}]− {x, y}).

We first consider the case x ∈ A. Then there exists some z1 ∈ A − {x}. Note that
z1 → w → x. For contradiction, suppose w ∈ C(U − {x}). Since |A| ≥ 3 there is a
z2 ∈ A − {x, z1}. By Theorem 2.1(1), at least one of D1(z1) or D1(z2) is nonempty.
Without loss of generality, suppose v ∈ D1(z1), so {x, z2} → v → z1. Then z2 → v → z1

and w → x→ v imply x ∈ C(U − {x}), a contradiction.
Now let y ∈ U − {x}, and suppose that y ∈ C([U ∪ {w}]− {x, y}) = C([U − {x, y}]∪

{w}). If we can show that C([U−{x, y}]∪{w}) ⊆ C(U−{y}), then we get y ∈ C(U−{y}),
a contradiction. Since U − {x, y} ⊆ U − {y} ⊆ C(U − {y}), we need only show that
w ∈ C(U − {y}). Let z ∈ A − {x, y}. We have z → w → x. Since x, z ∈ U − {y}, we
have w ∈ C(U − {y}), which gives us our contradiction.

In the case x ∈ B, we have |U | ≥ 4 and x→ w. As before, assume w ∈ C(U − {x}).
Let z ∈ A. Then z → x, so we have z → x → w. Since z, w ∈ C(U − {x}), we get
x ∈ C(U − {x}), a contradiction.

Now suppose that y ∈ C([U ∪{w}]−{x, y}) for some y ∈ U−{x}. As before, we need
only show that this implies w ∈ C(U − {y}). Since |A − {y}| ≥ 2, we have D→A−{y} 6= ∅.
Since x→ w → D→A−{y}, we have w ∈ C(U − {y}), and we are done. This completes the

proof of (1).

For (2), it suffices to show that Dk(x) ⊆ D
′
k+2(w) and D

′
k(w) ⊆ Dk+2(x) for all k ≥ 0

and that Dk(y) ⊆ D
′
k+2(y) and D

′
k(y) ⊆ Dk+2(y) for all k ≥ 0, y ∈ U − {x}. We use

Lemma 3.3 to prove Dk(x) ⊆ D
′
k+2(u). The case k = 0 is then trivial, as is k = 1 when
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x ∈ B. For k ≥ 1, let v ∈ Dk(x). There exists v′ ∈ Dk−1(x) with v → v′ if k is odd

and v′ → v if k is even. By induction, v′ ∈ D
′
k+1(w). It follows that v ∈ D

′
k+2(w). The

remainder of the proof follows similarly.

The following technical lemma is helpful in the proof of the main theorem.

Lemma 3.5. Let U = A∪B be a convexly independent set with U ′ ⊆ U and let v ∈ C(U ′).

1. If A 6= ∅ and v → A and either |U ′ ∩ A| ≥ 2 or U ′ ∩B 6= ∅, then A ⊆ C(U ′).

2. If B 6= ∅ and B → v and either |U ′ ∩B| ≥ 2 or U ′ ∩ A 6= ∅, then B ⊆ C(U ′).

3. Suppose A→ v, U ′ ∩ A 6= ∅, and q ∈ D1(z) for z ∈ A− U ′. Then q 9 v.

4. Suppose v → B, U ′ ∩B 6= ∅, and q ∈ D2(z) for z ∈ B − U ′. Then v 9 q.

Proof. We begin with (1). In the case |U ′ ∩ A| ≥ 2, let x, y ∈ U ′ ∩ A. By Lemma 2.1(1),
we can assume D1(y) 6= ∅. Let q ∈ D1(y) ⊆ C(U ′). If z ∈ A − {x, y}, then v → z → q,
and so z ∈ C(U ′). Thus, A ⊆ C(U ′).

In the case U ′ ∩ B 6= ∅, let x ∈ U ′ ∩ B. If y ∈ A, then v → y → x, and so y ∈ C(U ′),
implying A ⊆ C(U ′). Part (2) follows similarly.

For (3), let x ∈ U ′ ∩ A. If q → v, then we have x → q → v and q → z → v, which
implies z ∈ C(U ′), a contradiction. Part (4) follows similarly.

We can now prove our main result, which shows that that the D(x)’s are contained
in exactly two partite sets. Furthermore, for each x ∈ U , the vertices in D(x) behave
similarly to x when used in the construction of convex hulls.

Theorem 3.6. Let T be a clone-free multipartite tournament, and let U = A ∪ B be
convexly independent. Suppose |U | ≥ 4, and let x, y, z ∈ U .

