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Abstract

We study forms of coalgebras and Hopf algebras (i.e. coalgebras and Hopf alge-
bras which are isomorphic after a suitable extension of the base field). We classify
all forms of grouplike coalgebras according to the structure of their simple sub-
coalgebras. For Hopf algebras, given a W ∗-Galois field extension K ⊆ L for W a
finite-dimensional semisimple Hopf algebra and a K-Hopf algebra H, we show that
all L-forms of H are invariant rings [L ⊗ H]W under appropriate actions of W on
L⊗H. We apply this result to enveloping algebras, duals of finite-dimensional Hopf
algebras, and adjoint actions of finite-dimensional semisimple cocommutative Hopf
algebras.

1 Introduction

Let K be a commutative ring, L a commutative K-algebra. If H is a left K-module,
we can form the L-module L ⊗ H. A natural question to ask in this context is which
K-modules H ′ satisfy L⊗H ′ ∼= L⊗H as L-modules.

We can ask the same question for algebras, coalgebras, and Hopf algebras. Specifically,

Question 1.1. Given K, L as above, and a K-object H, what are all the K-objects H ′

such that L⊗H ∼= L⊗H ′ as L-objects?

Such K-objects H ′ are called L-forms of H.
Another interesting question arises when we relax the assumption that L be fixed.

Question 1.2. Given a K-object H, what are the K-objects which are L-forms of H for
some suitable commutative K-algebra L?

For instance, [HP86] defines a form of H to be an L-form of H for some faithfully flat
commutative K-algebra L. We can define forms in other contexts, as long as we specify
what is meant by a “suitable commutative K-algebra”.
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Question 1.2 was addressed in [HP86]. Their interest was finding Hopf algebra forms
of group rings KG. They found a correspondence between Galois extensions of the base
ring with Galois group F = Aut(G) and Hopf algebra forms of KG in the case of G
finitely generated, and F finite. The Hopf algebra form was derived from the invariants
of certain actions of KF on LG, where K ⊆ L is an “F -Galois” extension. The definition
of Galois is slightly different in this paper. An F -Galois extension in [HP86] is actually a
KF ∗-Galois extension in current terminology.

Question 1.1 was addressed in [Par89] for group algebras. Given K ⊆ L a KF ∗-Galois
extension and given a group action of F on G, he constructed the twisted group ring
KΓG. He showed that KΓG is an L-form of KG, and that in the case of L connected, all
L-forms of KG are twisted group rings for some action of F on G.

In this paper, we address these questions when K and L are fields. In section 3, we
look at the case where H is a grouplike coalgebra KG. We classify all coalgebra forms of
KG according to the structure of their simple subcoalgebras. Specifically, a coalgebra H
is a form of a grouplike coalgebra with respect to fields if and only if it is cosemisimple
and the duals of its simple subcoalgebras are separable field extensions of K.

In section 4, we address Question 1.1 for Hopf algebras. We fix the field extension
K ⊆ L, and assume this extension to be W ∗-Galois for some finite-dimensional semisimple
K-Hopf algebra W . We use actions of W on L⊗H and the invariants under these actions
to find L-forms of H. We get Theorem 4.5, which says that all the L-forms of H are
determined by W -actions on L ⊗ H which commute with comultiplication, counit, and
the antipode. Furthermore, the L-form we get from such an action is the set of invariants
in L⊗H under the action of W .

In section 5, we use Theorem 4.5 to find L-forms of U(g) in characteristic zero, and
u(g) in characteristic p > 0. It turns out that such forms are merely enveloping algebras
of Lie algebras which are L-forms of g. Furthermore, the L-forms of g are found by
appropriate actions on L⊗ g. We use this to compute the L-forms of an interesting class
of examples.

In section 6, we apply Theorem 4.5 to duals of finite-dimensional Hopf algebras. We
get an interesting correspondence between W -actions on H and W cop-actions on H∗. We
use this correspondence to get Theorems 6.3 and 6.5, which give us a correspondence
between L-forms of H and L-forms of H∗ from different perspectives.

Finally, in section 7, we compute an example of an L-form obtained from the adjoint
action of H on itself, and then compute the corresponding form of H∗.

I would like to thank Donald Passman for our many conversations which helped me to
develop the ideas expressed in this paper. In addition, I would like to thank the referee for
many helpful insights and comments. In particular, the referee is responsible for the proof
of Proposition 2.5, which appeared in the original version of this paper as a conjecture.

2 Preliminaries

Our basic notation comes from [Mon93] and [Swe69]. The ground field is always K, and
tensor products are assumed to be over K unless otherwise specified.
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A coalgebra is a K-vector space H with linear maps ∆ : H → H⊗H, ε : H → K, called
the comultiplication and counit, respectively, which satisfy (id⊗∆) ◦∆ = (∆⊗ id) ◦∆,
(id⊗ ε) ◦∆ = id⊗ 1, and (ε⊗ id) ◦∆ = 1⊗ id. We use the Sweedler summation notation
∆(h) =

∑
(h) h1 ⊗ h2. A bialgebra is a coalgebra and an associative algebra with unit

such that ∆, ε are algebra homomorphisms. A Hopf algebra is a bialgebra with a map
S : H → H satisfying ε(h)1H =

∑
(h) S(h1)h2 =

∑
(h) h1S(h2). This is equivalent to S

being the inverse of id under the convolution product on HomK(H, H) (see [Mon93, 1.4.1,
1.5.1]).

The canonical examples of Hopf algebras are the group algebra KG and the universal
and restricted enveloping algebras U(g) and u(g). For KG we define ∆(g) = g ⊗ g,
ε(g) = 1, S(g) = g−1 for each g ∈ G, and for the enveloping algebras, we define ∆(x) =
1⊗ x + x⊗ 1, ε(x) = 0, S(x) = −x for all x ∈ g.

Definition 2.1. Let L be a commutative K-algebra, H a K-object. A K-object H ′ is an
L-form of H if L⊗H ∼= L⊗H ′ as L-objects.

The word “object” above can be replaced with “coalgebra”, “Hopf algebra”, “module”,
or any other category such that tensoring with L over K leaves us in the same category,
except that the base ring changes to L.

Example 2.2. [HP86] Let K = Q, L = Q(i). Let H = KZ, H ′ = K〈c, s : c2 + s2 =
1, cs = sc〉 with Hopf algebra structure ∆(c) = c ⊗ c − s ⊗ s, ∆(s) = s ⊗ c + c ⊗ s,
ε(c) = 1, ε(s) = 0, S(c) = c, S(s) = −s. H ′ is called the trigonometric algebra. Let
a = 1 ⊗ c + i ⊗ s = c + is ∈ L ⊗ H ′. Direct computation gives us a ∈ G(L ⊗ H ′) with
a−1 = c − is. We have a + a−1 = 2c, so c ∈ L〈a, a−1〉. Similarly, s ∈ L〈a, a−1〉. Thus
L⊗H ′ = L〈a, a−1〉 ∼= LZ, so H and H ′ are L-forms.

We can extend the notion of forms to a slightly more general context.

Definition 2.3. Let X be a subcategory of the category of commutative K-algebras.
Given a K-object H, we say that a K-object H ′ is a form of H with respect to X if H ′ is
an L-form of H for some L ∈ X

This generalizes the term “form” used in [HP86], where they defined a form to be an
L-form for some L which is faithfully flat over K. In this new terminology, this would be
called a form with respect to faithfully flat commutative K-algebras.

If H is a coalgebra (resp. Hopf algebra), then L ⊗ H has a natural coalgebra (resp.
Hopf algebra) structure (see [Mon93, p. 21]), so we may talk about forms of coalgebras and
Hopf algebras. We have a canonical correspondence between L-forms of H and L-forms
of H∗.

Proposition 2.4. Let H be a finite-dimensional Hopf algebra over a field K with K ⊆ L
a field extension. Then

(i) L⊗H∗ ∼= (L⊗H)∗

(ii) The L-forms for H∗ are precisely the duals of the L-forms for H.
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Proof. We define a map φ : L ⊗ H∗ → (L ⊗ H)∗ by φ(a ⊗ f)(b ⊗ h) = f(h)ab for all
a, b ∈ L, h ∈ H, f ∈ H∗. It is straightforward to show that this is an L-Hopf algebra
isomorphism. This gives us (i), and (ii) follows directly.

We will need the notion of Hopf Galois extensions. Let H be a Hopf algebra, with A
a right H-comodule algebra. That is, we have an algebra map ρ : A → A⊗H such that
(ρ⊗id)◦ρ = (id⊗∆)◦ρ and (id⊗ε)◦ρ = 1⊗id. Let AcoH = {a ∈ A : ρ(a) = a⊗1} denote
the coinvariants of A. An extension B ⊆ A of right H-comodule algebras is right H-Galois
if B = AcoH and the map β : A⊗BA → A⊗KH given by β(a⊗b) = (a⊗1)ρ(b) =

∑
ab0⊗b1

is bijective.

Proposition 2.5. Let B ⊆ A be a right H-Galois extension of commutative algebras.
Then H is commutative.

Proof. Since A is commutative, it is easy to show that β is an algebra homomorphism.
Since β is bijective, it is an isomorphism, so A⊗H is commutative. Thus, H is commu-
tative.

If H is finite-dimensional, then we can define Hopf Galois extensions in terms of
actions. Let A be an H-module algebra. That is, for all a, b ∈ A, h ∈ H, we have
h · (ab) =

∑
(h1 · a)(h2 · b) and h · 1A = ε(h)1A. Then H∗ is also a Hopf algebra and A

is an H∗-comodule algebra with AcoH∗
= AH = {a ∈ A : h · a = ε(h)a} (see [Mon93,

1.6.4,1.7.2]). We get the following.

Theorem 2.6. [KT81, Ulb82] Let H be a finite-dimensional Hopf algebra, A a left H-
module algebra. The following are equivalent:

(i) AH ⊆ A is right H∗-Galois.
(ii) The map π : A#H → End(AAH ) given by π(a#h)(b) = a(h · b) is an algebra

isomorphism, and A is a finitely generated projective right AH-module.
(iii) If 0 6= t ∈

∫ l

H
= {k ∈ H : hk = ε(h)k for all h ∈ H}, then the map [, ] : A⊗AH A →

A#H given by [a, b] = atb is surjective (
∫ l

H
is called the space of left integrals).

The associative algebra A#H mentioned above is A⊗H as a vector space. The simple
tensors are written a#h, and multiplication is given by (a#h)(b#k) =

∑
a(h1 · b)#h2k

(see [Mon93, 4.1.3]).
Note that (ii) implies that H acts faithfully on A. Also, in light of Proposition 2.5,

we have that if B ⊆ A is an H∗-Galois extension of commutative rings, then H must be
cocommutative. This makes Proposition 2.5 a weaker version of a conjecture in [Coh94],
where Cohen asks whether a noncommutative Hopf algebra can act faithfully on a com-
mutative algebra. She and Westreich get a negative answer to this question in the case
where A ⊆ B is an extension of fields and S2 6= id [CW93, 0.11].

