
On Generalizing the “Lights Out” Game and a

Generalization of Parity Domination

Alexander Giffen∗ Darren B. Parker†

May 25, 2009
MR Subject Classifications: 05C78, 05C15, 91A43,

Keywords: Lights Out, parity domination

Abstract

The Lights Out game on a graph G is played as follows. Begin with a (not
necessarily proper) coloring of V (G) with elements of Z2. When a vertex is toggled,
that vertex and all adjacent vertices change their colors from 0 to 1 or vice-versa.
The game is won when all vertices have color 0. The winnability of this game is
related to the existence of a parity dominating set. We generalize this game to
Zk, k ≥ 2, and use this to define a generalization of parity dominating sets. We
determine all paths, cycles, and complete bipartite graphs in which the game over
Zk can be won regardless of the initial coloring, and we determine a constructive
method for creating all caterpillar graphs in which the Lights Out game cannot
always be won.

1 Introduction

The game Lights Out was originally a handheld game by Tiger Electronics. This game
has since been generalized to graphs as follows. Let G be a graph with a (not necessarily
proper) vertex coloring by the set Z2 = {0, 1}. When a vertex is toggled, that vertex and
all of its neighbors change colors (from 0 to 1 or vice-versa). The game is won when all
vertices have the color 0.

Strategies for winning this game (when victory is possible) and some variations of the
game have been studied in [AF98], [Aua00], [Pel87], [Sto89], and [Sut89]. The Lights
Out game has connections with domination theory, specifically parity domination, which
has been explored by Amin, Clark, Slater, and Zhang (see [AS92], [AS96], [ACS98], and
[ASZ02]). J. Goldwasser and W. Klostermeyer were the first to discover the connection
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between Lights Out and parity domination (see [GK97] and [GKT97]). In particular,
they proved that the existence of a parity dominating set is equivalent to whether a
corresponding game of Lights Out can be won.

In Section 2, we generalize the game of Lights Out to an arbitrary set of colors C,
where the result of toggling a vertex is determined by a function T : C → C. We focus
on the case where T is a permutation and reduce this problem to the case where T is a
cycle.

In Section 3, we recast the task of winning Lights Out on a graph whose vertices are
labeled by Zk as a solution to a linear system of equations over Zk. This will illustrate the
connection between the Lights Out game over Z2 and parity domination and will allow
us to use our generalized Lights Out game to generalize parity domination.

In Section 4, we characterize the labelings for paths, cycles, and complete bipartite
graphs in which the Lights Out game over Zk can be won. We use these results to
determine the paths, cycles, and complete bipartite graphs in which the Lights Out game
can be won regardless of the initial labeling. In Section 5, we generalize a result of A.
Amin and P. Slater on the construction of caterpillar graphs in which the Lights Out
game cannot always be won.

2 Generalized Lights Out

To play Lights Out, one needs to know the graph, the colors, and what the “off” color is.
In addition, one needs to know the rule used to change the colors of each toggled vertex
and its neighbors. Let G be a graph with vertex coloring π : V (G) → C, where C is a set,
and let 0 ∈ C be designated as the off color. We then define a toggling function T : C → C

so that if v ∈ V (G) is toggled, the resulting coloring is π′ with π′(w) = T (π(w)) if w = v

or wv ∈ E(G), and π′(w) = π(w) otherwise. We define the game to be won when the
coloring is π0, where π0(v) = 0 for all v ∈ V (G). In the standard Lights Out game,
C = Z2, the off color is 0, and the toggling function is T (c) = c + 1.

Example 2.1. Consider the following graph:

v1

v3

v2 v4

v5

Let C = Z5 with off color 0, and define the toggle function T : C → C by T (0) = 2,
T (1) = 0, T (2) = 3, T (3) = 1, T (4) = 3. Let the initial coloring be π(v1) = 2, π(v2) = 4,
π(v3) = 1, π(v4) = 0, and π(v5) = 2. If we toggle v2 once, we change the color of v1 to
T (2) = 3, v2 to T (4) = 3, v3 to T (1) = 0, and v4 to T (0) = 2. We then toggle v1 twice,
giving v1 and v2 the color T (T (3)) = 0. After toggling v5 thrice, all vertices have color 0,
and the game is won.
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Now suppose the toggling function T is a permutation, so we can write T as a product
of disjoint cycles. If T (0) = 0, the game can be won if and only if all vertices are initially
colored 0. Otherwise, let σ be the cycle in T with σ(0) 6= 0. If any vertex of the graph
has a color that is fixed by σ, then the game cannot be won. If the vertices are colored
only by colors that are not fixed by σ, then the other disjoint cycles have no effect on the
game. This gives us the following.

