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Abstract

We investigate the coradical filtration of pointed coalgebras. First, we generalize
a theorem of Taft and Wilson using techniques developed by Radford in [Rad78]
and [Rad82]. We then look at the coradical filtration of duals of inseparable field
extensions L∗ upon extension of the base field K, where K ⊆ L is a field extension.
We reduce the problem to the case that the field extension is purely inseparable.
We use this to prove that if E is a field containing the normal closure of L over K,
then E ⊗L∗ = (E ⊗L∗)1 if and only if L/K is separable or char(K) = |L : Ls| = 2,
where Ls is the separable closure of K in L.

1 Introduction

In this paper, we study the coradical filtration of pointed coalgebras. Our first main
result is a generalization of a theorem of Taft and Wilson from [TW74]. The following is
a slightly stronger version of this result as proved in [Mon93, 5.4.1], using methods from
[Rad78] and [Rad82].

Theorem 1.1. Let C be a pointed coalgebra, with G = G(C). For each g, h ∈ G, let
P ′

g,h(C) be any vector space complement of K(g − h) in Pg,h(C). Then

(i) C1 = KG⊕ (⊕g,h∈GP ′
g,h(C))

(ii) for any n ≥ 1 and c ∈ Cn,

c =
∑

g,h∈G

cg,h, where ∆(cg,h) = cg,h ⊗ g + h⊗ cg,h + w

for some w ∈ Cn−1 ⊗ Cn−1.
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This theorem was one of the results used to prove theorems concerning the order of
the antipode for finite-dimensional pointed Hopf algebras. The generalization we prove
(Theorem 2.7) is an extension of (i) to Cn. The proof closely follows Montgomery’s proof.
We get a slightly stronger result in the case of cocommutative coalgebras (Theorem 2.10).
In the process, we define an analogue of primitive elements for Cn and consider their dual
notion in Section 5, which gives us a generalization of derivations.

We then consider duals of finite field extensions. This is motivated by the results in
[Par01], where we investigated the behavior of cocommutative coalgebras when the base
field is extended. Given a cocommutative coalgebra C, we found equivalent conditions for
(E ⊗C)0 = E ⊗C0 for any field extension K ⊆ E, where C0 is the coradical. In addition
to C being cosemisimple, all simple subcoalgebras of C must be duals of separable field
extensions of K.

In this paper, we study the coradical filtration of duals of inseparable field extensions.
These are natural coalgebras to investigate, since they are the most elementary examples
of cosemisimple coalgebras which are not cosemisimple when the field is extended. In
particular, given a field extension K ⊆ L, we determine equivalent conditions on a field E
so that E⊗L∗ is pointed, and this leads to Theorem 3.11, which reduces the structure of
(E⊗L∗)n to that of the E-coalgebra E⊗LsHomLs(L, Ls), where Ls is the separable closure
of K in L. We use this, along with some results on purely inseparable field extensions,
to prove that if E is a field containing the normal closure of L over the base field K,
then E ⊗ L∗ = (E ⊗ L∗)1 if and only if either K ⊆ L is a separable field extension or
char(K) = |L : Ls| = 2 (Theorem 4.5).

We refer the reader to [Mon93] for general facts about coalgebras. In particular, we
make heavy use of the results and notation in sections 5.1, 5.2, and 5.4. All vector spaces
and tensor products will be over a field K unless otherwise indicated.

2 Generalization of Taft-Wilson

In this section we generalize Theorem 1.1. Our goal will be to extend part (i) to Cn. We
will, to a great extent, follow Montgomery’s proof, which borrows heavily from methods
in [Rad78] and [Rad82]. In particular, the following theorem will be crucial. Recall that
a coalgebra has separable coradical if every simple subcoalgebra is the dual of a separable
K-algebra.

Theorem 2.1. [Abe80, 2.3.11] Let C be a coalgebra with separable coradical. Then there
exists a coideal I of C such that C = I ⊕ C0.

In particular, this applies to pointed coalgebras. So let C be a pointed coalgebra, and
fix a coideal I such that C = KG⊕ I, where G = G(C). For each x ∈ G, define ex ∈ C∗

by ex(I) = 0, ex(g) = δx,g for all g ∈ G. Then ε =
∑

x∈G ex and the ex are orthogonal
idempotents, where multiplication is given by the convolution product (see [Mon93, 1.4]).
For each c ∈ C, x, y ∈ G, define xc = c ↼ ex =

∑
ex(c1)c2, cy = ey ⇀ c =

∑
ex(c2)c1,

xcy = x(cy) = (xc)y. Let xCy = {xcy : c ∈ C}.
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Proposition 2.2. Given the notation above,

(i) For all c ∈ C, c =
∑

x,y∈G
xcy.