1. For all k, ` ≥ 0, D2k(x) ⊆ P0 and D2`+1(x) ⊆ P1.

2. If x 6= y, then D2k(x)→ D2`+1(y) for all k, ` ≥ 0.

3. Let u ∈ Dr(x), v ∈ Ds(y), where x 6= y, r and s have the same parity. If x, y ∈ A
and D1(x), D1(y) 6= ∅ or if x, y ∈ B and D2(x), D2(y) 6= ∅, then x ∨ y = u ∨ v.

4. Let u ∈ Dm(x), v ∈ Dn(y), and w ∈ Dp(z), where x, y, and z are distinct. Then
x ∨ y ∨ z = u ∨ v ∨ w.

Proof. If |B| = 0 or 1, we can use Lemma 3.4 to convert A and B into A′ and B′ with
|A′|, |B′| ≥ 2, A′ → B′, and where ∪∞k=0D2k(x) and ∪∞l=0D2l+1(x) for x ∈ A′ ∪ B′ are
identical to those of U . Thus, we can assume that |A|, |B| ≥ 2.

We prove all statements simultaneously by induction on
γ = max{2k, 2` + 1, r, s,m, n, p}. The results for γ = 0, 1 follow from the definitions and
Theorem 2.1(3) and (4). Theorem 2.1 also covers every situation where D2(α) is in the
hypothesis and α ∈ B. For the remaining cases, we begin with a lemma.
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Lemma 3.7. Suppose 0 ≤ t < γ and w ∈ ∆t(U).

1. There exists y ∈ U such that for any distinct x, z ∈ U −{y}, we have w ∈ x∨ y ∨ z.

2. If w ∈ Dt(u) for some u ∈ U , then the conclusion of (1) holds when y = u.

3. If w ∈ Dt(u) for some u ∈ U , then for any z ∈ U − {u} with Dt(z) 6= {z} and z in
the same partite set as u, we have w ∈ u ∨ z.

4. If x ∈ A (resp. x ∈ B) and Dt(x) 6= {x} for some t, then D1(x) 6= ∅ (resp.
D2(x) 6= ∅).

Proof. First note that, by induction, we can assume all the conclusions of Theorem 3.6.
We first prove (2) and (3). Let w ∈ Dt(u) for some u ∈ U . Then w ∈ Ds(u) for some
s ≤ t. The results are trivial if w = u so assume w 6= u and thus s, t ≥ 1. For (2), we
can use Theorem 3.6(4) to get w ∈ x ∨ w ∨ z = x ∨ u ∨ z. For (3), let z ∈ U − {u}
with Dt(z) 6= {z} and z in the same partite set as u. Assume, without loss of generality,
that u, z ∈ A. If s is even, Theorem 3.6(3) gives us w ∈ w ∨ z = u ∨ z. If s is odd, let
w′ ∈ Ds−1(u) with w → w′. Then z → w by Theorem 3.6(2) and w′ ∈ w′ ∨ z = u ∨ z by
Theorem 3.6(3). Thus, z → w → w′ implies w ∈ w′ ∨ z = u ∨ z by Theorem 3.6(3).

For (1), the case w ∈ Dt(u) for some u ∈ U is proven above so assume w 6∈ Dt(u) for
all u ∈ U . Then w 6∈ Ds(u) for all s ≤ t and u ∈ U , and since ∆1(U) = U ∪ D→A we
may assume t ≥ 2. If t = 2, then w ∈ ∆2(U) = C1(U ∪ D→A ). If w ∈ P1, we must have
w ∈ D1(u) for some u ∈ A or w ∈ B, both of which are impossible, so w /∈ P1. Similarly,
w /∈ P0. Since w 6∈ D2(u) for each u ∈ U , w → B ∪D→A . For w to be in ∆2(U), we must
then have A → w. Thus, A → w → B ∪D→A . Since |A| ≥ 2 there is a y ∈ A such that
D1(y) 6= ∅ by Theorem 2.1(1). Let q ∈ D1(y). For any z ∈ A − {y}, z → q → y and
z → w → q so w ∈ y ∨ z. Now let x, z ∈ U . If either x or z is in A then w ∈ x ∨ y ∨ z as
above. If not, then x, z ∈ B and y → w → x so w ∈ x ∨ y ∨ z.

Assume t > 2 and w 6∈ P0. Since w 6∈ Ds(u) for all s ≤ 3 and u ∈ U , then either
w → A ∪D←B or A ∪D←B → w. Since w ∈ ∆t(U) there exist w′, w′′ ∈ ∆t−1(U) such that
w′ → w → w′′. Since either w′ → w → A ∪ D←B or A ∪ D←B → w → w′′, and since (1)
holds for w′ and w′′ by induction, the result holds for w as well. When w 6∈ P1, a similar
argument using B ∪D→A in place of A ∪D←B gives us (1).