Proposition 2.2. Let G be a graph whose vertices are colored by C, and whose toggling
function is a permutation T = σ1σ2 · · · σm, where the σi’s are disjoint cycles and σ1(0) 6= 0.
Let C′ ⊆ C be the set of colors that are not fixed by σ1. Then the Lights Out game can
be won if and only if

1. All vertices are colored by elements of C′ and

2. The Lights Out game can be won with toggling function σ1.

Thus, the question of whether a Lights Out game can be won when the toggling
function is a permutation can be reduced to the case where the toggling function is a
cycle. If the cycle T has order k, we identify T c(0) with c ∈ Zk, and we can thus let
C = Zk with toggling function T (c) = c + 1. The traditional Lights Out game operates
this way with k = 2. Note that we can consider π : V (G) → Zk a labeling of V (G).

3 Matrix Methods and Parity Domination

As before, let G be a graph with labeling π : V (G) → Zk and toggling function T (c) =
c + 1. Let V (G) = {v1, . . . , vn}, with π(vi) = bi. In this section, we address the question
of whether, given this initial labeling, the Lights Out game can be won.

We proceed as in [AF98]. One can easily check that the order in which the vertices
are toggled has no impact on the resulting labeling. All that matters is how many times
each vertex is toggled. Let xi be the number of times that vi is toggled, and let x be the
n-dimensional vector with x[i] = −xi. Similarly, let b be the n-dimensional vector with
b[i] = bi.

Let A be the adjacency matrix of G. Then N = A + In is the neighborhood matrix

or augmented adjacency matrix of G. Notice that the label of vi is increased by one each
time either vi or a neighbor of vi is toggled. Thus, the label of vi after the toggling given
by x is bi +

∑n
j=1 Nijxj. This gives us the following.

Lemma 3.1. The toggling given by x can be used to win the Lights Out game if and
only if Nx = b over Zk.

Example 3.2. Let G = C4, and suppose that we have an initial labeling π : V (G) → Z8

given by π(v1) = 4, π(v2) = 1, π(v3) = 5, π(v4) = 3. We then have

N =









1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1









, b =









4
1
5
3
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Suppose k = 8. We then solve the equation Nx = b by row reduction modulo 8 to
get x[1] = 2, x[2] = 4, x[3] = 3, and x[4] = 6. Thus, the game can be won. Note that if
we row reduce in Z3, there is no solution. In this case, the game cannot be won.

These methods are reminiscent of those used in domination theory (see, for example,
[AS92] and [ASZ02]). The classical domination problem is to find a set S ⊆ V (G) (called
a dominating set) of minimum cardinality such that every vertex of G is either in S or
adjacent to a vertex in S.

For each v ∈ V (G), define N [v] = {w ∈ V : vw ∈ E(G) or w = v}. Then S ⊆ V (G) is
a dominating set if and only if |N [v]∩S| ≥ 1 for all v ∈ V (G). Other types of domination
have been studied by placing various restrictions on |N [v] ∩ S|. Note that if we let x be
the n-dimensional vector with xi = 1 if vi ∈ S and xi = 0 otherwise, then

|N [v] ∩ S| =
n
∑

j=1

Nijxj (1)

In parity domination, we begin with a labeling π : V (G) → Z2. We call a set S ⊆ V (G)
a parity dominating set of π if |N [v] ∩ S| ≡ π(v) (mod 2) for all v ∈ V (G). Using (1),
this is equivalent to S satisfying the equation Nx = b over Z2, where x(i) = 1 if vi ∈ S

and x(i) = 0 otherwise. Thus, we have a parity domination set S for π if and only if the
Lights Out game with initial labeling π can be won by toggling precisely the vertices in
S.

To extend parity domination to labelings π : V (G) → Zk, k ≥ 3, we must address the
possibility that a solution to Nx = b over Zk may have an entry that is neither 0 nor
1. We resolve this issue by using multisets. Recall that a multiset is a pair M = (S,m),
where S is a set (called the underlying set), and m : S → N is a function. For s ∈ S, we
call m(s) the multiplicity of s in M .

Definition 3.3. For each v ∈ V (G), let Nk[v] be the multiset with underlying set N [v]
and with each element having multiplicity k − 1. Let M be a multiset whose underlying
set is a subset of V (G) and whose elements each have multiplicity at most k − 1. For a
labeling π : V (G) → Zk, we call M a Zk-dominating multiset for π if |Nk[v] ∩ M | ≡ π(v)
(mod k) for all v ∈ V (G).