We get stronger results when A = D is a division algebra.

Theorem 2.7. [CFM90] Let D be a left H-module algebra, where D is a division algebra,
and H is a finite-dimensional Hopf algebra. The following are equivalent:

(i) DH ⊆ D is H∗-Galois.
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(ii) [D : DH ]r = dimK H or [D : DH ]l = dimK H
(iii) D#H is simple.
(iv) D ∼= DH#σH

∗.

Note that (ii) implies that, for a finite group G, a field extension is KG∗-Galois if and
only if it is classically Galois with Galois group G. Now look at H = u(g).

Example 2.8. Let K ⊆ L be a purely inseparable finite field extension of characteristic
p and exponent ≤ 1 (i.e. ap ∈ K for all a ∈ L), with K the base field. Since DerK(L) is
finite dimensional over L, then there exists a finite p-basis of L over K [Jac64, p. 182] (i.e.
a finite set {a1, · · · , an} such that {am1

1 · · · amn
n : 0 ≤ mi < p} is a basis of K ⊆ L). For

each i, we define a derivation δi such that δi(aj) = δi,j. Then g = K-span {δi : 1 ≤ i ≤ n}
is a restricted Lie algebra, and in fact DerK(L) = Lg ∼= L ⊗ g. In particular, DerK(L)
is an abelian restricted Lie algebra and L is a u(g)-module algebra. Then K = Lu(g) and
dimK(u(g)) = pn = [L : K]. Thus, K ⊆ L is a u(g)∗-Galois extension by Theorem 2.7(ii).

In fact, more can be said.

Theorem 2.9. Suppose that K ⊆ L is a finite field extension of characteristic p > 0.
Then K ⊆ L is a u(g′)∗-Galois extension for g′ a restricted Lie algebra if and only if
K ⊆ L is purely inseparable of exponent ≤ 1, and g′ is an L-form of g, where g is as in
Example 2.8.

Proof. Suppose that K ⊆ L is a u(g′)∗-Galois extension, where g′ is some restricted Lie
algebra. For each a ∈ L, x ∈ g′, we have x ·ap = pap−1(x ·a) = 0, so ap ∈ K. Thus, K ⊆ L
is purely inseparable of exponent ≤ 1. By Theorem 2.6 (ii), we have a Lie embedding
π : L ⊗ g′ ↪→ DerK(L) ∼= L ⊗ g. Since dimK(u(g′)) = [L : K] = dimK(u(g)), then
dimK(g′) = dimK(g), and so π|L⊗g′ is actually a Lie isomorphism. Thus, g and g′ are
L-forms.

Conversely, suppose that K ⊆ L is purely inseparable of exponent ≤ 1, and that
φ : L⊗ g′ → L⊗ g ∼= DerK(L) is an L-isomorphism. We define an action of g′ on L via
x · a = φ(x) · a. This extends to an action of L ⊗ g′ on L. We have K = Lg = LL⊗g =
LL⊗g′ = Lg′ . By Theorem 2.7, we are done.

If we look ahead to Proposition 5.1, u(g) and u(g′) are L-forms if and only if g and g′

are L-forms. Thus, Theorem 2.9 says that if K ⊆ L is u(g)∗-Galois, it is also H∗-Galois
for all forms H of u(g).

Theorem 2.9 invites the following question.

Question 2.10. If H is a finite-dimensional Hopf algebra, and K ⊆ L is a finite H∗-Galois
field extension, is it also (H ′)∗-Galois for all L-forms H ′ of H?

A result from [GP87] puts this question in doubt. They showed that if K ⊆ L is a
separable H∗-Galois field extension, then H is an L̃-form of a group algebra, where L̃ is
the normal closure of L. But the next example shows that a separable H∗-Galois field
extension doesn’t have to be classically Galois.
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Example 2.11. [GP87] Let K = Q, L = K(ω), where ω is a real fourth root of 2.
Then K ⊆ L is H∗-Galois, where H = K〈c, s : c2 + s2 = 1, cs = sc = 0〉. We have
g = c + is ∈ G(L̃ ⊗ H), and o(g) = 4. Thus, H is an L̃-form of KZ4. But notice that
g /∈ L⊗H. In fact G(L⊗H) = {1, g2}. Thus, H is not an L-form of a group algebra.

We will often be interested in the case where H is semisimple. When H is finite-
dimensional, this is true if and only if ε(

∫ l

H
) 6= 0 ([LS69] or [Mon93, 2.2.1]). This enables

us to show that semisimplicity is a property shared by L-forms.

Proposition 2.12. Let H be a finite-dimensional K-Hopf algebra with K ⊆ L an exten-
sion of fields. Then

∫ l

L⊗H
= L ⊗

∫ l

H
. In particular, if H ′ is an L-form of H, then H ′ is

semisimple if and only if H is semisimple.

Proof. By [Mon93, 2.1.3],
∫ l

L⊗H
is one-dimensional over L and

∫ l

H
is one-dimensional over

K. It thus suffices to show that L⊗
∫ l

H
⊆

∫ l

L⊗H
. This is an easy computation.

If M is an H-module, this characterization of semisimplicity gives us a nice way to
compute MH when H is semisimple.

Proposition 2.13. If M is an H-module, and 0 6= t ∈
∫ l

H
, then t · M ⊆ MH . If H is

semisimple, then t ·M = MH .

Proof. Let m ∈ M . For all h ∈ H, we have h · (t · m) = ht · m = ε(h)(t · m), and so
t ·M ⊆ MH . If H is semisimple, let m ∈ MH . Then ε(t)m = t ·m. Since ε(t) 6= 0, then
m = t · ( 1

ε(t)
m) ∈ t ·M , and we are done.

3 Forms of the Grouplike Coalgebra

We now consider the descent theory for coalgebras. In this section, we classify all coalgebra
forms of grouplike coalgebras with respect to fields according to the structure of their
simple subcoalgebras. A grouplike coalgebra is a coalgebra with basis {gi} such that
∆(gi) = gi ⊗ gi, ε(gi) = 1. It thus has the same coalgebra structure as a group algebra.
Recall that for any coalgebra H, G(H) = {h ∈ H : ∆(h) = h⊗ h, h 6= 0}.

We first consider the coalgebra structure of duals of finite extension fields. Let
K ⊆ L be a finite field extension. Then L∗ is a K-coalgebra (see [Mon93, 1.2.3,9.1.2]).
Let {α1, · · · , αn} be a basis for L over K with αjαk =

∑
l cjklαl, cjkl ∈ K, and let

{a1, · · · , an} be the dual basis in L∗. An easy computation gives us ∆(ak) =
∑

i,j cijkai⊗
aj,

∑
i ε(ai)αi = 1.

Lemma 3.1. Let K ⊆ L be a finite field extension. A coalgebra D is a morphic image
of L∗ if and only if D ∼= E∗ for some field E such that K ⊆ E ⊆ L. In particular, any
morphic image of L∗ is a simple coalgebra.

Proof. Suppose that φ : L∗ → D is a surjective morphism of coalgebras. We then have
the algebra monomorphism φ∗ : D∗ → L∗∗ ∼= L. Let E be the image of D∗ in L. Then E
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is a finite dimensional K-subalgebra of L, so E is a field. Since E ∼= D∗ as fields, D ∼= E∗

as coalgebras.
Conversely, suppose D ∼= E∗ for E a field contained in L, and consider the inclusion

map i : E → L. The map i∗ : L∗ → E∗ ∼= D is a surjective coalgebra morphism.

We will need a few technical results which will help us reduce the problem of finding
forms of KG to the case where L is algebraic over K. The first lemma tells us that if we
have g =

∑
αi⊗ hi ∈ G(L⊗H), then in some sense the αi and hi are dual to each other.

Lemma 3.2. Let g =
∑

i αi ⊗ hi ∈ G(L⊗H).
(i) Suppose the αi are linearly independent, and that, in addition, αiαj =

∑
k cijkαk

for all i, j. Then ∆(hk) =
∑

i,j cijkhi⊗hj for all k. In particular, D = span{hi} is a finite
dimensional subcoalgebra of H.

(ii) If we have the hypotheses as in (i), and if also the αi are algebraic over K, then
D is a simple subcoalgebra.

(iii) If h1, · · · , hn are the nonzero hi and are linearly independent, and if ∆(hk) =∑n
i,j=1 dijkhi ⊗ hj, where dijk ∈ K, then αiαj =

∑n
k=1 dijkαk for all 1 ≤ i, j ≤ n. In

particular, K[α1, · · · , αn] is finite dimensional, and therefore is a finite field extension.
(iv) Conversely, if we have {α′

1, · · · , α′
n} ∈ L and {h′1, · · · , h′n} such that α′

iα
′
j =∑

k cijkα
′
k and ∆(h′k) =

∑
i,j cijkh

′
i ⊗ h′j with cijk ∈ K, then

∑
i α

′
i ⊗ h′i ∈ G(L⊗H).

Proof. In general, we have∑
k

αk ⊗∆(hk) = ∆(g) = g ⊗ g =
∑
i,j

αiαjhi ⊗ hj (1)

If αiαj =
∑

k cijkαk, and the αi are linearly independent, then we have
∑

i,j αiαjhi⊗hj =∑
i,j,k cijkαk ⊗ hi ⊗ hj, and therefore ∆(hk) =

∑
i,j cijkhi ⊗ hj by (1). This gives us (i).

If the αi are algebraic over K, then let {α1, · · · , αn} be the αi such that hi 6= 0. Since
ε(g) = 1, then

∑n
i=1 ε(hi)αi = 1. This and (i) imply that the hi satisfy the same coalgebra

relations as E∗, where E = K(α1, · · · , αn). Thus, D is a morphic image of E∗, and so is
simple by Lemma 3.1. This gives us (ii)

If ∆(hk) =
∑

i,j dijkhi ⊗ hj and the hi are linearly independent, then we get
∑

k αk ⊗
∆(hk) =

∑
i,j,k dijkαk ⊗ hi ⊗ hj. Therefore, αiαj =

∑
k dijkαk by (1) and so we have (iii).

Finally, (iv) follows from a computation almost identical to those above.

Lemma 3.3. Let K ⊆ L be any field extension, and let K̄ be the algebraic closure of K.
For each g ∈ G(L⊗H), there is a simple subcoalgebra Hg ⊆ H such that g ∈ K̄ ⊗Hg

Proof. Let g ∈ G(L ⊗ H), and let {αi} be a basis for L over K with αiαj =
∑

k cijkαk,
where cijk ∈ K. Then g =

∑
i αi ⊗ hi for some hi ∈ H. Let D = span{hi}. Then

g ∈ L⊗D. Also, D is a finite dimensional coalgebra by Lemma 3.2(i).
Now let {v1, · · · , vn} be a basis for D. Write g =

∑
i βi ⊗ vi with βi ∈ L. By

Lemma 3.2(iii), K[β1, · · · , βn] is a finite field extension, and so each βi is algebraic over
K. Thus, g ∈ K̄ ⊗D.
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But now we can write g =
∑

i γi⊗wi, where the γi are linearly independent in K̄. By
Lemma 3.2(ii), Hg = span{wi} is a simple coalgebra. Since g ∈ K̄ ⊗Hg, then the proof
is complete.