(ii) I = ∩x∈GKer(ex) = ⊕x,y∈G(xCy)+.

(iii) xCx = Kx⊕ (xCx)+, and xCy = (xCy)+ for all x 6= y.

(iv) For all c ∈ C, x(gch)y = δx,gδh,y
gch.

(v) For all c ∈ C, ∆(xcy) =
∑

z∈G
xcz

1 ⊗z cy
2

(vi) For all c ∈ (xCy
n)+, ∆(c)− c⊗ y − x⊗ c ∈

∑
g∈G(xCg

n−1)
+ ⊗ (gCy

n−1)
+.

Proof. Parts (i) − (iv) are easy to verify. For (v), [Rad78, p. 285, eqn 1.2a] gives us
∆(xcy) =

∑
(c1 ↼ ex)⊗(ey ⇀ c2). We then use the facts that ez ·ez = ez and

∑
z∈G ez = ε

to give us
∑

z∈G
xcz

1⊗z cy
2 =

∑
(c1 ↼ ex)⊗(ey ⇀ c2), completing the proof of (v). For (vi),

it is shown in the proof of [Mon93, 5.4.1] that ∆(c)− c⊗y−x⊗ c ∈ Cn−1⊗Cn−1 (see also
eqn. 1.5 in [Rad78]). Applying (v) and the fact that c ∈ xCy, we get ∆(c)−c⊗y−x⊗c ∈∑

g∈G
xCg

n−1 ⊗ gCy
n−1. If we write ∆(c) − c ⊗ y − x ⊗ c =

∑
vi,g ⊗ wi,g with vi,g ∈ xCg

n−1

and wi,g ∈ gCy
n−1 with the wi,g linearly independent, apply ε ⊗ id to both sides to get

0 =
∑

i,g ε(vi,g)wi,g. We get vi,g ∈ (xCg)+. Similarly, wi,g ∈ (gCy)+, giving us (vi).

If we let In = I ∩ Cn for each n ≥ 0, then we have Cn = KG⊕ In, and In is a coideal
of Cn. Thus In = ⊕g,∈G(gCh

n)+.
To generalize Theorem 1.1, we will need an analogue of primitive elements in Cn.

Definition 2.3. For each n ≥ 0, g, h ∈ G, we define the subspace P
(n)
g,h (C) as follows.

P
(0)
g,h = 0, P

(n)
g,h = {c ∈ C : ∆(c)− c⊗ g − h⊗ c ∈

∑
x∈G

P
(n−1)
x,h ⊗ P (n−1)

g,x }

We then define P (n)(C) =
∑

g,h∈G P
(n)
g,h (C)

Note that P
(1)
g,h (C) = Pg,h(C), so this is a generalization of g, h-primitive elements.

Proposition 2.4. Let g, h ∈ G. Then

(i) P
(n)
g,h (C) ⊆ P

(n+1)
g,h (C).

(ii) ε(P (n)(C)) = 0

(iii) P
(n)
g,h (C) ∩KG = KG+ for n ≥ 2.

(iv) (hCg
n)+ ⊆ P

(n)
g,h (C).

(v) (σCg
n−1)

+, (hCτ
n−1)

+ ⊆ P
(n)
g,h (C) for all σ, τ ∈ G.

(vi) (σCτ
n−2)

+ ⊆ P
(n)
g,h (C) for all σ, τ ∈ G.

(vii) Cn = P (n)(C) + KG for all n ≥ 0.
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Proof. Parts (i) and (ii) follow from an easy induction. For (iii), by (i) and (ii), it suffices

to prove that KG+ ⊆ P
(2)
g,h (C). Let c =

∑
x∈G kxx, where kx ∈ K and

∑
x∈G kx = 0. Then

∆(c)− c⊗ g − h⊗ c =
∑
x∈G

kx(x⊗ x− x⊗ g − h⊗ x)

=
∑
x∈G

kx(x⊗ x− x⊗ g − h⊗ x + h⊗ g)

=
∑
x∈G

kx(x− h)⊗ (x− g) ∈
∑
x∈G

P
(1)
x,h(C)⊗ P (1)

g,x (C)

so c ∈ P
(2)
g,h (C).

For (iv), the n = 0 case is trivial. By Proposition 2.2(vi), if c ∈ (hCg
n)+ then ∆(c) −

c⊗ g−h⊗ c ∈
∑

x∈G(hCx
n−1)

+⊗ (xCg
n−1)

+. Applying induction to (hCx
n−1)

+ and (xCg
n−1)

+

gives us the result.
We prove (v) by induction. The case n = 1 is trivial. For n > 1, let c ∈ (hCτ

n−1)
+.