Note that a Z2-dominating multiset is merely a parity dominating set. The following
describes the relationship between Zk-domination and the Lights Out game.

Theorem 3.4. Let G be a graph with labeling π : V (G) → Zk. If V (G) = {v1, v2, . . . , vn},
let b ∈ R

n such that b[i] = π(vi). The following are equivalent.

1. There exists a Zk-dominating multiset for π.

2. There is a solution to the equation Nx = b over Zk.

3. The Lights Out game with initial labeling π can be won.
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Proof. By Lemma 3.1, 2 and 3 are equivalent. For 1 ⇒ 2, let S be a Zk-dominating
multiset. Define x so that x[i] is the multiplicity of vi in S. It is not hard to show that
∑n

j=1 Nijxj = |Nk[v] ∩ S|. Since also S is a Zk-dominating multiset, we have, for each
v ∈ V ,

n
∑

j=1

Nijxj = |Nk[v] ∩ S| ≡ π(v) (mod k)

and so x is a solution to Nx = b. The proof of 2 ⇒ 1 is similar.

4 Winnable Labelings and AW Graphs

We use notation as in previous sections, with our graph G, labeling set Zk, and toggling
function T (c) = c + 1. We say the labelings π and π′ are equivalent under T (or merely
equivalent if the context is clear) if, given the initial labeling π, there is a sequence of
toggles such that the terminal labeling is π′. We denote this relation by Rk

G. It is easy
to see that Rk

G is an equivalence relation. We call a labeling π winnable if π is equivalent
to π0, where π0(v) = 0 for all v ∈ V (G). We say that G is always winnable over Zk (or
simply always winnable or AW if the context is clear) if all labelings π : V (G) → Zk are
winnable.

Example 4.1. P3 has neighborhood matrix N =





1 1 0
1 1 1
0 1 1



. Since det(N) = −1, N is

invertible, and so the equation Nx = b can always be solved. By Lemma 3.1, P3 is AW
over all Zk, k ≥ 2.

On the other hand, Kn is non-AW for all k ≥ 2. Every labeling π 6= π0 is not winnable,
since toggling any vertex has the effect of increasing the label of every vertex by one.

In this section, we study the winnable labelings of paths, cycles and complete bipartite
graphs. Let V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {vivi+1 : 1 ≤ i ≤ n − 1}. We let
V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {v1vn, vivi+1 : 1 ≤ i ≤ n − 1}. Finally, we let
V (Km,n) = {vi, wj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Km,n) = {viwj : 1 ≤ i ≤ m, 1 ≤ j ≤
n}. We begin by proving that every labeling of the vertex sets of each of these graphs is
equivalent to a “nice” labeling.

Lemma 4.2. 1. Each labeling of V (Pn) by Zk is equivalent to some π where π(vi) = 0
for all i 6= 1.

2. Each labeling of V (Cn) by Zk is equivalent to some π, where π(vi) = 0 for all i 6= 1, 2.

3. Each labeling of V (Km,n) by Zk is equivalent to some π, where π(wj) = 0 for all
1 ≤ j ≤ n.

Proof. For 1, if all vertices have label 0, then we are done. Otherwise, let m be maximum
such that the label of vm is c 6= 0. If m = 1, we are done. If m ≥ 2, we toggle vm−1 k − c
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times (or −c times modulo k). The resulting labeling has the label of 0 for vi, i ≥ m. By
induction, this labeling is equivalent to one in which all vertices except perhaps v1 have
label 0. Part 2 follows similarly.

For 3, let the label of wj be cj for each 1 ≤ i ≤ n. We merely toggle wj k − cj times
to get the desired labeling.

Lemma 4.2 motivates the following labelings. For each z ∈ Zk, we define πz : V (Pn) →
Zk to be πz(vi) = δi,1z. For each y, z ∈ Zk, we define πy,z : V (Cn) → Zk to be πy,z(vi) =
δ1,iy + δ2,iz. Finally, for each z1, . . . , zm ∈ Zk, let z ∈ Z

m
k with z(i) = zi. We define

πz : V (Km,n) → Zk by πz(vi) = zi and πz(wj) = 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Our
main result tells precisely when πz, πy,z, and πz are winnable.

Theorem 4.3. Let πz, πy,z, and πz be as above

1. For Pn, πz is winnable if and only if either n ≡ 0, 1 (mod 3) or z = 0.

2. For Cn, πy,z is winnable if and only if one of the following holds.

(a) n ≡ 1, 2 (mod 3) and gcd(3, k) = 1

(b) n ≡ 1 (mod 3), 3|k, and the equivalence 3x ≡ −y − z (mod k) has a solution.