Corollary 3.4. If a coalgebra H is an L-form of KG, then it is a K̄-form of KG.

This leads us to the main theorem.

Theorem 3.5. Let H be a K-coalgebra, and suppose K ⊆ L is an extension of fields.
Then the following are equivalent.

(i) L⊗H is a grouplike coalgebra.
(ii) H is cocommutative, cosemisimple with separable coradical, and L contains the

normal closure of D∗ for each simple subcoalgebra D ⊆ H.

Note: A coalgebra is said to have separable coradical if, for each simple subcoalgebra
D, we have that D∗ is a separable K-algebra (the coradical is the sum of all simple
subcoalgebras). If D is cocommutative, this will make D∗ a separable field extension.

Also notice that the above implies that H is a form of KG with respect to fields if
and only if H is cosemisimple with separable coradical.

Proof. Suppose that L ⊗H is a grouplike coalgebra, and write G = G(L ⊗H). Clearly,
H must be cocommutative. By Corollary 3.4, we can assume that L is algebraic over K.
By Lemma 3.3, each g ∈ G is contained in L⊗Hg for some simple subcoalgebra Hg ⊆ H.
We then have

L⊗H = LG ⊆
∑
g∈G

L⊗Hg = L⊗ (
∑
g∈G

Hg) ⊆ L⊗H0

and so H = H0. This implies that H is cosemisimple.
We now take care of the case where H is a simple coalgebra. By Lemma 3.1, H∗

is isomorphic to some finite field extension of K in K̄. Let E ∼= H∗ be any such field,
and let {α1, · · · , αn} be a basis for E over K, {h1, · · · , hn} a basis for H such that
αiαj =

∑
k cijkαk and ∆(hl) =

∑
j,k cjklhj ⊗ hk. Then

∑
i αi ⊗ hi is a grouplike element

by Lemma 3.2(iv). Since L ⊗ H is a grouplike coalgebra, then g ∈ L ⊗ H. Also, the
hi are linearly independent, so αi ∈ L for all i. Thus, E ⊆ L, and so L contains every
isomorphic copy of H∗ in K̄. This implies that L contains the normal closure of H∗ in K̄.

Now let E and hi be as above, and suppose that g =
∑

j α′
j⊗hj is any grouplike element

in L ⊗ H. By Lemma 3.2(iii), we have α′
iα

′
j =

∑
k cijkα

′
k. But then the map αj 7→ α′

j

extends to an isomorphism E → K(α′
1, · · · , α′

n). Thus, we get a distinct grouplike element
of L ⊗H for every distinct isomorphism from E onto subfields of L. By [McC66, Thm.
20], the number of such isomorphisms is equal to the degree of separability of E over K.
Since H has dimK(H) = dimK(E) such grouplike elements, then E ∼= H∗ is separable
over K.

For the general case, since H is cosemisimple, we can write H = ⊕iHi, where Hi are
the distinct simple subcoalgebras of H. By Lemma 3.2(ii), each grouplike element of
L ⊗ H sits in some L ⊗ Hi. Thus, G(L ⊗ H) = ∪iG(L ⊗ Hi). But then it follows that
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each L⊗Hi is spanned by grouplike elements. By the simple case, each H∗
i is separable

over K, and L contains the normal closure of H∗
i .

Conversely, suppose that H is cosemisimple, each simple subcoalgebra is the dual of a
separable finite extension field, and L contains the normal closure of D∗ for each simple
subcoalgebra D ⊆ H. Since H is cosemisimple, then H = ⊕iHi, where each Hi is simple.
It suffices to show that each L ⊗ Hi is spanned by grouplike elements, and so, without
loss of generality, H is simple.

Since H∗ is separable, and L contains the normal closure of H∗ then there are dimK(H∗)
distinct isomorphisms of H∗ onto subfields of L. By Lemma 3.2(iv), we get a distinct grou-
plike element of L⊗H for each such isomorphism, and so there are dimK(H∗) = dimK(H)
distinct grouplike elements of L⊗H. Therefore, L⊗H is a grouplike coalgebra, and the
proof is complete.

If H is a cocommutative cosemisimple Hopf algebra, then so is L⊗H, where K ⊆ L
is any field extension (see [Nic94, 1.2]). Any Hopf algebra is pointed when the base field
is algebraically closed (see [Mon93, 5.6]). If we let L = K̄, this will make L⊗H pointed.
Thus, L ⊗ H is a group algebra, and so any cocommutative cosemisimple Hopf algebra
is a form of a group algebra. By Theorem 3.5, H must have a separable coradical. This
restricts the coalgebra structure of such Hopf algebras. We can also say something about
semisimplicity in the finite dimensional case.

Corollary 3.6. Let H be a finite dimensional cocommutative cosemisimple Hopf algebra.
Then H is semisimple if and only if char(K) = 0 or char(K) does not divide dimK(H).

Proof. Let L = K̄. By the above remarks, L ⊗ H ∼= LG, where G is a group. By
Proposition 2.12, H is semisimple if and only if KG is. By Maschke’s theorem, this
occurs if and only if either char(K) = 0 or char(K) does not divide |G| = dimK(H).

Theorem 3.5 tells us which field L is the smallest one necessary in order for H to be
an L-form of a grouplike coalgebra. For each simple subcoalgebra D, we need the normal
closure of D∗ to be included in L. Thus, if H = ⊕Hi, where the Hi are simple, and we let
Li be the normal closure of H∗

i , then L =
∏

i Li is the smallest field necessary for L⊗H
to be grouplike. This leads us to another result.

Corollary 3.7. Let H be an L-form of KG, where K ⊆ L is either a purely inseparable
or purely transcendental extension. Then H ∼= KG.

Proof. By Theorem3.5, H is cosemisimple with separable coradical. Let C be a simple
subcoalgebra of H. Then C∗ is a separable field extension of K. By the remarks above, we
must have C∗ ↪→ L. But L is purely inseparable, which forces C∗ ∼= K. Thus, every simple
subcoalgebra of H is one-dimensional, and so H is pointed. But H is also cosemisimple,
so H is a grouplike coalgebra. Thus, H ∼= KG. For L purely transcendental, the result
follows from Corollary 3.4.

Corollary 3.8. Let H be a cocommutative coalgebra, and suppose that K ⊆ L is such
that L ⊗ H is pointed (e.g. L = K̄). Let {Hn}∞n=0 be the coradical filtration of H (see
[Mon93, 5.2]).
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(i) [L⊗H]n ⊆ L⊗Hn for all n ≥ 0.
(ii) Equality holds for all n ≥ 0 if and only if H has separable coradical.

Proof. For (i), since L ⊗ H is pointed, then [L ⊗ H]0 is spanned by grouplike elements.
Since each grouplike element g ∈ L ⊗Hg ⊆ L ⊗H0, where Hg is as in Lemma 3.3, then
[L⊗H]0 ⊆ L⊗H0. This takes care of n = 0. For n > 0, we have, by induction,

(L⊗H)n = ∆−1([L⊗H]⊗L [L⊗H]n−1 + [L⊗H]0 ⊗L [L⊗H])

⊆ ∆−1(L⊗H ⊗Hn−1 + L⊗H0 ⊗H)

= L⊗∆−1(H ⊗Hn−1 + H0 ⊗H) = L⊗Hn

For (ii), we first note that H0 is a cosemisimple, cocommutative coalgebra. If H does
not have separable coradical, then, by Theorem 3.5, L⊗H0 is not grouplike. Since [L⊗H]0
is a grouplike coalgebra, equality cannot hold.

If H does have separable coradical, then Theorem 3.5 tells us that L⊗H0 is a grouplike
coalgebra, and thus cosemisimple. Then L⊗H0 ⊆ [L⊗H]0. Thus, L⊗H0 = [L⊗H]0 if
and only if H has separable coradical. To prove (ii), therefore, we need only show that if
H has separable coradical, then L ⊗Hn ⊆ [L ⊗H]n for all n. This follows by induction
as in (i).

For the next corollary, we need the following.

Theorem 3.9. [Mon93, 2.3.1] Suppose that H is a finite dimensional commutative semi-
simple Hopf algebra. Then there exists a group G and a separable extension field E of K
such that E ⊗H ∼= (EG)∗ as Hopf algebras.

Corollary 3.10. Let H be a cocommutative Hopf algebra. If H has separable coradical,
then H0 is a subHopfalgebra. Conversely, if H0 is a finite dimensional Hopf algebra, then
H has separable coradical.

Proof. First suppose that H has separable coradical, and let L = K̄. Then L ⊗ H is a
pointed coalgebra, and so (L⊗H)0 is a group algebra. But this implies that (L⊗H)0 is
a Hopf algebra. By Corollary 3.8, L ⊗H0 = (L ⊗H)0. Since L ⊗H0 is a Hopf algebra,
then H0 is a Hopf algebra as well.

If H0 is a finite dimensional cocommutative Hopf algebra, then H∗
0 is a finite dimen-

sional commutative semisimple Hopf algebra. By Theorem 3.9, L⊗H∗
0
∼= (LG)∗ as Hopf

algebras. But L⊗H∗
0
∼= (L⊗H0)

∗, so L⊗H0
∼= LG. This implies, by Theorem 3.5, that

H0 has separable coradical, and thus so does H.

We get one final corollary.

Corollary 3.11. Suppose that K is a field of characteristic zero, and that H is a K-
Hopf algebra of prime dimension. Then H is semisimple and cosemisimple with separable
coradical.

Proof. Again, let L = K̄. By [Zhu94] L ⊗ H is a group algebra. By Theorem 3.5,
H is cosemisimple with separable coradical. If we apply the above to H∗, then H∗ is
cosemisimple, and so H is semisimple.
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4 Hopf Algebra Forms

In this section, we consider the descent theory of Hopf algebras. Here, we fix the field
extension K ⊆ L and search for the L-forms of a given Hopf algebra H. For the main
result, we will have K ⊆ L a W ∗-Galois extension of fields for some Hopf algebra W .
Recall from Proposition 2.5 that this implies that W is cocommutative.

Henceforth, L⊗H will be written as L◦H and l⊗h will be written as lh for convenience,
where l ∈ L, and h ∈ H.

Lemma 4.1. Let W act on a field extension K ⊆ L such that K = LW , and suppose
that A is an associative K-algebra such that L ◦ A is a W -module algebra. Then

(i) Any subset of [L ◦A]W that is linearly independent over K is linearly independent
over L.

(ii) [L ◦A]W ⊗K [L ◦A]W can be embedded in [L ◦A]⊗L [L ◦A] as K-algebras by the
map α⊗K β 7→ α⊗L β.