For (4), we prove the case x ∈ A, the case x ∈ B being similar. Let v ∈ Dt(x)− {x}.
Then v ∈ Ds(x) for some s ≤ t. If s = 1, the result is trivial. For s ≥ 2, let s be odd,
the even case being similar. By the definition of Ds(x), there exists v′ ∈ Ds−1(x) with
v → v′. If v′ 6= x, the result follows by induction. If v′ = x, let y ∈ A − {x}. Then
Theorem 3.6(2) implies y → v → x, and so v ∈ D1(x), which proves (4).

For (1), we assume for contradiction that v ∈ Dt(x)− (P0 ∪ P1), where x ∈ U . Thus,
v 6= x, and so D1(x) 6= ∅ if x ∈ A and D2(x) 6= ∅ if x ∈ B. We begin with the case x ∈ A.
By induction, t ≥ 2.

Suppose that t is odd. Then there exists v′ ∈ Dt−1(x), with v → v′. We know v /∈ D→A ,
so either A → v or v → A. Suppose A → v. Since |A|, |B| ≥ 2, we can let y ∈ A− {x},
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z1, z2 ∈ B. If v → z1, then y → v → z1 implies v ∈ y ∨ z1 ∨ z2. By induction on
(2), v′ → z1, and so v → v′ → z1 implies v′ ∈ y ∨ z1 ∨ z2. Using induction on (4),
x ∈ x ∨ y ∨ z1 = v′ ∨ y ∨ z1 ⊆ y ∨ z1 ∨ z2, a contradiction. Thus z1 → v. By induction on
(4), v′ ∈ x∨ y∨ z2. Then x→ v → v′ and x→ z1 → v, so z1 ∈ x∨ y∨ z2, a contradiction.

We now consider the case v → A. If any vertex in D→A ∪ B dominates v, then
v ∈ D2(y) for some y ∈ U and by induction on (1), v ∈ P0 contrary to our hypothesis.
Thus, v → (D→A ∪ B). Recall that v ∈ ∆t(U), and so there exists w ∈ ∆t−1(U) with
w → v. Let z1, z2 ∈ B. By Lemma 3.7(1), there is a y ∈ U such that w ∈ y ∨ z1 ∨ z2.
Then w → v → z1 implies v ∈ y ∨ z1 ∨ z2 and Lemma 3.5(1) implies A ⊆ y ∨ z1 ∨ z2, a
contradiction.

If t is even, there is a v′ ∈ Dt−1(x) with v′ → v. We begin with the case v → A. Let
y ∈ A− {x}, z1, z2 ∈ B. If z1 → v, then z1 → v → y implies v ∈ y ∨ z1, and so x ∈ y ∨ z1

by Lemma 3.5(1), a contradiction. Thus v → z1 and the result follows as in the previous
paragraph.

In the case A → v, let y ∈ A− {x}, z1, z2 ∈ B. By Theorem 2.1(3) and (5), v 6∈ D←B
and we must have either v → B or B → v. In the former case, induction on (2) gives us
y → v′. Then y → v → z1 and y → v′ → v imply v, v′ ∈ y ∨ z1 ∨ z2. By induction on
(4), we have x ∈ x ∨ y ∨ z1 = v′ ∨ y ∨ z1 ⊆ y ∨ z1 ∨ z2, a contradiction. If B → v, we let
w ∈ ∆t−1(U) with v → w. By Lemma 3.7(1), there is a z ∈ U such that w ∈ x ∨ y ∨ z.
Then x → v → w implies v ∈ x ∨ y ∨ z, and by Lemma 3.5(2), B ⊆ x ∨ y ∨ z, a
contradiction.

For x ∈ B, the result follows from the dual arguments to those in the case x ∈ A, using
Lemma 3.5(2) in place of Lemma 3.5(1) and using Lemma 3.5(4) in place of Lemma 3.5(3).
This completes the proof of (1).

For (2), we prove the case of 2k < 2`+1. The other case is similar. Suppose v ∈ D2k(x),
u ∈ D2`+1(y) for some x, y ∈ U , x 6= y and u→ v. Then there exists u′ ∈ D2`(y) such that
u → u′. Since u ∈ ∆2`+1(U) there is a p ∈ ∆2`(U) such that p → u. By Lemma 3.7(1),
there is a z ∈ U such that p ∈ z ∨ s ∨ t for any distinct s, t ∈ U − {z}.