(c) n ≡ 2 (mod 3), 3|k, and the equivalence 3x ≡ y − 2z (mod k) has a solution.

(d) y = z = 0.

3. For Km,n, πz is winnable if and only if (mn−1)x ≡
∑m

i=1 z(i) (mod k) has a solution.

Proof. For 1, suppose we toggle the vertices in the order v1, v2, . . . , vn. Let ti be the
number of times vi is toggled, and let di be the label of vi after vi is toggled. Clearly ti =
−di−1 for all i ≥ 2. We then have di = ti + ti−1 = −di−1−di−2, and so di +di−1 +di−2 = 0.
This, along with d1 = t1 + z and d2 = −z, gives us

di =







−t1, i ≡ 0 (mod 3)
t1 + z, i ≡ 1 (mod 3)
−z, i ≡ 2 (mod 3)

(2)

Note that πz is winnable if and only if there exists t1 ∈ Zk such that dn ≡ 0 (mod k).
If n ≡ 0 (mod 3), let t1 = 0; if n ≡ 1 (mod 3), let t1 = −z. For n ≡ 2 (mod 3), πz is
winnable precisely when z = 0.

We proceed similarly for 2. Let ti be the number of times vi is toggled, and let di be
the label of vi after vi is toggled. Similarly as before, we have ti = −di−1 for 3 ≤ i ≤ n

and di + di−1 + di−2 = 0 for 4 ≤ i ≤ n − 1. This is not the case with i = 3 since t2 is
not necessarily −d1 (v1 is adjacent to both v2 and vn). We have d2 = t1 + t2 + z and
d3 = −t1 − z, and so

di =







−t1 − z, i ≡ 0 (mod 3)
−t2, i ≡ 1 (mod 3)

t1 + t2 + z, i ≡ 2 (mod 3)
(3)
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After vn is toggled, we have dn = tn−1 + tn + t1 and v1 has label tn + t1 + t2 + y. If
n ≡ 0 (mod 3), we have dn = −z and v1 has label y − z, so πy,z is winnable if and only
if y = z = 0. If n ≡ 1 (mod 3), we have dn = t1 − t2 and v1 has label 2t1 + t2 + y + z,
and so πy,z is winnable if and only if t2 = t1 and 3t1 ≡ −y − z (mod k). Finally, if n ≡ 2
(mod 3), we have dn = 2t1 + t2 + z and v1 has label t1 + 2t2 + y. Eliminating t2 gives us
3t1 ≡ y − 2z (mod k).

For 3, let zi = z(i), and let xi be the number of times vi is toggled. Once the vi’s
have been toggled, vi has label xi + zi and each wj has label

∑m
ℓ=1 xℓ. In order to have a

final label of 0, each wj must be toggled −
∑m

ℓ=1 xℓ times. This leaves vi with the label
zi+xi−n

∑m
ℓ=1 xℓ = zi+(1−n)xi−n

∑m
ℓ6=i xℓ. We must then have (n−1)xi+n

∑m
ℓ6=i xℓ = zi,

a linear system over Zk. For each p ∈ N, let B(p) = [bij] be the p×p matrix with bii = n−1
for 1 ≤ i ≤ p and bij = n otherwise. Then the augmented matrix for our linear system is
[B(m)|z].

We now seek to put [B(m)|z] in row echelon form. If we subtract row 2 from row 1
and add n times the new row 1 to every other row, we get the matrix















−1 1 0 · · · 0 z1 − z2

0 2n − 1 n · · · n nz1 − nz2 + z2

0 2n nz1 − nz2 + z3
...

... B(m − 2)
...

0 2n nz1 − nz2 + zm















If we iterate this process j − 1 times, 2 ≤ j ≤ m, we get




























−1 1 0 0 0 · · · 0 z1 − z2

0
. . . . . . 0 0 · · · 0

...
0 · · · −1 1 0 · · · 0 zj−1 − zj

0 · · · 0 jn − 1 n · · · n
(

∑j−1
ℓ=1 nzℓ

)

− (j − 1)nzj + zj

0 · · · 0 jn
(

∑j−1
ℓ=1 nzℓ

)

− (j − 1)nzj + zj+1

...
. . .

...
... B(m − j)

...