Proof. Let {αi} be a K-linearly independent set in [L◦A]W . Suppose that
∑n

i=1 liαi = 0 is
a nontrivial dependence relation of minimal length with li ∈ L. Without loss of generality,
we can assume that l1 = 1, and so α1 +

∑
i>1 liαi = 0. Let w ∈ W . By acting on the

dependence relation by w, we get ε(w)α1 +
∑

i>1(w · li)αi = 0. If we multiply the original
dependence relation by ε(w), we get ε(w)α1 +

∑
i>1 ε(w)αi = 0. But if we subtract these

equations, we get ∑
i>0

(w · li − ε(w)li)αi = 0

Since this is a shorter dependence relation, we must have w · li − ε(w)li = 0 for each i,
so w · li = ε(w)li. Thus, li ∈ LW = K. Since the αi are K-linearly independent, then we
have a contradiction. This gives us (i), and (ii) follows immediately.

This lemma allows us to look at elements of [L ◦ A]W ⊗ [L ◦ A]W as elements of
[L ◦ A] ⊗L [L ◦ A]. We can thus move elements of L through the tensor product when
looking at invariants. This will be important in our calculations for the main theorem.

Before proving the main theorem, we need to say something about the action of W
on L.

Lemma 4.2. Let W be a finite dimensional K-Hopf algebra, and let K ⊆ L be a W ∗-
Galois extension. Let 0 6= t ∈

∫ l

W
with ∆(t) =

∑
j tj ⊗ t′j, where {t′j} is a basis for W .

Then there exist elements ai, bi ∈ L such that
(i) For all w ∈ W , we have

∑
i(w · ai)tbi = w in L#W .

(ii) For all j, k we have
∑

i(t
′
j · ai)(tk · bi) = δj,k. In particular, if we have t′1 = 1, then∑

i ai(tj · bi) = δj,1.

Proof. By Theorem 2.6(iii) there exist ai, bi ∈ A such that
∑

i aitbi = 1. Let w ∈ W .
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Then we have, by the definition of multiplication in L#W ,

w = w(
∑

i

aitbi) =
∑

i

(w1 · ai)w2tbi

=
∑

i

(w1 · ai)ε(w2)tbi =
∑

i

(w · ai)tbi

This gives us (i). For (ii), we have from (i) that for all j,

t′j =
∑

i

(t′j · ai)tbi =
∑
i,k

(t′j · ai)(tk · bi)t
′
k

Since {t′k} is a basis, then we have
∑

i(t
′
j · ai)(tk · bi) = δj,k.

In the main theorem, we will use certain actions of W on L ◦H to obtain L-forms of
H. These actions must “respect” the Hopf algebra structure of L⊗H.

Definition 4.3. An action of W on L ◦H is a commuting action if it commutes with the
comultiplication, counit, and the antipode of L⊗H. In other words, ∆(w · lh) = w ·∆(lh),
ε(w · lh) = w · ε(lh), and S(w · lh) = w · S(lh).

When the action on L ◦H restricts to an action on H, we get

Proposition 4.4. Let W and H be Hopf algebras, and let H be a W -module algebra.
Suppose K ⊆ L is a field extension with L a W -module algebra. Then L ◦ H is a W -
module algebra, and this action is a commuting action if and only if it commutes with
the comultiplication, counit, and the antipode in H.

We are now ready for the main result.

Theorem 4.5. Suppose that K ⊆ L is a W ∗-Galois field extension for W a finite di-
mensional, semisimple Hopf algebra. Let H be any K-Hopf algebra, and suppose that we
have a commuting action of W on L ◦H such that the action restricted to L is the Galois
action. Then

(i) H ′ = [L ◦H]W is a K-Hopf algebra.
(ii) L⊗H ′ ∼= L⊗H as L-Hopf algebras, with isomorphism l ⊗ α 7→ lα.
(iii) If F is another Hopf algebra L-form of H, then there is some commuting action

of W on L ◦H which restricts to the Galois action on L such that F ∼= [L ◦H]W

Proof. Let 0 6= t ∈
∫ l

W
, and let ai, bi ∈ L such that

∑
i aitbi = 1 in L#H. Also write

∆(t) =
∑

j tj ⊗ t′j, where {t′j} is a basis for W with t′1 = 1. For (i), it suffices to show

that ∆(H ′) ⊆ H ′ ⊗ H ′, ε(H ′) ⊆ K, and S(H ′) ⊆ H ′. By Proposition 2.13, [L ◦ H]W is
spanned over K by elements of the form t · lh.

Since the t′j form a basis for W , we can write ∆(t′j) =
∑

k t′k ⊗ t′′jk, and so (id⊗∆) ◦
∆(t) =

∑
j,k tj ⊗ t′k ⊗ t′′jk for some t′′jk ∈ W . We then have

∆(t · lh) = t ·∆(lh) =
∑

t · (lh1 ⊗ h2) =
∑
j,k

(tj · l)(t′k · h1)⊗ (t′′jk · h2)

12



In addition,
∑

i(t · [bih1]) ⊗ (t · [laih2]) ∈ H ′ ⊗ H ′. If we identify this element with its
image in [L ◦H]⊗L [L ◦H] (which we can do by Lemma 4.1), then, using Lemma 4.2(ii),∑

i

(t · [bih1])⊗ (t · [laih2]) =
∑

i,j,k,m

(tk · bi)(t
′
k · h1)⊗ (tj · l)(t′m · ai)(t

′′
jm · h2)

=
∑

i,j,k,m

(t′m · ai)(tk · bi)(tj · l)(t′k · h1)⊗ (t′′jm · h2)

=
∑
j,k,m

δm,k(tj · l)(t′k · h1)⊗ (t′′jm · h2)

=
∑
j,k

(tj · l)(t′k · h1)⊗ (t′′jk · h2)

Thus, ∆(t · lh) =
∑

i(t · [bih1])⊗ (t · [laih2]) ∈ H ′ ⊗H ′, and so ∆(H ′) ⊆ H ′ ⊗H ′.
In addition, we have ε(t · lh) = t ·ε(lh) ∈ LW = K, and S(t · lh) = t ·S(lh) ∈ [L◦H]W ,

so ε(H ′) ⊆ K and S(H ′) ⊆ H ′. This gives us (i).
For (ii), one can check that the given map is an L-Hopf algebra morphism. It then

suffices to show bijectivity. For surjectivity, let h ∈ H. Then, using Lemma 4.2(ii),∑
i

ai ⊗ (t · bih) 7→
∑

i

ai(t · bih) =
∑
i,j

ai(tj · bi)(t
′
j · h)

=
∑

j

δj,1(t
′
j · h) = h

Since L⊗H is spanned over L by H, then the map is surjective. Injectivity follows from
Lemma 4.1(i).

For (iii), suppose that F is an L-form of H, so L⊗H ∼= L⊗F . Let Φ : L⊗F → L⊗H
be an L-Hopf algebra isomorphism. We define an action of W on L⊗F by w · lf = (w · l)f
for all l ∈ L and f ∈ F . It is easy to check that this makes L ◦ F a W -module algebra,
and that F = [L ◦ F ]W . For α ∈ L⊗H, we define w · α = Φ(w · Φ−1(α)).

We show that the action on L⊗H is a W -module algebra action. Let α, β ∈ L⊗H.
We have

w · αβ = Φ(w · Φ−1(αβ)) = Φ(w · Φ−1(α)Φ−1(β))

= Φ(
∑

(w1 · Φ−1(α))(w2 · Φ−1(β)))

=
∑

Φ(w1 · Φ−1(α))Φ(w2 · Φ−1(β))

=
∑

(w1 · α)(w2 · β)

We must also show that this action commutes with ∆L⊗H , εL⊗H , and SL⊗H . We do
the computations for comultiplication; the other cases are similar. Let w ∈ W, α ∈ L⊗H.
Then, using the facts that Φ, Φ−1 are Hopf algebra morphisms, and that the action of w
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commutes with ∆L⊗F , we get

∆L⊗H(w · α) = ∆L⊗H(Φ(w · Φ−1(α))) = (Φ⊗ Φ)(∆L⊗F (w · Φ−1(α)))

= (Φ⊗ Φ)(w ·∆L⊗F (Φ−1(α)))

= (Φ⊗ Φ)(w · (Φ−1 ⊗ Φ−1)(∆L⊗H(α)))

= (Φ⊗ Φ)(
∑

w1 · Φ−1(α1)⊗ w2 · Φ−1(α2))

=
∑

w1 · α1 ⊗ w2 · α2 = w ·∆L⊗H(α)

Furthermore, α ∈ [L ◦H]W if and only if, for all w ∈ W ,

w · α = ε(w)α ⇔ Φ(w · Φ−1(α)) = ε(w)α

⇔ w · Φ−1(α) = ε(w)Φ−1(α)

⇔ Φ−1(α) ∈ [L ◦ F ]W = F

Thus, [L ◦H]W = Φ(F ) ∼= F , and so the L-form F is obtained through this action.

This result is similar to what Pareigis proved in [Par89, Thm. 3.7] for H and W
group rings. His construction of the L-forms of H was different, and he only assumed
that K ⊆ L was a free W ∗-Galois extension of commutative rings. It would be inter-
esting if Theorem 4.5 could be extended to arbitrary Galois extensions of commutative
algebras. Invariants of Hopf algebra actions appear to be important in this more general
context [HP86, Thm. 5]. Neither result assumed the Galois extensions to be fields.

We now consider some examples.

Example 4.6. Let H be a Hopf algebra, and let G be a finite subgroup of the group of
Hopf automorphisms on H. Let W = KG. The canonical action of W on H induces a
commuting action on L ⊗ H, where K ⊆ L is W ∗ Galois. Thus, this action yields an
L-form of H.

Similarly, for W = KA, H = KG, where A and G are groups, any group action of A on
G as group automorphisms gives rise to a commuting action. Conversely, any commuting
action of W on H is obtained from a group action of A on G, since if a ∈ A, g ∈ G, then
∆(a · g) = a ·∆(g) = (a · g)⊗ (a · g), and so a · g ∈ G. This is exactly what happened in
[Par89] in his definition of twisted group rings.

Example 4.7. Let H be finite dimensional, semisimple, and cocommutative, and consider
the left adjoint action of H on itself. Then for all h, k ∈ H,

∆(h · k) =
∑

∆(h1kSh2) =
∑

(h1k1Sh4)⊗ (h2k2Sh3)

=
∑

(h1k1Sh2)⊗ (h3k2Sh4) =
∑

(h1 · k1)⊗ (h2 · k2)

= h ·∆(k)

The counit and antipode commute as well, using the fact that S2 = id for cocommutative
coalgebras and ε ◦ S = ε ([Mon93, 1.5.10,1.5.12]). Thus, the left adjoint action is a
commuting action, and so it yields an L-form of H whenever K ⊆ L is an H∗-Galois
extension. We refer to such a form as an adjoint form.
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Example 4.8. Let K = Q, L = K(i). Let H = K[x], the universal enveloping algebra
of the one-dimensional Lie algebra. If W = KG, where G = Z2 = 〈σ〉, then K ⊆ L is
W ∗-Galois, where σ acts on L by complex conjugation. We can let W act on L ◦ H by
σ ·x = ωx, where |ω| = 1. An easy check will show that this gives us all of the commuting
W -module actions of W on L◦H. The corresponding form is [L◦H]W = K[ix] if ω = −1,
and [L ◦H]W = K[(1 + ω)x] otherwise. In either case, [L ◦H]W ∼= H, and so there are no
nontrivial forms. This will also follow from Proposition 5.1.