We first consider the case z = x. Let z1, z2 ∈ U − {x, y}. By Lemma 3.7(1) and
induction on (4), p, v ∈ x ∨ z1 ∨ z2. Then p → u → v implies u ∈ x ∨ z1 ∨ z2. We have
u′ → ∪s 6=yD1(s) by induction, so if one of x, z1, or z2 is in B, then u → u′ → B − {y}
implies u′ ∈ x ∨ z1 ∨ z2. Otherwise, Theorem 2.1(1) gives us some q ∈ D1(z1) ∪D1(z2).
Again, u → u′ → q gives us u′ ∈ x ∨ z1 ∨ z2. Induction on (4) gives us y ∈ x ∨ u′ ∨ z1 ⊆
x ∨ z1 ∨ z2, a contradiction. Identical arguments give us the case z /∈ {x, y}. The case
z = y follows similarly, reversing the roles of x and y, and reversing the roles of u′ and v.
This gives us (2).

For (3), assume r and s are both odd. The even case is similar. Then u, v ∈ P1 by (1).
If u = x and v = y, the result is obvious. If u 6= x and v 6= y, there exists, by definition,
u′ ∈ Dr−1(x) and v′ ∈ Ds−1(y) with u→ u′ and v → v′. By (2), u′ → v and v′ → u. Then
clearly u∨v = u′∨v′. By induction, x∨y = u′∨v′ so x∨y = u∨v. This leaves, without loss
of generality, the case u = x and v 6= y. We need only show that v ∈ x∨ y and y ∈ x∨ v.
Since r and s are odd and x = u, we must have x, y ∈ B. Since D2(x) 6= ∅, there exists
q ∈ D2(x) with x → q. Since v 6= y, there is some v′ ∈ Ds−1(y) with v → v′. By (2),
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q → v and v′ → x. We then have q → v → v′, and so, by induction, v ∈ q ∨ v′ = x ∨ y.
Similarly, v → v′ → x, and so v′ ∈ x ∨ v, which implies y ∈ x ∨ y = q ∨ v′ ⊆ x ∨ v.

For (4), we begin with the case u 6= x, v 6= y, and w 6= z. If m, n, and p have the same
parity, say m, n, and p are all odd, then there exist u′ ∈ Dm−1(x), v′ ∈ Dn−1(y), and
w′ ∈ Dp−1(x) with u→ u′, v → v′, and w → w′. By (2), {u′, v′} → w, {u′, w′} → v, and
{v′, w′} → u. Clearly, u′∨v′∨w′ = u∨v∨w. By induction, x∨y∨z = u′∨v′∨w′, giving us
the result. If only two of m, n, and p have the same parity, say m is odd and n, p are even,
we have u′, v′, and w′ as above with u→ u′, v′ → v, and w′ → w. By (2), u′ → {v′, w′},
v → {u, w′}, and w → {u, v′}. Again, it is easy to show that u′ ∨ v′ ∨w′ = u∨ v ∨w, and
the result follows as above.

In the case u = x, v 6= y, and w 6= z, if n and p have the same parity, the result
follows similarly as above when m is odd and n, p are even. Suppose n is even and p is
odd with n < p. Let w′ ∈ Dp−1(z), v′ ∈ Dn−1 with w → w′ and v′ → v. By induction,
x ∨ y ∨ z = x ∨ v ∨ w′. By (2), w′ → v′ and v → w. Since v → w → w′, it follows that
w ∈ x∨ v ∨w′ = x∨ y ∨ z, and so x∨ v ∨w ⊆ x∨ y ∨ z. For the other direction, suppose
x ∈ A. By (2), x → v′ → v, and so v′ ∈ x ∨ v ∨ w. But now w → w′ → v′, and so
w′ ∈ x ∨ v ∨ w. Thus, x ∨ y ∨ z = x ∨ v′ ∨ w′ ⊆ x ∨ v ∨ w, which gives us the result. The
argument is similar for x ∈ B and when p < n.

The only case remaining is, without loss of generality, x = u, y = v, and z 6= w. We
prove the case p is even, the odd case being similar. Let w′ ∈ Dp−1(z) with w′ → w. If
x, y ∈ A, then, without loss of generality, we have q ∈ D1(y) with q → y. By induction,
x ∨ y ∨ z = x ∨ q ∨ w′, and we proceed as in the previous paragraph. This leaves us with
x ∈ A, y ∈ B. Let w′ ∈ Dp−1(z) with w′ → w. By (2), we have x→ {y, w′} and w → y.
By induction, x ∨ y ∨ z = x ∨ y ∨ w′. Since w′ → w → y, we have w ∈ x ∨ y ∨ w′, and so
x∨y∨w ⊆ x∨y∨z. For the other direction, we have x→ w′ → w, and so w′ ∈ x∨y∨w.
We then have x ∨ y ∨ z = x ∨ y ∨ w′ ⊆ x ∨ y ∨ w, and the proof is complete.