0 · · · 0 jn
(

∑j−1
ℓ=1 nzℓ

)

− (j − 1)nzj + zm





























We get our echelon form by setting j = m. Since all row operations used to obtain
the echelon form are invertible, this echelon form is equivalent to the original system.
Moreover, the first m − 1 leading entries are −1 and the last leading entry is mn − 1, so
πz is winnable if and only if

(mn − 1)x =

(

m−1
∑

ℓ=1

nzℓ

)

− (m − 1)nzm + zm =

(

m
∑

ℓ=1

nzℓ

)

− (mn − 1)zm

has a solution in Zk. This is equivalent to (mn−1)x ≡
∑m

ℓ=1 nzℓ having a solution. Since
gcd(mn − 1, n) = 1, this is equivalent to (mn − 1)x ≡

∑m
ℓ=1 zℓ having a solution, which

completes the proof.
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Let G be any graph. Recall the equivalence relation Rk
G between labelings of V (G)

by Zk, and note that the number of winnable labelings is |[π0]|. There is a natural group
action of Zk

|V (G)| on the labelings of V (G) in which the equivalence classes of Rk
G are

the orbits of the action. It follows that all equivalence classes of Rk
G have the same size.

Furthermore, Lemma 4.2 implies that πz, πy,z, and πz represent all equivalence classes of
Rk

Pn
, Rk

Cn
, and Rk

Km,n
, although not necessarily uniquely.

Armed with this information, we can now count the winnable labelings for Pn, Cn,
and Km,n.

Theorem 4.4. 1. The number of winnable labelings of V (Pn) by Zk is

(a) kn if n ≡ 0, 1 (mod 3).

(b) kn−1 if n ≡ 2 (mod 3)

2. The number of winnable labelings of V (Cn) by Zk is

(a) kn if n ≡ 1, 2 (mod 3) and gcd(3, k) = 1.

(b) kn−2 if n ≡ 0 (mod 3).

(c) kn

3
if 3|k and n ≡ 1, 2 (mod 3).

3. Km,n has
km+n

gcd(k,mn − 1)
winnable labelings by Zk.

Proof. For 1, Lemma 4.2(1) implies that the collection of all πz, z ∈ Zk represents all
equivalence classes. If k ≡ 0, 1 (mod 3), all labelings are winnable, so we have kn winnable
labelings. If k ≡ 2 (mod 3), suppose that πy and πz are equivalent. Then the same toggling
sequence that takes πz to πy will take πz−y to π0. By Theorem 4.3(1), we have z − y = 0,
so z = y. Thus, there are k equivalence classes. Since each has the same cardinality, each
equivalence class has kn

k
= kn−1 labelings.

For 2, Lemma 4.2(2) implies that the πy,z represent all equivalence classes. Suppose
πy1,z1

and πy2,z2
are equivalent. As before, if y = y2 − y1 and z = z2 − z1, then πy,z is

winnable. Let n ≡ 1 or 2 (mod 3). If gcd(3, k) = 1, then Theorem 4.3(2a) implies that
all kn labelings are winnable. If n ≡ 0 (mod 3), then Theorem 4.3(2) implies that πy,z is
winnable if and only if y = z = 0. It follows that there are k2 equivalence classes, and
therefore kn−2 winnable labelings. If 3|k and n ≡ 1 (mod 3), then by Theorem 4.3(2b),
πy,z is winnable if and only if 3x ≡ −y − z (mod k) has a solution. This occurs precisely
when 3|y + z, or, equivalently, y1 + z1 ≡ y2 + z2 (mod 3). There are then 3 equivalence
classes and therefore kn

3
winnable labelings. The n ≡ 2 (mod 3) case follows similarly,

using Theorem 4.3(2c).
For 3, Lemma 4.2(3) implies that the πz represent all equivalence classes. Let y ∈ Z

m
k

be fixed. As before, if πy and πz are equivalent, then πz−y is winnable. By Theorem 4.3(3),
this occurs precisely when (mn − 1)x =

∑m
i=1[z(i) − y(i)] =

∑m
i=1 z(i) −

∑m
i=1 y(i) has a

solution in Zk. If d = gcd(k,mn − 1), then there are k
d

values of
∑m

i=1 z(i) for which a
solution to this congruence exists. For each r of these k

d
values, there are km−1 different

8



z ∈ Z
m
k whose entries add up to r. Thus, there are km

d
πz’s in each equivalence class, and

so there are km

km/d
= d equivalence classes. The result follows.

From this, we can easily determine the AW paths, cycles, and complete bipartite
graphs.

Corollary 4.5. 1. Pn is AW over Zk if and only if n ≡ 0 or 1 (mod 3).