This differs greatly from the case H = KG. In that case, any action which gives us a
trivial form must leave a basis of grouplike elements in LG invariant. Since G(LG) = G,
then LGW = KG so the action is trivial. Thus, a group action on KG gives us a nontrivial
form if and only if the action is nontrivial (e.g. the left adjoint action of a nonabelian
group).

Also note that despite the fact that there are many commuting actions on L◦H, there
is only one L-form (up to isomorphism). Not only that, but the form is obtained by an
action on L ◦H which restricts to an action on H (the trivial action). This suggests the
question:

Question 4.9. Can all L-forms be obtained from actions on L ◦ H which restrict to
actions on H?

This is easily seen to be true in the case where W = KA and H = KG are group
algebras, since any commuting action comes from a group action of A on G. We consider
a more compelling example of this in Example 5.3. Question 4.9 motivates the following
definition:

Definition 4.10. A stable L-form of H under W is one which can be obtained from a
commuting action of W on L ◦H which restricts to an action on H. We denote the set
of all stable L-forms of H under W as SL,W (H).

Thus, Question 4.9 asks whether or not all L-forms are stable. It seems that the trivial
forms of H in L ◦ H play an important role. In order to determine this role we need a
trivial lemma.

Lemma 4.11. Let K ⊆ L be an extension of fields. Suppose φ : H → H ′ is a morphism
of K-Hopf algebras, where H ′ ⊆ L ⊗H. Then φ can be extended to an L-Hopf algebra
morphism φ : L⊗H → L⊗H. The map is given by φ(a⊗ h) = (a⊗ 1)φ(h).

This gives us the following.

Corollary 4.12. If a form F ⊆ L ◦ H can be obtained by an action on L ◦ H which
restricts to an action on a trivial form H ′ ⊆ L ◦H, then F is a stable form.

Note: By a trivial form, it is meant a form of H obtained as in Theorem 4.5 which is
isomorphic to H. This would be any K-Hopf algebra H ′ ⊆ L ◦H such that H ′ ∼= H, and
such that L⊗H ′ ∼= L⊗H via l ⊗ h′ 7→ lh′.
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Proof. Suppose φ : H → H ′ is a K-Hopf algebra isomorphism, and let · denote the action
of W on L◦H. We can define a new action ∗ on L◦H, where w ∗h = φ−1(w ·φ(h)) for all
w ∈ W, h ∈ H, and W has the Galois action on L. As in the proof of Theorem 4.5(iii),
we have that ∗ is a commuting action on L ◦H. Also, ∗ restricts to an action on H.

We can extend φ to an L-Hopf algebra morphism φ : L⊗H → L⊗H by Lemma 4.11.
Since L ⊗ H ′ ∼= L ⊗ H via l ⊗ h 7→ lh (by Theorem 4.5), then we can define a map
φ−1 : L ⊗ H → L ⊗ H, lh′ 7→ lφ−1(h′) for all l ∈ L, h′ ∈ H ′. It is easy to see that

φ−1 = φ
−1

, so φ−1 is an L-Hopf isomorphism. We also have, for all a ∈ L, h ∈ H, w ∈ W ,
w ∗ ah =

∑
(w1 · a)(φ−1(w2 · φ(hi)) = φ−1(

∑
(w1 · a)(w2 · φ(h)).

Let {ai} be a basis of L over K, F ′ = [L ◦ H]W under the action ∗. We then have∑
i aihi ∈ F ′ for hi ∈ H if and only if for all w ∈ W ,

w ∗
∑

i

aihi =
∑

i

ε(w)aihi

⇔ φ−1(
∑

i

(w1 · ai)(w2 · φ(hi)) = φ−1(
∑

i

ε(w)aiφ(hi))

⇔
∑

i

aiφ(hi) ∈ F

Thus, F ′ = φ−1(F ), and so, under the action of ·, [L ◦H]W = F ′. The restriction of φ−1

to F gives us a K-Hopf isomorphism F → F ′. Thus, F ∼= F ′ is a stable form.

Now we turn our attention to a situation where there are no nontrivial commuting
actions.

Example 4.13. Let W = u(g), H = KG, where char(K) = p > 0 and g is a finite
dimensional restricted Lie algebra. Let K ⊆ L be a W ∗-Galois extension and suppose we
have a commuting action of W on L ◦H. If x ∈ g, then

∆(x · g) = x ·∆(g) = (x · g)⊗ g + g ⊗ (x · g)

so x · g ∈ Pg,g(LG) = 0. Thus, W acts trivially, and so [L ◦ H]W = H. However, this
tells us nothing about the L-forms of H, since if K ⊆ L is u(g)∗-Galois, then u(g) is not
semisimple by the remarks following Theorem 2.9. Thus, Theorem 4.5 does not apply.
Fortunately, we can still determine the L-forms in this case. Recall from Example 2.8
that K ⊆ L is totally inseparable of exponent ≤ 1, and so Corollary 3.7 implies that there
cannot be any nontrivial forms.

5 Forms of Enveloping Algebras

We now use Theorem 4.5 to compute the Hopf algebra forms of enveloping algebras. It
turns out that these forms are merely enveloping algebras of Lie algebras which are Lie
algebra forms of each other.
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Proposition 5.1. Suppose that a K-Hopf algebra F is an L-form of U(g) in characteristic
zero or u(g) in characteristic p > 0. Then

(i) F is a universal enveloping algebra in characteristic zero and a restricted enveloping
algebra in characteristic p > 0.

(ii) If K ⊆ L is a W ∗-Galois field extension of characteristic zero for W a finite
dimensional semisimple Hopf algebra, and if W acts on L⊗U(g) as in Theorem 4.5, then
[L⊗U(g)]W = U([L⊗g]W ) (similarly for restricted Lie algebras in characteristic p). Thus,
any L-form of U(g) is of the form U([L⊗ g]W ).

Note: In characteristic zero, U(g) ∼= U(g′) as Hopf algebras if and only if g ∼= g′ as Lie
algebras (similarly for restricted Lie algebras). Thus, the above says that finding the Hopf
algebra L-forms of enveloping algebras is equivalent to finding the L-forms of their Lie
algebras. In addition, (ii) says that we can find the L-forms of Lie algebras in the same
way that we find the L-forms of Hopf algebras. They are merely invariant subalgebras of
L⊗ g under appropriate actions of W . Since W is cocommutative by Proposition 2.5, for
each w ∈ W, x, y ∈ g, such actions satisfy w · [x, y] =

∑
[w1 · x, w2 · y]. This is analogous

to to the methods Jacobson used in [Jac62, Chap. 10] to find the forms of nonassociative
algebras.

We first need a lemma which tells us when a Hopf algebra is an enveloping algebra.

Lemma 5.2. Let H be a K-bialgebra, let g be a Lie subalgebra of P (H) = {x ∈ H :
∆(x) = 1⊗ x + x⊗ 1}, and let B be the K-subalgebra of H generated by g.

(i) If char(K) = 0, then B is naturally isomorphic to U(g).
(ii) If char(K) = p > 0, and if g is a restricted Lie subalgebra of P (H), then B is

naturally isomorphic to u(g).

The proof can be found in [PQ, 4.6]. Notice that this implies that a Hopf algebra is
an enveloping algebra if and only if it is generated as an algebra by P (H).

Proof. (of 5.1) For (i), it suffices, by Lemma 5.2, to show that F is generated as an algebra
by P (F ). Let Φ : L⊗ U(g) −→ L⊗ F be an L-Hopf algebra isomorphism. Let {li} be a
basis for L over K, and let x ∈ g. Then Φ(x) =

∑
i lifi, for some fi ∈ F . We have

∑
i

li∆(fi) = ∆(
∑

i

lifi) = ∆(Φ(x))

= Φ(x)⊗L 1 + 1⊗L Φ(x) = (
∑

i

lifi)⊗L 1 + 1⊗L (
∑

i

lifi)

=
∑

i

li(fi ⊗K 1 + 1⊗K fi)

Since {li} is a basis, then ∆(fi) = fi ⊗ 1 + 1⊗ fi, and so fi ∈ P (F ) for all i. The Φ(x)’s
generate L⊗ F over L, so the fi’s generate L⊗ F over L. But this implies that the fi’s
generate F over K, and so F is an enveloping algebra.

For (ii), Theorem 4.5 implies that [L ⊗ U(g)]W is an L-form of U(g). By (i), it is
generated by P ([L⊗U(g)]W ), which means that it is generated by elements in L⊗g. But
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these elements are also invariants under the action of W , so they are in [L⊗ g]W . Thus,
[L⊗ U(g)]W = U([L⊗ g]W ). The second part follows immediately.

Example 5.3. Let ω be a primitive n2th root of unity for n ≥ 1, K = Q(ωn), L = K(ω).
Also, let G = Zn = 〈σ〉. Then K ⊆ L is a (KG)∗-Galois extension, where G acts on L
via σ · ω = ωn+1. Define g = K-span{x, y0, · · · , yn−1}, where the Lie product is given by
[x, yi] = ωinyi, [yi, yj] = 0.

Let 1 ≤ k ≤ n, and define an action of G on U(g) by σ · x = ω−knx, σ · yi = yi+k,
where we let yi+n = yi for all i. One can check that this is a commuting action, and so it
will yield a form gk = [L⊗ g]W .

We now compute a basis for gk. Let d = gcd(k, n) and l = n
d
, and consider the elements

r = ωkx, sjt =
∑n−1

i=0 ωjk(in+1)yik+t, where 0 ≤ t ≤ d− 1, 0 ≤ j ≤ l− 1. It is easy to check
that r and the sjt’s are invariants. Moreover, they form a basis for gk. To see this, note
that since L⊗ g ∼= L⊗ gk, then dim(gk) = dim(g) = n + 1. It thus suffices to prove that
{r, sjt} are linearly independent over K. Since {x, yi} is independent over K and r is a
scalar multiple of x, then it suffices to show that the sjt’s are linearly independent over
K.