This leads to the following corollary.

Corollary 3.8. Let T be a clone-free multipartite tournament and let U = A ∪ B be a
convexly independent set with |U | ≥ 4. Then for x ∈ U the D(x) are pairwise disjoint.

Proof. It suffices to show that the Dt(x)’s are pairwise disjoint for all t ≥ 0. Suppose that
v ∈ Dt(x)∩Dt(y), where x, y ∈ U are distinct. We do the case of v ∈ P1. The case v ∈ P0

is similar. Clearly, we must have t ≥ 2. Since v ∈ Dt(x), there exists v′ ∈ Dt−1(x) with
v → v′. But since v ∈ Dt(y), Theorem 3.6(2) implies that v′ → v, a contradiction.

Before concluding this section we also note that Lemma 3.7 gives the following bound
on Caratheodory numbers. This result is also proven in [PWWb] without the hypothesis
that T is clone-free.

Corollary 3.9. Let T be a clone-free multipartite tournament. Then the Caratheodory
number of T is less than or equal to 3.
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4 Helly & Radon Numbers for Clone-Free Multipar-

tite Tournaments

Let T be a clone-free multipartite tournament and let U be a convexly independent set.
As in the previous section let P0 and P1 be partite sets of T such that U = A ∪B where
A = U ∩P0 and B = U ∩P1. We also assume |A| ≥ |B|, A→ B and D→A 6= ∅ when B = ∅.
We begin by examining H- and R-independence for clone-free bipartite tournaments. We
require a lemma.

Lemma 4.1. Let T be a clone-free bipartite tournament and let U be a convexly inde-
pendent set with |U | ≥ 4.

1. For each t ≥ 0, ∆t(U) =
⋃

x∈U Dt(x).

2. C(U) =
⋃

x∈U D(x).

Proof. For (1), note that by definition
⋃

x∈U Dt(x) ⊆ ∆t(U). To show that ∆t(U) ⊆⋃
x∈U Dt(x) we induct on t. The case t = 0 is trivial so assume v ∈ ∆t(U) for some t ≥ 1.

If v ∈ B the result is trivial. Otherwise, there exist u, w ∈ ∆t−1(U) such that u→ v → w.
By induction, u ∈ Dt−1(x) and w ∈ Dt−1(y) for some x, y ∈ U . Then u ∈ Dk(x) and
w ∈ Dl(y) for some k, l ≤ t− 1. Since T is bipartite u and w are in the same partite set
so by Theorem 3.6(1), k and l must have the same parity. Then v ∈ Dk+1(x) if k, l are
odd and v ∈ Dl+1(y) if k, l are even. Either way, v ∈

⋃
x∈U Dt(x) completing the proof of

(1). Part (2) follows immediately.

We get the following.

Theorem 4.2. Let T be a clone-free bipartite tournament.

1. Every convexly independent set is H-independent.

2. h(T ) = r(T ) = d(T ).

Proof. For (1), let U = A ∪ B be a convexly independent set. If |U | ≤ 2, then clearly U
is H-independent. In the case |U | ≥ 4, we have, by Lemma 4.1(2), that C(U − {x}) ⊆⋃

y∈(U−{x}) D(y), and so
⋂

x∈U C(U − {x}) ⊆
⋂

x∈U(
⋃

y 6=x D(y)) = ∅ since the D(y)’s are
pairwise disjoint by Corollary 3.8.

The only remaining case is |U | = 3. In the case |A| = 2 and |B| = 1, let A = {x1, x2}
and B = {y}. We have C(U − {x1}) = {x2, y} and C(U − {x2}) = {x1, y}. In order for
C(U − {x1}) ∩ C(U − {x2}) ∩ C(U − {y}) 6= ∅, we must have y ∈ C(U − {y}) which
violates the convex independence of U . Thus, U is H-independent.

Now consider the case |A| = 3, B = ∅. Let U = {x1, x2, x3} be in the partite set
P0, the other partite set being P1. By Theorem 2.1(1), we can assume that there exist
v2, v3 ∈ D→A with vi → xi. For contradiction, assume U is H-dependent, and let k be
minimal such that there exists v ∈ (x1∨x2)∩(x1∨x3)∩(x2∨x3), v ∈ Ck({x1, x2}). Clearly,
k 6= 0. If k = 1, then v ∈ D→A with either {x1, x3} → v → x2 or {x2, x3} → v → x1. In the
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first case, we have x1 → v3 → x3 and v → x2 → v3, and so x2 ∈ x1 ∨ x3, a contradiction.
In the second case, we similarly get x1 ∈ x2 ∨ x3, a contradiction. Thus, k ≥ 2, and so
there exist w1, w2 ∈ Ck−1({x1, x2}) with w1 → v → w2.