2. Cn is AW over Zk if and only if n ≡ 1 or 2 (mod 3) and gcd(3, k) = 1.

3. Km,n is AW over Zk if and only if gcd(mn − 1, k) = 1

5 Non-AW Caterpillar Graphs

One of the results in [AS96] gives a constructive method for generating all caterpillar
graphs G for which there exists a labeling π : V (G) → Z2 that does not admit a parity
domination set. In this section, we derive a similar constructive method for generating
non-AW caterpillar graphs that will give Amin and Slater’s result as a special case.

Recall that a caterpillar graph is a graph in which the vertices that are not leaves
(called the spine) induce a path. Let v1(G), v2(G), . . . , vn(G) be the vertices of the spine
with vi(G)vi+1(G) ∈ E(G), and let ℓi(G) be the number of leaves adjacent to vi(G). We
can leave out the argument G if G is known. We begin with a result similar to Lemma 4.2.

Lemma 5.1. If G is a caterpillar graph, then every labeling of G is equivalent to some
labeling π such that π(v) = 0 for all v ∈ V (G) − {v1}.

Proof. Follows from an argument similar to Lemma 4.2(1) and (3).

For each z ∈ Zk, let πz be the labeling of the caterpillar graph G given by πz(v1) = z

and πz(v) = 0 for all v 6= v1. Let C be the set of all equivalence classes of labelings of
V (G). If y, z ∈ Zk, one can easily verify that the binary operation [πy] + [πz] = [πy+z]
is well-defined, making C an additive group. Moreover, the map Ψ : Zk → C given
by Ψ(z) = [πz] is an epimorphism whose kernel is the set of all z ∈ Zk such that πz is
winnable. We then use standard group theory to get the following.

Lemma 5.2. Let G be a caterpillar graph.

1. If πd is winnable, then πmd is winnable for all m ∈ Z.

2. πy and πz are winnable if and only if πgcd(y,z)
is winnable.

3. G is AW if and only if π1 is winnable.

Thus, in our study of AW (and non-AW) graphs, we will begin with the labeling π1.
To make the computations more convenient, let mi(G) = ℓi(G) − 1. We proceed as with
Pn, toggling the vertices of the spine in the order v1, v2, . . . , vn. After each vi is toggled,
we toggle the leaves adjacent to vi so that they each have label 0. Let ti be the number
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of times vi is toggled with t1 = x, and let dG
i (x) (or simply di(x) when G is known) be

the label of vi after vi and all its adjacent leaves are toggled. After toggling v1, we must
toggle each adjacent leaf −x times to get d1(x) = 1 + x − ℓ1x = −m1x + 1. We toggle
v2 and its adjacent leaves similarly to get d2(x) = (1 − m1m2)x + m2. For the remaining
vertices, we get

di(x) = ti − ℓiti + ti−1 = −di−1(x) + ℓidi−1(x) − di−2(x) = midi−1(x) − di−2(x)

This gives us the following.

Lemma 5.3. For each 1 ≤ i ≤ n, we have di(x) = aix + bi, where the sequences {di(x)},
{ai}, and {bi} satisfy the homogeneous linear difference equation yj = mjyj−1−yj−2 with
initial values a1 = −m1, a2 = 1 − m1m2, b1 = 1, and b2 = m2.

Note that if the spine of G is Pn, then G is AW if and only if the equivalence anx+bn ≡ 0
(mod k) can be solved, which occurs precisely when gcd(an, k)|bn. Using techniques similar
to the proof of Lemma 5.3, we get a slight strengthening of Lemma 5.2(1).

Lemma 5.4. Suppose that πd can be won by toggling v1 y times. Then πmd can be won
by toggling v1 my times.

Amin and Slater use the following construction to generate non-AW caterpillar graphs
in the case k = 2.

Definition 5.5. Let G1 and G2 be caterpillar graphs whose spines are Pn1
and Pn2

,
respectively. We define G1.w.G2(r) to be the caterpillar graph with vertex set V (G1) ∪
V (G2)∪{w, x1, . . . , xr}, where r ≥ 0 (r = 0 denotes no xi’s) and edge set E(G1)∪E(G2)∪
{vn1

(G1)w,wv1(G2), wx1, . . . , wxr}. We call this construction a pasting of G1 and G2.

Note that the construction depends on which order the vertices of the spine are written.
This can be made clear by defining the ℓi’s. We call K1,n type T1 if n is odd, and we call
a caterpillar graph type T2,j, j ≥ 0, if it has spine Pj+2, if ℓ1 and ℓj+2 are even, and if ℓi

are odd for 2 ≤ i ≤ j + 1. Note that T1 and T2,j are unique if we consider each ℓi modulo
2. We can now state Amin and Slater’s result (in Lights Out terminology) as follows.