Suppose
∑

j,t cjtsjt = 0, cjt ∈ K. Then

0 =
∑
j,t

cjtsjt =
l−1∑
j=0

d−1∑
t=0

n−1∑
i=0

cjtω
jk(in+1)yik+t (2)

We look at the coefficients of yt for 0 ≤ t ≤ d− 1. Looking at (2), we get a contribution
to the coefficient of yt from each coefficient of yik+t, where ik + t = zn+ t for some z ∈ Z.
Thus, i = zn

k
= zl

k/d
, so k

d
|zl. Since gcd(k

d
, l) = gcd(k

d
, n

d
) = 1, then k

d
|z, so k|zd. Write

zd = z′k. Then i = zn
k

= zdl
k

= z′kl
k

= z′l. In particular, z′ ≤ d− 1. We substitute i = z′l
in the coefficient of yik+t to get the coefficient of yt, which is

l−1∑
j=0

d−1∑
z′=0

cjtω
jk(z′ln+1) =

l−1∑
j=0

d−1∑
z′=0

cjtω
jk =

l−1∑
j=0

dcjtω
jk

since ωjkz′ln = 1. Now the ωjk are linearly independent over K, so cjt = 0, which proves
linear independence.

Thus, gk = span{r, sjt : 0 ≤ t ≤ d − 1, 0 ≤ j ≤ l − 1}. The Lie bracket relations are
[r, sjt] = ωnts(j+1)t, [sjt, sj′t′ ] = 0, and s(j+l)t = ωklsjt.

The remainder of this section will be devoted to showing that the gk are mutually
nonisomorphic as Lie algebras, and that they are all the L-forms of g. Let I = span{sjt :
0 ≤ t ≤ d−1, 0 ≤ j ≤ l−1} and, for each 0 ≤ t ≤ d−1, let It = span{sjt : 0 ≤ j ≤ l−1}.
It is easy to show that I and It are Lie ideals of gk. It is also clear that I is the unique
Lie ideal in gk of codimension 1, and that I =

⊕d−1
t=0 It.
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Lemma 5.4. Let w /∈ I. Then
(i) For all 0 ≤ t ≤ d− 1, v ∈ It, v is an eigenvector for ad(w)l.
(ii) Let v ∈ I. If v is an eigenvector for ad(w)m, then m = 0 or m ≥ l.

Proof. We first reduce the problem a bit. Write w = ar +
∑

j bjsjt. Since w /∈ I, then
a 6= 0, so without loss of generality, a = 1. But then ad(w) = ad(r) on I, since I is abelian,
so we can assume that w = r. An easy induction gives us that ad(r)m(sjt) = ωmnts(j+m)t

for all m ≥ 0. Thus, if v =
∑

j cjsjt, then

ad(r)l(v) =
∑

j

ωlntcjs(j+l)t =
∑

ωlnt+klcjsjt = ωlnt+klv

Thus, v is an eigenvector for ad(r)l, which gives us (i).
For (ii), we can again assume that w = r. We write v =

∑d−1
t=0 vt, where vt ∈ It. If

ad(r)m(v) = av, we must have
∑

t ad(r)m(vt) =
∑

t avt. Since the sum of the It’s is direct,
then ad(r)m(vt) = avt, and so each vt is an eigenvector for adm(r). We can then assume
that v ∈ It for some t.

Write v =
∑l−1

j=0 cjsjt with cj ∈ K. By (i), v is an eigenvector for ad(r)l. Let m > 0

be minimal such that v is an eigenvector for ad(r)m. Since v is an eigenvector of ad(r)l,
then m|l. Write l = pm for some integer p ≥ 1. We have that ad(r)m(v) = av for some
a ∈ K. Also, a calculation gives us

ad(r)m(v) =
∑

j

cjω
mnts(j+m)t

=
m−1∑
j=0

ωkpm+mntcj+(p−1)msjt +

pm−1∑
j=m

ωmntcj−msjt

If we equate the coefficients of ad(r)l(v) and av, we get

acj = ωkmp+mntcj+(p−1)m, 0 ≤ j ≤ m− 1 (3)

acj = ωmntcj−m, m ≤ j ≤ pm− 1 (4)

Let i be minimal such that ci 6= 0. If cj = 0 for all j < m, then (4) implies that v = 0.
Therefore, i < m. An easy induction gives us, using (4), that for all integers 0 ≤ b ≤ p−1,
ci = ω−bmntabci+bm. Setting b = p− 1, we get ci = ω−(p−1)mntap−1ci+(p−1)m. But (3) gives
us that ci = 1

a
ωkmp+mntci+(p−1)m. Putting these together and simplifying, we get

ap = ωkmpωpmnt = ωkl+lnt

Now we take pth roots of both sides. Notice, since p|l and l|n, that all the pth roots of

unity are in K. We have a = ω
kl+lnt

p · (pth root of unity), and so ω
kl+lnt

p ∈ K. We must
then have n|kl+lnt

p
. Since p|l, then n| lnt

p
. This forces n|kl

p
. But kl = n(k

d
), so we must have

p|k
d
.
But recall that gcd(k

d
, l) = 1. Since, p|l and p|k

d
, then p = 1, and so m = l. This gives

us (ii), and the proof is complete.
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Proposition 5.5. Let K, L, g, gk be as above.
(i) The gk are mutually nonisomorphic K-Lie algebras.
(ii) The gk are all the L-forms of g up to isomorphism, and thus U(gk) are all the

L-forms of U(g).

Proof. For (i), suppose that 1 ≤ k, k′ ≤ n, with gk
∼= gk′ . Let d = gcd(n, k), d′ =

gcd(n, k′), l = n
d
, l′ = n

d′
. Also define I ′ / gk′ similarly as for I / gk. Without loss of

generality, l ≤ l′. Let Φ : gk → gk′ be an isomorphism of Lie algebras. Since I, I ′ are the
unique ideals of codimension 1 in their respective Lie algebras, we must have Φ(I) = I ′.
By Lemma 5.4(i), sjt is an eigenvector for adl(r). Since Φ is an isomorphism, this makes
Φ(sjt) an eigenvector for adl(Φ(r)). But Φ(r) /∈ I ′, so Lemma 5.4(ii) gives us l ≥ l′. Then
l = l′, which implies that d = d′.

We now have gcd(n, k) = gcd(n, k′) = d. Thus, gk = K-span {r, sjt : 0 ≤ j ≤ l−1, 0 ≤
t ≤ d−1}, gk′ = K-span {r′, s′jt : 0 ≤ j ≤ l−1, 0 ≤ t ≤ d−1}. Write Φ(s00) =

∑
j,t bjts

′
jt,

where bjt ∈ K, and the bjt are not all zero. Also write Φ(r) = ar′ +
∑

j,t ajts
′
jt, where

a, ajt ∈ K. Since ad(Φ(r)) = ad(ar′) on I ′, an easy induction gives us

ad(Φ(r))l(Φ(s00)) =
∑
j,t

alωlntbjts
′
(j+l)t =

∑
j,t

alωlnt+k′lbjts
′
jt

But since Φ is a homomorphism, then we get

ad(Φ(r))l(Φ(s00)) = Φ(ad(r)l(s00)) = Φ(sl0) = ωklΦ(s00) =
∑
j,t

ωklbjts
′
jt

This tells us that ωklbjt = alωlnt+k′lbjt for all j, t. Since not all the bjt are zero, then
al = ωl(k−k′−nt) for some t. But then a = ωk−k′−nt · (lth root of unity). The only way for
a ∈ K is if k = k′. This gives us (i).

For (ii), we look at what an action of G on L⊗ g must satisfy (keeping in mind that
G acts as Lie automorphisms on L⊗ g). After a bit of calculation, we get

σ · x = ω−knx +
n−1∑
j=1

bjyj, σ · yi = aiyi+k

for some 0 ≤ k ≤ n− 1, where the ai, bj ∈ L are chosen so that σn ·x = x and σn · yi = yi.
We will show that [L⊗ g]KG ∼= gk.

To determine the form obtained from this action, we need only consider primitive
invariant elements. Suppose that α = ax +

∑
j cjyj ∈ [L⊗ g]KG. Then

ax +
∑

j

cjyj = (σ · a)ω−knx +
∑

j

(σ · a)bjyj +
∑

j

(σ · cj)ajyj+k

= (σ · a)ω−knx +
∑

j

([σ · a]bj+k + [σ · cj]aj)yj+k

which gives us a = (σ · a)ω−kn and cj+k = (σ · a)bj+k + (σ · cj)aj.
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Write a =
∑n−1

i=0 qiω
i with qi ∈ K. The equation a = (σ · a)ω−kn gives us∑

i

qiω
i =

∑
i

qiω
in+i−kn =

∑
i

qiω
(i−k)nωi

Matching coefficients, we get qi = qiω
(i−k)n, so qi = 0 or ω(i−k)n = 1. Thus, if qi 6= 0, then

n|i− k and so i = k. Therefore, a = qωk for some q ∈ K.
First, suppose that a = 0. We then have ct+k = (σ ·ct)at. Once we are able to define ct

for 0 ≤ t ≤ d−1, then we can define the rest of the ct inductively using this relation. The
only restriction on ct is that ct = ct+kl = (σl·ct)(σ

l−1·at)(σ
l−2·at+k) · · · at+(l−1)k = (σl·ct)At,

where At = (σl−1 · at)(σ
l−2 · at+k) · · · at+(l−1)k. For each 0 ≤ t ≤ d − 1, we then want to

find all of the elements ct ∈ L such that ct = (σl · ct)At with ct 6= 0 if possible. If c′t is

another such element, and ct 6= 0, then it is easy to show that
c′t
ct

is fixed by σl, and so
c′t
ct
∈ Lσl

= K(ωk). Thus, if ct 6= 0, then the set {cjt = ωjkct : 0 ≤ j ≤ l − 1} is a basis

over K for the space of all c′t satisfying c′t = (σl · c′t)At. We then can define cj(ik+t) for all
0 ≤ i ≤ l − 1 by defining, inductively, cj(t+k) = (σ · cjt)at. By the way we have defined

cj(ik+t), we get that sjt =
∑l−1

i=0 cj(ik+t)yik+t ∈ [L ⊗ g]KG. Furthermore, since the cjt span
all possible coefficients of yt for elements in [L⊗g]KG which have no nonzero x term, then
the sjt span the space of all invariant elements of the form

∑
j cjyj.

If a = qωk 6= 0, then, substituting α
q

for α, we can assume that a = ωk. Suppose we

have two sets of elements {b′t}, {b′′t } ⊆ L such that r = ωkx+
∑

t b
′
tyt, r

′ = ωkx+
∑

t b
′′
t yt ∈

[L ⊗ g]KG. Subtracting these, we get
∑

t(b
′
t − b′′t )yt ∈ [L ⊗ g]KG, so by the a = 0 case,

r − r′ ∈ span{sjt}. Thus, r is unique modulo span{sjt}.
Putting these together, we get that [L⊗ g]KG is spanned by the set

{r, sjt : 0 ≤ t ≤ d− 1, 0 ≤ j ≤ l − 1}

Since dimK [L⊗g]KG = n+1, then these elements form a basis for [L⊗g]KG. In particular,
sjt 6= 0 for all j, t. We need only show that r and the sjt satisfy the same Lie product
relations as their counterparts in gk. We use cj(t+ik) = ωjk(in+1)c0(t+ik) (which we prove
by induction), which gives us

c(j+1)(ik+t) = ω(j+1)k(in+1)c0(ik+t) = ωk(in+1)ωjk(in+1)c0(ik+t)

= ωk(in+1)cj(ik+t)

The Lie product relations follow directly.