If v ∈ P0, then w1, w2 ∈ P1. Also note that v2 ∈ x1 ∨ x2. Suppose w1 → x3.
Then w1 → x3 → v2 implies x3 ∈ x1 ∨ x2, a contradiction. Thus, x3 → w1. But then
x3 → w1 → v. Since v, x3 ∈ (x1∨x3)∩(x2∨x3), we get w1 ∈ (x1∨x2)∩(x1∨x3)∩(x2∨x3).
This contradicts the minimality of k.

If v ∈ P1, then w1, w2 ∈ P0. Suppose v3 → w2. Then x2 → v3 → w2 and v3 → x3 → v2

imply that x3 ∈ x1 ∨ x2, a contradiction. Thus, w2 → v3. But then v → w2 → v3. Since
v, v3 ∈ (x1 ∨ x3) ∩ (x2 ∨ x3), we get w2 ∈ (x1 ∨ x2) ∩ (x1 ∨ x3) ∩ (x2 ∨ x3). This again
contradicts the minimality of k, completing the proof of (1). Part (2) follows directly.

In [PWWb], we studied the tripartite tournaments T ′2d−1, which have partite sets
P1 = {x1, · · · , xd−1}, P2 = {y1, y2, · · · , yd−1}, and P3 = {z}. The arcs are given by
yi → xi for all i ≥ 2, xi → yj otherwise and P1 → z → P2. We showed that h(T ′2d−1) = 2
while d(T ′2d−1) = d for all d ≥ 2. Furthermore, r(T ′3) = 2 and r(T ′2d−1) = 3 for all d ≥ 3.
Thus, letting d ≥ 3 this example shows that we cannot remove the hypothesis that T is
bipartite. The following shows that we cannot remove the clone-free hypothesis either.

Proposition 4.3. Let T be the bipartite tournament with vertex set V = {x1, x2, x3, x4, u}
and arcs given by {x1, x2} → u→ {x3, x4}. Then d(T ) = 4 and h(T ) = r(T ) = 3.

Proof. The unique maximum convexly independent set is S = {x1, x2, x3, x4}, and so
d(T ) = 4. It is easy to see that u ∈

⋂4
i=1(S − {xi}), and so S is H-dependent. It is

also easy to check that {x1, x2, x3} is H-independent, and so h(T ) = 3. Also, S has
the Radon partition {x1, x3} ∪ {x2, x4}, so S is R-dependent. Moreover, {x1, x2, x3} is
R-independent, so r(T ) = 3.

Now we consider clone-free multipartite tournaments. Let VU =
⋃

x∈U D(x). Since
VU ⊆ P0∪P1 by Theorem 3.6(1), VU induces a bipartite tournament which we will denote
by TU .

Lemma 4.4. Let U = A ∪B be a convexly independent set, and let z ∈ V − (P0 ∪ P1).

1. If |U | ≥ 4 and z distinguishes two vertices in VU , then (VU ∩ P0)→ z → (VU ∩ P1).

2. If |U | ≥ 3 and z distinguishes two vertices in U∪D→A , then (A∪D←B )→ z → (B∪D→A )

Proof. For (1), Theorem 3.6(1) implies that z /∈ Dt(x) for all t ≥ 0, x ∈ U . Thus we
cannot have z → u, u ∈ D2k(x) or v → z, v ∈ D2k+1(x) for any k ≥ 0, x ∈ U . The result
follows.

For (2), part (1) proves the result for each case except |U | = 3. Let U = {x1, x2, x3}.
If A = {x1, x2} and B = {x3}, let u2 ∈ D→A with u2 → x2. By Theorem 2.1, z /∈ D→A ,
and u2 ∈ P1. Thus, without loss of generality, either A → z → x3 or x3 → z → A.
In the latter case, we have x3 → z → x1 and z → x2 → x3, and so x2 ∈ x1 ∨ x3, a
contradiction. Thus, A → z → x3. Now suppose u2 → z. As before, we get z ∈ x1 ∨ x3.
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Then x1 → u2 → z and u2 → x2 → z imply x2 ∈ x1 ∨ z, a contradiction. Showing
D←B → z is similar.

In the case |A| = 3, let u2, u3 ∈ D→A with ui → xi. By Theorem 2.1(3), either
A→ z → D→A or D→A → z → A. In the latter case, since u2 ∈ x1 ∨ x2, u2 → z → x1, and
z → x3 → u2, we have x3 ∈ x1∨x2, a contradiction. Thus, A→ z → D→A . Since D←B = ∅,
this completes the proof.