Theorem 5.6. [AS96]

1. Let G1 and G2 be two non-AW caterpillar graphs over Z2. Then G1.w.G2(r) is
non-AW over Z2.

2. A caterpillar graph G is non-AW over Z2 if and only if either

(a) G is of type T1 or T2,j.

(b) G can be obtained by repeated pastings of graphs of types T1 and T2,j.

The following example shows that this result does not hold for all Zk.
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Example 5.7. Consider G1, G2, and G1.w.G2(0) as follows.

G1 G2

w

G1.w.G2(0)

We have m1(G1) = 5, m2(G1) = 2, m1(G2) = 1, and m2(G2) = 3. If k = 6, then,
dG1

2 (x) = 3x + 2, and dG2

2 (x) = 4x + 3. Since neither dGi

2 (x) can be 0 modulo 6, G1 and
G2 are not AW. However, G1.w.G2(0) is AW (using x = 0 for π1). Thus, it is possible to
paste two non-AW caterpillars together to get an AW caterpillar.

While we do not have an analogue of Theorem 5.6 for arbitrary k, our main result
generalizes the theorem to k = pe, where p is prime. We begin with a lemma.

Lemma 5.8. Suppose p is a prime such that p|k, and let ai and bi be as in Lemma 5.3.
Then for each 1 ≤ i ≤ n, p cannot divide both ai and bi.

Proof. For contradiction, let i be minimal such that p|ai and p|bi. By Lemma 5.3, we
have i ≥ 3, and (in Zk) ai = miai−1 − ai−2 and bi = mibi−1 − bi−2. Since p|k, these
equations also hold when we consider them over Zp. In this context, ai = bi = 0, and so
ai−2 = miai−1 and bi−2 = mibi−1.

We claim that aj+1bj ≡ ajbj+1 (mod p) for all 1 ≤ j ≤ i − 2. We induct on i − j − 2.
For i − j − 2 = 0, by the minimality of i, either ai−1 or bi−1 is nonzero in Zp. Without
loss of generality, ai−1 6= 0 in Zp. Doing computations in Zp, we get mi = ai−2

ai−1

, and

so bi−2 = ai−2bi−1

ai−1

. Thus, ai−1bi−2 ≡ ai−2bi−1 (mod p). For the induction step, suppose

aj+1bj ≡ ajbj+1 (mod p). We then have, in Zp,

aj+1bj = ajbj+1 = aj(mj+1bj − bj−1)

A little algebra gives us ajbj−1 = bj(mj+1aj − aj+1) = aj−1bj, which proves the claim.
In particular, we have a1b2 ≡ a2b1 (mod p), and so −m1m2 ≡ 1−m1m2 (mod p). This

implies that 1 ≡ 0 (mod p), a contradiction, which completes the proof.

As a consequence, we get the following.

Theorem 5.9. Let G1 and G2 be non-AW caterpillar graphs over Zk, where k = pe with
p a prime. Then G1.w.G2(r) is non-AW over Zk for all r ≥ 0.
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Proof. Let the spine of Gi be Pni
for i = 1, 2. Since dG1

n1
(x) ≡ 0 (mod k) has no solution,

we cannot have gcd(an1
, k) = 1. Thus, p|an1

. By Lemma 5.8, p does not divide bn1
, and

so p does not divide dn1
. Therefore gcd(dn1

, k) = 1.
After vn1

(G1) is toggled, we toggle w −dn1
times, and we toggle each leaf of w dn1

times.
This leaves v1(G2) with label −dn1

. Now the only vertices that remain to be toggled are
v1(G2), . . . , vn2

(G2). If it were possible to toggle these vertices so that v1(G2), . . . , vn2
(G2)

have label 0 (even if we ignore the label of w), then π−dn1
would be a winnable labeling

for G2. This would imply, by Lemma 5.2(2), that π1 is a winnable labeling, which implies
that G2 is AW by Lemma 5.2(3). This is a contradiction and completes the proof.

We now derive a set of non-AW caterpillar graphs that we paste together to generate
all non-AW caterpillars. We call a non-AW caterpillar graph irreducibly non-AW if it
cannot be written G1.w.G2(r) for any non-AW G1 and G2, and any r ≥ 0. The following
is a useful characterization of irreducibly non-AW caterpillar graphs.

Lemma 5.10. Let k = pe with p prime, and G be a caterpillar graph over with spine Pn.
Then G is irreducibly non-AW over Zk if and only if gcd(ai, k) = 1 for all i ≤ n − 1 and
gcd(an, k) 6= 1.