Notice that all of the L-forms of U(g) are stable.

6 Forms of Duals of Hopf Algebras

We turn our attention to determining forms for duals of finite dimensional Hopf algebras.
As we have seen in Proposition 2.4, we have a natural correspondence between forms of
H and forms of H∗ in which a form H ′ of H corresponds to the form (H ′)∗ of H∗.

21



In this section, we look at this question from the perspective of Theorem 4.5, and
we restrict our attention to stable L-forms. Let H, W , and K ⊆ L be as before, except
we require H to be finite dimensional. By Proposition 4.4 and Theorem 4.5, all stable
L-forms for H under W are obtained by finding appropriate commuting actions of W on
H. We use these actions to help us compute forms of H∗. Specifically, given a commuting
action of W on H, we construct a corresponding action on H∗. Our goal will be to find
a correspondence between stable L-forms of H under W and stable L-forms of H∗ under
W . The first step in this direction is finding a correspondence between W -actions on
H and W cop-actions on H∗. Recall that W cop is the Hopf algebra with comultiplication
∆(w) =

∑
w2 ⊗ w1. In the case W is cocommutative, W cop = W .

Proposition 6.1. Let W and H be Hopf algebras, and let H be a W -module algebra
with a commuting action. Then H◦ is a left W cop-module algebra with commuting ac-
tion. Conversely, if H is finite dimensional, and if H∗ is a left W cop-module algebra with
commuting action, then H is a left W -module algebra with commuting action.

Note: We have that H◦ = {f ∈ H∗ : f(I) = 0 for some ideal I of finite codimension} is a
Hopf algebra ([Mon93, 9.1.3]). Note that in the case where H is infinite dimensional, we
can determine some of the commuting actions of W cop on H◦ from the commuting actions
of W on H, but not necessarily all of them.

Proof. To avoid confusion, we distinguish between the Hopf algebra maps of H and H◦

by writing them as ∆, ∆∗, etc. We first assume that H is a left W -module algebra with
commuting action. Then for all f ∈ H◦, define (w · f)(h) = f(S(w) ·h). We need to show
that this is a left W cop-module algebra action on H∗, and that the action commutes with
the Hopf algebra maps of H◦.

We first prove that if f ∈ H◦, then w · f ∈ H◦ for all w ∈ W cop. We get

∆∗(w · f)(h⊗ h′) = (w · f)(hh′) = f(S(w) · hh′)

=
∑

f([S(w2) · h][S(w1) · h′])

=
∑

f1(S(w2) · h)f2(S(w1) · h′)

=
∑

(w2 · f1)(h)(w1 · f2)(h
′)

= (
∑

(w2 · f1)⊗ (w1 · f2))(h⊗ h′)

so ∆∗(w · f) =
∑

(w2 · f1) ⊗ (w1 · f2) ∈ H∗ ⊗ H∗. By [Mon93, 9.1.1], w · f ∈ H◦. The
above also shows that the action of w commutes with comultiplication in W cop.

We now show that it is an action. We have, for all w, w′ ∈ W, f ∈ H◦, h ∈ H,

(ww′ · f)(h) = f(S(w′)S(w) · h) = f(S(w′) · [S(w) · h])

= (w′ · f)(S(w) · h) = (w · [w′ · f ])(h)
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For the rest of the requirements for a W -module algebra, we have

(w · ε)(h) = ε(S(w) · h) = ε(S(w))ε(h) = ε(w)ε(h) = (ε(w)ε)(h)

(w · fg)(h) = fg(S(w) · h) =
∑

f([S(w) · h]1)g([S(w) · h]2)

=
∑

f(S(w2) · h1)g(S(w1) · h2)

=
∑

(w2 · f)(h1)(w1 · g)(h2) =
∑

(w2 · f)(w1 · g)(h)

which gives us that W acts trivially on ε, and w · fg =
∑

(w2 · f)(w1 · g). Therefore, H◦

is a left W cop-module algebra.
Now we must show that we have a commuting action.

ε∗(w · f) = (w · f)(1H) = f(S(w) · 1H) = ε(w)ε∗(f)

S∗(w · f)(h) = (w · f)(S(h)) = f(S(w) · S(h)) = f(S(S(w) · h))

= (f ◦ S)(S(w) · h) = S∗(f)(S(w) · h) = (w · S∗(f))(h)

so the action commutes.
Conversely, suppose that H is finite dimensional and that H∗ is a left W cop-module

algebra with commuting action. Then S is bijective by [Mon93, 2.1.3(2)]. Let {h1, · · · , hn}
be a basis for H, {h∗1, · · · , h∗n} the dual basis in H∗. Then for each w ∈ W and 1 ≤ i ≤ n,
we have w·h∗i =

∑
j aij(w)h∗j , where aij ∈ W ∗. Define the action hi·w =

∑
j aji(S

−1(w))hj.

Claim: For all f ∈ H∗, w ∈ W, h ∈ H, we have (w · f)(h) = f(S(w) · h)

Proof. It suffices to prove the claim for f = h∗i , h = hk, since they form bases for their
respective Hopf algebras. We have

(w · h∗i )(hk) =
∑

j

aij(w)h∗j(hk) = aik(w)

= h∗i (
∑

j

ajk(w)hj) = h∗i (S(w) · hk)

which proves the claim.

Let f ∈ H∗, h ∈ H, and w,w′ ∈ W . We have

f(ww′ · h) = (S−1(ww′) · f)(h) = (S−1(w′)S−1(w) · f ])(h)

= (S−1(w) · f)(w′ · h) = f(w · [w′ · w′])

Since this is true for all f ∈ H∗, then ww′ · h = w · (w′ · h), which implies that we have a
left action. The rest follows similarly.
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Now we see how this fits in with the general theory of L-forms. Let H be a finite
dimensional K-Hopf algebra, K ⊆ L a W ∗-Galois extension of fields, such that H is a
W -module algebra with commuting action. Then W is cocommutative by Proposition 2.5,
so W = W cop. Thus, by Proposition 6.1, we have a correspondence between commuting
actions of W on H and commuting actions of W on H∗. We attempt to extend this to a
correspondence between L-forms of H and L-forms of H∗.

Recall that SL,W (H) is the set of all stable L-forms of H under W . Define Φ :
SL,W (H) → SL,W (H∗) as follows. Let H ′ ∈ SL,W (H). Then H ′ = [L ◦ H]W for some
H-stable commuting action of W on L ◦H. From the previous, we have a corresponding
commuting action of W on H∗ and K ⊆ L is W ∗-Galois. We define Φ([L ◦H]W ) = [L ◦
H∗]W . Since the commuting actions on H are in 1-1 correspondence with the commuting
actions on H∗, we also define Ψ([L ◦H∗]W ) = [L ◦H]W .

It is not clear that either of these maps is well-defined on the subspaces of L ◦H, let
alone on Hopf-isomorphism classes of these subspaces, since the function depends on the
choice of action. It is clear that if they are well-defined, then Ψ = Φ−1, which would give
us a correspondence.

To make things more manageable, we’ll restrict ourselves to a context which includes
the case where W and H are both group algebras. Suppose that the commuting action
of W on H is such that, for all w ∈ W , w and S(w) act as transpose matrices on H. This
occurs in the case where W and H are group algebras, since if g ∈ G(W ), then g acts as
a permutation of G(H). So if we let Ag be the matrix representing the action of g on H,
we get At

g = A−1
g = Ag−1 = AS(g), and so g and S(g) act as transpose matrices.

So let {h1, · · · , hn} be a basis for H, {h∗1, · · · , h∗n} be the dual basis in H∗. We
then have, for all w ∈ W , w · hi =

∑
k aik(w)hk, where aik ∈ W ∗. By assumption,

S(w) · hi =
∑

k aki(w)hk. If we consider what the corresponding action of W on H∗ looks
like, we have

(w · h∗i )(hj) = h∗i (S(w) · hj) =
∑

k

akj(w)h∗i (hk)

= aij(w) =
∑

k

aik(w)h∗k(hj)

so w · h∗i =
∑

k aik(w)h∗k.
A direct consequence of this nice relationship between the actions of W on H and the

actions of W on H∗ is the following.

Proposition 6.2.
∑

i lihi ∈ [L ◦H]W if and only if
∑

i lih
∗
i ∈ [L ◦H∗]W .

We can think of L-forms of H in two ways. In light of Theorem 4.5, we can think
of them as subspaces of L ◦ H. Another way is to think of them as Hopf-isomorphism
classes of these subspaces. Thus, when we ask whether Φ : SL,W (H) → SL,W (H∗) is a
bijection, we can consider this question from two perspectives. When we consider Φ as a
map between subspaces, we do get a bijection.
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Theorem 6.3. Suppose that for all commuting actions of W on H that w and S(w)
act as transpose matrices for all w ∈ W . Then the map Φ : SL,W (H) → SL,W (H∗) is a
bijection, where we consider SL,W (H) to be the invariant subspaces of L ◦H arising from
commuting actions on H which make L◦H a W -module algebra (similarly for SL,W (H∗)).

Proof. Recall that Φ([L ◦H]W ) = [L ◦H∗]W . For clarity, if the action of W on H is given
by ·, then we write [L ◦H]W = [L ◦H]W· . Suppose there are two actions · and ∗ such that
[L◦H]W· = [L◦H]W∗ . Let

∑
i lih

∗
i ∈ [L◦H∗]W· . By the above,

∑
i lihi ∈ [L◦H]W· = [L◦H]W∗ .

Again by the above,
∑

i lih
∗
i ∈ [L ◦ H∗]W∗ , so [L ◦ H∗]W· ⊆ [L ◦ H∗]W∗ . By symmetry,

equality holds, and so the map is well-defined. An almost identical argument gives us
bijectivity.

Now we address the question of whether Φ is well-defined and bijective when considered
as a map between isomorphism classes of L-forms of H. In the case where W = KG,
not only does this occur, but there is also a nice matching of actions of W on L ◦H and
L ◦H∗ with the correspondence of L-forms given by Proposition 2.4. But we first need a
lemma.