Theorem 4.5. Let T be a clone-free multipartite tournament and let U be a convexly
independent subset with |U | ≥ 4, and let T = (V, E) and TU = (VU , EU) be as above.

1. If u, v ∈ VU ∩ Pi with i ∈ {0, 1}, w ∈ V and u→ w → v, then w ∈ VU .

2. TU is clone-free.

Proof. For (1), we have u ∈ Dk(x) and v ∈ D`(y) for some k, ` ≥ 0. If i = 0, then
w ∈ Dl+1(y) ⊆ VU , and if i = 1, then w ∈ Dk+1(x) ⊆ VU . Part (2) follows directly.

By Theorem 4.5 and Theorem 4.2, if U is a maximum convexly independent set of T ,
then h(TU) = r(TU) = d(TU) = |U |. We now consider the case when U is H-independent
in T .

Theorem 4.6. Let T be a clone-free multipartite tournament and let U be a convexly
independent subset of V with |U | ≥ 4. The following are equivalent.

1. U is H-independent.

2. U is R-independent.

3. No vertex in V − (P0 ∪ P1) distinguishes two vertices in U ∪D→A .

4. No vertex in V − (P0 ∪ P1) distinguishes two vertices in VU .

5. C(U) = VU .

6. There exist three vertices in U that form an H-independent set.

Proof. As before, we can assume U = A ∪ B with |A| ≥ |B|, A → B and D→A 6= ∅
when |A| ≥ 3. The implication (1) ⇒ (2) is trivial. For (2) ⇒ (3), suppose there
exists z ∈ V − (P0 ∪ P1) that distinguishes two vertices in U ∪ D→A . By Lemma 4.4(1),
(VU ∩P0)→ z → (VU ∩P1). If B 6= ∅, let x ∈ A, y ∈ B, R1 = {x, y}, R2 = U −R1. Since
x → z → y, z ∈ C(R1). Since |U | ≥ 4 (and thus |A| ≥ 2), then R2 ∩ A 6= ∅ and either
R2 ∩ B 6= ∅ or C(R2) ∩D→A 6= ∅. In either case, A→ z → (B ∪D→A ) implies z ∈ C(R2),
contradicting R-independence. For the case B = ∅, let x1, x2, x3, x4 ∈ A. Without loss
of generality, there exist ui ∈ D→A , i ∈ {2, 3, 4} with ui → xi by Theorem 2.1(1). We
have u2 ∈ x1 ∨ x2 and u3, u4 ∈ x3 ∨ x4. Since xi → z → uj for each i and j, we get
z ∈ (x1 ∨ x2) ∩ (x3 ∨ x4). Therefore, {x1, x2} and U − {x1, x2} form a Radon partition.
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We now prove (3) ⇒ (4). Suppose that z ∈ V − (P0 ∪ P1) distinguishes two vertices
in VU . Again, Lemma 4.4(1) implies (VU ∩ P0) → z → (VU ∩ P1). Thus, z distinguishes
all vertices in A from all vertices in B ∪D→A , contrary to (3).

For (4)⇒ (5), it is clear that VU ⊆ C(U). We prove that Cn(U) ⊆ VU for all n ≥ 0 by
induction. For n = 0, the result is obvious. For n ≥ 1, let z ∈ Cn(U). Then v → z → w
for some v, w ∈ Cn−1(U). By induction, v, w ∈ VU . But since no vertex in V − (P0 ∪ P1)
can distinguish vertices in VU , we must have z ∈ P0 ∪ P1. Then either v, w ∈ P0 or
v, w ∈ P1 so z ∈ VU by Theorem 4.5.

By Theorem 4.2(1), any convexly independent set in a clone-free bipartite tournament
is H-independent. Thus, U is H-independent in TU . Since C(U) = VU , this implies that
U is H-independent in T . This gives us both (5)⇒ (1) and (5)⇒ (6)

We now prove (6) ⇒ (3). Suppose that z ∈ V − (P0 ∪ P1) distinguishes two vertices
in U ∪D→A . Lemma 4.4(1) implies A∪D←B → z → (B ∪D→A ). Let u, x, y ∈ U . As before,
we have z ∈ (u ∨ x) ∩ (u ∨ y) ∩ (x ∨ y), and so {x, y, z} is H-dependent. This proves the
result.

As we noted with T ′2d−1, the Helly number, Radon number, and rank can differ if
d(T ) ≤ 3. It is clear that any set of cardinality 1 or 2 is H-independent (and thus
R- and convexly independent). It is also easy to show that for sets of cardinality 3,
R-independence and convex independence are equivalent. Thus, the Helly and Radon
number can differ only if h(T ) = 2 and d(T ) = r(T ) = 3. More specifically, R-independent
sets that are H-dependent can be characterized as follows.