Proof. Suppose that gcd(ai, k) = 1 for all i ≤ n−1 and gcd(an, k) 6= 1. Since gcd(an, k) 6=
1, G is not AW by Lemma 5.8. Furthermore, if G = G1viG2, then gcd(ai−1, k) = 1 implies
that G1 is AW. Thus, G is irreducibly non-AW.

Conversely, suppose that G is irreducibly non-AW. For contradiction, assume gcd(ai, k) 6=
1 for some i ≤ n − 1. Let j be minimal such that gcd(aj, k) 6= 1. We claim that
gcd(aj+1, k) = 1. If j = 1, then a2 = 1 − m1m2. Since p divides a1 = −m1, then a2 ≡ 1
(mod p). If j ≥ 2, then aj+1 = mj+1aj − aj−1 and p|aj imply that aj+1 ≡ aj−1 (mod
p). In either case, gcd(aj+1, k) = 1. Since G is not AW, we must have j ≤ n − 2. We
have G = G1.vj+1.G2, where ℓi(G1) = ℓi(G) for 1 ≤ i ≤ j, and ℓi(G2) = ℓi+j+1(G) for
1 ≤ i ≤ n − j − 1. We claim that G1 and G2 are non-AW, which would imply that G is
not irreducibly AW, completing the proof.

Since gcd(aj, k) 6= 1, G1 is non-AW. It suffices to prove that G2 is non-AW. Suppose,
for contradiction, that G2 is AW, and let y be the number of times vj+2 is toggled to
win π1. As we toggle the vertices of G in an attempt to win π1, consider the situation
after vj+1 and its adjacent leaves are toggled. Then vj+1 has label dj+1(x), vj+2 has label
tj+1 = −dj(x), and the remaining vertices have label 0. Note that only vertices in G2 are
toggled from here on out, and that vj+2 will be toggled −dj+1(x) times. But Lemma 5.4
implies that if vj+2 is toggled −ydj(x) times, then the game can be won. Thus, the
game can be won if −ydj(x) ≡ −dj+1(x) (mod k) can be solved for x. By substituting
dj(x) = ajx + bj and dj+1(x) = aj+1x + bj+1, this equivalence becomes

(aj+1 − ajy)x ≡ bjy − bj+1 (mod k)

We know p divides aj but not aj+1, so gcd(aj+1 − ajy, k) = 1. Therefore, the equivalence
can be solved, which makes G an AW graph. This is a contradiction, and so G2 is
non-AW.
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This characterization of irreducibly non-AW caterpillar graphs makes them relatively
straightforward to construct. Let k = pe, let G be irreducibly non-AW over Zk, and let Pn

be the spine of G. If n = 1, then p divides a1 = −m1, giving us pe−1 choices for m1 (and
thus ℓ1) modulo k. If n = 2, then since p does not divide a1, we have pe−1(p − 1) choices
for m1 modulo k. We then need p|a2, and so m1m2 ≡ 1 (mod p). If a is the inverse of m1

modulo p, then a+rp are incongruent solutions for 0 ≤ r ≤ pe−1−1, giving us pe−1 choices
for m2, and p2(e−1)(p − 1) possible irreducibly non-AW caterpillar graphs. For n ≥ 3, we
proceed similarly. For j ≥ 3, suppose that we have arranged that p does not divide ai for
1 ≤ i ≤ j − 1. We have aj = mjaj−1 − aj−2, and so p|aj precisely when mjaj−1 ≡ aj−2

(mod p). This equivalence has a unique solution mj = a, and, as in the n = 2 case, we get
inequivalent solutions a + rp modulo k, where 0 ≤ r ≤ pe−1 − 1. If j = n, we can choose
any of the pe−1 solutions modulo k, and if j < n, we choose any of the other pe−1(p − 1)
equivalence classes to make G irreducibly non-AW. Note that applying this process to the
case k = 2 gives us the graphs of types T1 and T2,j in Theorem 5.6(2). Thus, the task of
generating all non-AW caterpillars can be reduced to inverting elements of Zp. We also
get the following.

Corollary 5.11. Let k = pe, where p is prime. If we consider each ℓi modulo k, then the
number of irreducibly non-AW caterpillar graphs whose spine is Pn is pn(e−1)(p − 1)n−1.

The following generalization of Amin and Slater’s result follows directly from Lemma 5.10.

Theorem 5.12. Let k = pe, where p is prime. Then all non-AW caterpillar graphs over
Zk can be generated by repeated applications of pasting irreducibly non-AW caterpillar
graphs.
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