Lemma 6.4. Let H be a finite dimensional Hopf algebra which is also a W -module
algebra making L◦H a W -module algebra. Suppose also that w and S(w) act as transpose
matrices for all w ∈ W . Let {hi} be a basis for H with dual basis {h∗i }, and suppose that∑

i bihi ∈ [L◦H]W ,
∑

i cih
∗
i ∈ [L◦H∗]W . Finally, for each w ∈ W , let w ·hi =

∑
j aij(w)hj

where aij ∈ K. Then
(i) ε(w)bi =

∑
j aji(w2)(w1 · bj) =

∑
j aji(w1)(w2 · bj)

(ii) ε(w)ci =
∑

j aji(w2)(w1 · cj) =
∑

j aji(w1)(w2 · cj)
(iii) δi,kε(w) =

∑
j aji(w2)ajk(w1) =

∑
j aij(w2)akj(w1)

Proof. For (i), let
∑

i bihi ∈ [L ◦H]W . We have∑
i

ε(w)bihi =
∑

j

(w1 · bj)(w2 · hj) =
∑
i,j

(w1 · bj)aji(w2)hi

Thus, ε(w)bi =
∑

j aji(w2)(w1 · bj). If we do the same thing with ε(w)bihi =
∑

j(w2 ·
bj)(w1 · hj), we get the second identity. (ii) follows similarly.

For (iii), we have

ε(w)hi =
∑

w1S(w2) · hi =
∑

j

w1 · (aji(w2)hj)

=
∑
j,k

aji(w2)ajk(w1)hk

This gives us δi,kε(w) =
∑

j aji(w2)ajk(w1), which is the first identity in (iii). If we do
the same calculations using ε(w) =

∑
S(w1)w2, we get the second identity.

Theorem 6.5. Let W = KG with H and L as above, and suppose that w, S(w) act
as transpose matrices for all w ∈ W . Let H ′ = [L ◦ H]W with corresponding L-form
H̄ ′ = [L ◦H∗]W of H∗. Then H̄ ′ ∼= (H ′)∗.

25



Proof. Let α =
∑

i bihi ∈ [L⊗H]W , f =
∑

i cih
∗
i ∈ [L⊗H∗]W . Define φ : H̄ ′ → (H ′)∗ by

φ(f)(α) =
∑

i bici. It is clear to see that φ is just ther restriction of the isomorphism in
Proposition 2.4 to H̄ ′. We must first show that

∑
i bici ∈ K. We have, for each g ∈ G,∑

i

bici =
∑
i,j,k

aji(g)aki(g)(g · bj)(g · ck), by Lem. 6.4(i), (ii)

=
∑
j,k

δj,k(g · bj)(g · ck), by Lem. 6.4(iii)

= g · (
∑

j

bjcj)

Thus,
∑

i bici ∈ LW = K. The fact that φ is a K-Hopf algebra isomorphism follows from
the fact that the isomorphism in Proposition 2.4 is an L-Hopf algebra isomorphism.

Example 6.6. Let K = Q, L = Q(i), and so K ⊆ L is W ∗-Galois, where W = KZ2, Z2 =
〈τ〉. Let H = KZn, Zn = 〈σ〉. Then the commuting actions of W on H are given by
τ · σ = σk, where k2 ≡ 1 (mod n). Let d = gcd(k − 1, n). Since [L ◦H]W is spanned by

elements of the form t · σj and t · iσj, where t = 1 + τ ∈
∫ l

W
, then we get the form

Hk = span{σ
tn
d , σj + σkj, iσj − iσkj :0 ≤ t ≤ d− 1,

0 ≤ j ≤ n− 1, j 6= tn

d
}

In order to make the above spanning set a basis, we require that j < kj mod n. This weeds
out redundant elements. To determine the Hopf algebra structure, let cj = σj + σkj, sj =
iσj − iσkj. Then

cjcm = cj+m + cj+km, cjsm = sj+m − sj+km, sjsm = −cj+m + cj+km

∆(cj) =
1

2
(cj ⊗ cj − sj ⊗ sj), ∆(sj) =

1

2
(cj ⊗ sj + sj ⊗ cj)

ε(cj) = 2, ε(sj) = 0, S(cj) = cn−j, S(sj) = sn−j

Now we look at the dual situation. If we let {pj} be the dual basis to {σj}, then we
have that W acts on H∗ via τ · pj = pkj where k2 ≡ 1 (mod n). Let d = gcd(k − 1, n).
We get the form

H̄k = span{p tn
d
, pj + pkj, ipj − ipkj : 0 ≤ t ≤ d− 1, 0 ≤ j ≤ n− 1,

j /∈ (
tn

d
)Z, j < kj}

Similarly, as before, let c̄j = pj + pkj, s̄j = ipj − ipkj. The multiplication is thus given by

c̄j c̄m = (δj,m + δkj,m)c̄m

c̄j s̄m = (δj,m + δkj,m)s̄m

s̄j s̄m = (δkj,m − δj,m)c̄m
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Checking the rest of the Hopf algebra structure of H̄k, we have

∆(c̄i) =
1

2

∑
j

(c̄j ⊗ c̄i−j − s̄j ⊗ s̄i−j), ∆(s̄j) =
1

2

∑
j

(c̄j ⊗ s̄i−j + s̄j ⊗ c̄i−j)

ε(c̄i) = 2δi,0, ε(s̄i) = 0, S(c̄i) = c̄n−i, S(s̄i) = s̄n−i

By Theorem 6.5, we have that H̄k
∼= H∗

k . This is easy to compute directly. If we map
c̄i 7→ 2c∗i and s̄i 7→ −2s∗i , then one can check that this gives us an isomorphism H̄K → H∗

k .

Most of the proof of Theorem 6.5 can be duplicated for general W . We need only
show that

∑
i bici ∈ K. So we ask

Question 6.7. If
∑

i bihi ∈ [L◦H]W ,
∑

i cih
∗
i ∈ [L◦H∗]W , does this imply that

∑
i bici ∈

K?

This is not obvious in the general case, since Lemma 6.4 doesn’t seem to be helpful if
W is not a group algebra.

7 Adjoint Forms

As mentioned in Section 4, if H is a finite dimensional, semisimple, cocommutative Hopf
algebra, and if K ⊆ L is an H∗-Galois extension, then we can obtain a form for H
via the adjoint action of H on itself. In addition, we can find a form for H∗ using the
correspondence of actions given in Proposition 6.1. We demonstrate this on the group
algebra KD2n.

Example 7.1. Let ω be a primitive nth root of unity, α be a real nth root of 2. Let
K = Q(ω + ω−1), L = K(α, ω). If we let H = KD2n, where D2n = 〈σ, τ : σn = 1, τ 2 =
1, τστ−1 = σ−1〉 is the dihedral group of order 2n, then K ⊆ L is H∗-Galois, where the
action of D2n on L is given by σ · α = ωα, σ · ω = ω, τ · α = α, τ · ω = ω−1. We obtain
a form of H by letting H act on itself via the adjoint action, so σ · τ = σ2τ , τ · σ = σ−1.
We then compute H ′ = [L ◦H]H to find an L-form of H. Note that this action yields a
nontrivial form, since the only group action that yields a trivial form is the trivial action.

Some easy computations give us that the elements ek = 1
n

∑n−1
i=0 ωkiσi, e′k = 1

2
α2kekτ

are in H ′.
We know that dimKH ′ = 2n, so for the above elements to span H ′, we need only show

that they are linearly independent. In order to do this, we first show that the ek’s are
orthogonal idempotents. We have

ekel = (
1

n

∑
i

ωkiσi)(
1

n

∑
j

ωljσj) =
1

n2

∑
i,j

ωki+ljσi+j

Let 0 ≤ m ≤ n−1. The coefficient of σm is 1
n2

∑
i ω

ki+l(m−i) = 1
n2 ω

lm
∑

i ω
i(k−l). But ωk−l

is an nth root of unity. Thus,
∑

i ω
i(k−l) = 0 unless k = l, in which case the coefficient
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becomes 1
n
ωlm. Thus,

ekel = δk,l
1

n

n−1∑
m=0

ωlmσm = δk,lel

and so the ek’s are orthogonal idempotents.
This makes proving that {ek, e

′
k : 0 ≤ k ≤ n− 1} is a basis pretty easy. If

∑
k akek +∑

k bke
′
k = 0 with ak, bk ∈ K, then for all 0 ≤ j ≤ n− 1,

0 = ej(
∑

k

akek +
∑

k

bke
′
k) = ajej + bje

′
j

and so clearly aj = bj = 0. This gives us H ′ = K-span {ek, e
′
k = 1

2
α2kekτ : 0 ≤ k ≤

n− 1, ekel = δk,lel}
To finish off the multiplication table, we first compute

τek =
1

n

∑
i

ωkiτσi =
1

n

∑
i

ωkiσ−iτ = (
1

n

∑
i

ω(n−k)iσi)τ = en−kτ

We then have

e′ke
′
l = (

1

2
α2kekτ)(

1

2
α2lelτ) =

1

4
α2(k+l)eken−l =

1

4
δk+l,nα

2nek = δk+l,nek

eke
′
l = ekα

2lelτ = δk,lα
2lelτ = δk,le

′
l

e′kel =
1

2
α2kekτ, el =

1

2
α2keken−lτ =

1

2
δk+l,nα

2kekτ = δk+l,ne
′
k

This enables us to determine the ring structure of H ′. For each k < n
2

such that 2k 6= n
or 0, let Mk = Kek ⊕Ken−k ⊕Ke′k ⊕Ke′n−k. Then Mk

∼= M2(K) via ek 7→ e11, en−k 7→
e22, e

′
k 7→ e12, e

′
n−k 7→ e21. If n = 2k or k = 0, then consider the ring R = Kek ⊕Ke′k. We

then have eke
′
k = e′kek = e′k, ek

2 = e′k
2 = ek, so ek acts like identity and R ∼= K[Z2]. For

n odd, this gives us

H ′ ∼=

n−1
2⊕

k=1

M2(K)⊕KZ2

and for n even, we have

H ′ ∼=

n−2
2⊕

k=1

M2(K)⊕K[Z2]⊕K[Z2]

For the rest of the Hopf algebra structure, direct computation gives us, for each 0 ≤
k ≤ n − 1, ∆(ek) =

∑n−1
j=0 ej ⊗ ek−j, ε(ek) = δk,0, S(ek) = en−k. Similarly, we get

∆(e′k) = 2
∑n−1

j=0 e′j ⊗ e′k−j, ε(e′k) = 1
2
δk,0, and S(e′k) = e′k.

We can also find corresponding forms for H∗. Let the form corresponding to the
induced action on H∗ be H̄. From Proposition 6.2, we have the basis ēk =

∑
i ω

kipσi ,
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ē′k =
∑

i α
2kωkipσiτ with multiplication given by ēkēl = ēk+l, ēkē

′
l = ē′lēk = 0, ē′kē

′
l = ē′k+l.

The Hopf algebra structure is given by

∆(ēk) = ēk ⊗ ēk +
1

4
ē′k ⊗ ē′n−k, ∆(ē′k) = ēk ⊗ ē′k + ē′k ⊗ ēn−k

ε(ēk) = 1, ε(ē′k) = 0, S(ēk) = ēn−k, S(ē′k) = ē′k

Let Z1 = span {ēk} and Z2 = span {ē′k}. As algebras, Z1
∼= Z2

∼= K[Zn]. They are both
ideals of H̄, but only Z2 is a Hopf ideal.
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