Theorem 4.7. Let T be a clone-free multipartite tournament and let U = A ∪ B be an
R-independent set, where |A| ≥ |B|, A → B, and D→A 6= 0 when |A| ≥ 3. Then U is
H-dependent if and only if |U | = 3 and there exists a vertex z in a partite set disjoint
from U ∪D→A with A→ z → D→A .

Proof. Suppose U is H-dependent. By Theorem 4.6 and the discussion above, |U | = 3.
Let U = {x1, x2, x3}. Suppose there does not exist z ∈ V (T ) with A → z → D→A . By
Lemma 4.4(2), no vertex outside P0 ∪ P1 can distinguish vertices in U ∪ D→A . Thus, if
A = {x1, x2} and B = {x3}, we have (x1 ∨x3)∩ (x2 ∨x3) = {x3}. But U is H-dependent,
so x3 ∈ x1 ∨ x2, which violates the convex independence of U .

Now suppose that U = A. By Theorem 2.1(1), without loss of generality there exist
u2, u3 ∈ D→A with ui → xi. We claim that x1 ∨ x2 ⊆ P0 ∪ P1. If not, let z ∈ (x1 ∨ x2) −
(P0∪P1). If z → (A∪D→A ), then z → x3 → u2 and z, u2 ∈ x1∨x2 imply that x3 ∈ x1∨x2,
a contradiction. Otherwise, (A∪D→A )→ z. In this case, x2 → u3 → z and u3 → x3 → x2

imply that x3 ∈ x1 ∨ x2, a contradiction.
Let k be minimal such that there exists v ∈ (x1 ∨ x2) ∩ (x1 ∨ x3) ∩ (x2 ∨ x3), v ∈

Ck({x1, x2}). By the above, v ∈ P0 ∪ P1. We prove the case v ∈ P1, the other case
being similar. Clearly, k ≥ 2, and so there exists w1, w2 ∈ Ck−1({x1, x2}) such that
w1 → v → w2. Since each wi ∈ (x1 ∨ x2) − P1, we have wi ∈ P0. Suppose u3 → w2.
Then x1 → u3 → w2 and u3 → x3 → u2 imply that x3 ∈ x1 ∨ x2, a contradiction. Thus,
w2 → u3. But then v → w2 → u3, w2 ∈ x1 ∨ x2, and v, u3 ∈ (x1 ∨ x3) ∩ (x2 ∨ x3) imply
that w2 ∈ (x1 ∨ x2) ∩ (x1 ∨ x3) ∩ (x2 ∨ x3), contradicting the minimality of k.
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For the converse, if |U | = 3 and A→ z → D→A , it is easy to show z ∈
⋂

u∈U C(U−{u}),
which makes U H-dependent.

The following is immediate from Theorem 4.7. Note that in this result, we assume
neither |A| ≥ |B| nor D→A 6= ∅.

Corollary 4.8. Let T be a clone-free multipartite tournament. The following are equiv-
alent.

1. h(T ) 6= r(T ).

2. h(T ) = 2 and r(T ) = 3.

3. For every convexly independent set U = A ∪ B of order 3 with A 6= ∅ and A → B
when B 6= ∅, there exists z ∈ V (T ) such that

(a) If B = ∅ and D←A 6= ∅, then D←A → z → A

(b) If D→A 6= ∅, then A→ z → (B ∪D→A )

As mentioned before, this occurs with the tripartite tournaments T ′2d−1, where h(T ′2d−1) =
2 and r(T ′2d−1) = 3 for all d ≥ 3.

5 Conclusion

Our results show that, under two-path convexity, the convex hull of a convexly inde-
pendent set of vertices contains elements that are particularly well-behaved. They form
chains of vertices with alternating edge orientations residing in the same partite sets that
contain the convexly independent set and the associated sets D→A and D←B . Furthermore,
each of these well-behaved vertices takes on many of the same properties as the vertex
that is at the start of its chain. This rich structure enables us to prove that except in
some small cases, the Helly number and the Radon number of a clone-free multipartite
tournament are the same. Furthermore, the result is stronger in the case of clone-free
bipartite tournaments: not only do the Helly number and Radon number coincide, but
so does the rank.

The results lead to two obvious questions for further consideration. The class of clone-
free multipartite tournaments with Helly number 2 and Radon number 3 seem to have
some special properties. It would be nice if we had a way of identifying when such subsets
exist, particularly when the Radon number is 3.

Finally, it is curious to note that while clones may seem innocuous, they clearly impact
the structure of the convex subsets in multipartite tournaments. Thus, to what degree
can our results be extended to multipartite tournaments with clones?
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