By Proposition 2.2(vi), it follows that ∆(c) = c ⊗ τ + h ⊗ c +
∑

x∈G
hvx

i ⊗ xwτ
i , where

hvx
i ∈ (hCx

n−2)
+ and xwτ

i ∈ (xCτ
n−2)

+. By induction, xwτ ∈ P
(n−1)
g,x (C), giving us

∆(c)− c⊗ g − h⊗ c = c⊗ (τ − g) +
∑
x∈G

hvx
i ⊗ xwτ

i

∈ P
(n−1)
τ,h (C)⊗ P (n−1)

g,τ (C) +
∑
x∈G

P
(n−1)
x,h (C)⊗ P (n−1)

g,x (C)

and the result follows. The argument is similar for (σCg
n−1)

+.
We proceed similarly for (vi). Let c ∈ (σCτ

n−2)
+. We then have, as before, ∆(c)−c⊗g−

h⊗c = c⊗(τ−g)+(σ−h)⊗c+
∑

x∈G
σvx

i ⊗xwτ
i , where σvx

i ∈ (σCx
n−3)

+ and xwτ
i ∈ (xCτ

n−3)
+.

By (v), we have c⊗(τ−g) ∈ P
(n−1)
τ,h (C)⊗P

(n−1)
g,τ (C) and (σ−h)⊗c ∈ P

(n−1)
σ,h (C)⊗P

(n−1)
g,σ (C).

Thus, (vi) follows from induction.
For (vii), we have Cn = KG ⊕ In and In = ⊕g,h∈G(gCh

n)+, so the result follows from
(iv).

In Montgomery’s proof of Theorem 1.1, a crucial step was proving that P
(1)
g,h (C) =

K(g − h)⊕ (hCg
1 )+. The analogue for n ≥ 2 is

Lemma 2.5. For all n ≥ 2, we have

P
(n)
g,h (C) =KG+ ⊕ (⊕σ 6=h(

σCg
n−1)

+)⊕ (⊕τ 6=g(
hCτ

n−1)
+)

⊕ (⊕σ 6=h
τ 6=g

(σCτ
n−2)

+)⊕ (hCg
n)+.

Proof. By Proposition 2.4(iii)−(vi), it suffices to show that P
(n)
g,h (C) ⊆ (KG+⊕(⊕σ 6=h(

σCg
n−1)

+)⊕
(⊕τ 6=g(

hCτ
n−1)

+) ⊕ (⊕σ 6=h
τ 6=g

(σCτ
n−2)

+)) ⊕ hCg
n. Let c ∈ P

(n)
g,h (C). In particular, c ∈ Cn, so
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c = vG +
∑

x,y∈G
xvy, where vG ∈ KG and xvy ∈ (xCy

n)+. Since ε(c) = 0, Proposi-
tion 2.4(ii) gives us vG ∈ KG+, and so, without loss of generality, xcy ∈ (xCy

n)+ for all
x, y ∈ G.

We have ∆(c)− c⊗ g − h⊗ c ∈
∑

u∈G P
(n−1)
u,h (C)⊗ P

(n−1)
g,u (C). For x, y ∈ G, we apply

Proposition 2.2(iv), (v) to get

∆(xcy)− δg,y
xcg ⊗ g − δh,xh⊗ hcy ∈

∑
u,z∈G

xP
(n−1)
u,h (C)z ⊗ zP (n−1)

g,u (C)y (1)

If y 6= g, we can apply id⊗ ε to the above and use Proposition 2.4(vii) to get xcy ∈ Cn−1.
Similarly, if x 6= h, we have xcy ∈ Cn−1. Thus, if x = h or y = g (but not both), we
have xcy ∈ Cn−1 ∩ (xCy

n)+ = (xCy
n−1)

+. It thus suffices to show that for all x 6= h, y 6= g,
we have xcy ∈ xCy

n−2 = Cn−2 ∩ (xCy
n)+. As before, we need only prove that xcy ∈ Cn−2.

By induction, we have P
(n−1)
u,h (C) = (hCu

n−1)
+ + C+

n−2 and P
(n−1)
g,u (C) = (uCg

n−1)
+ + C+

n−2.
Applying (1), and using the fact that x 6= h, y 6= g, we get ∆(xcy) ∈

∑
z∈G Cn−2 ⊗ Cn−2.

We now apply id⊗ ε to get xcy ∈ Cn−2.

Corollary 2.6. For all n ≥ 2,

(i) P
(n)
g,h (C) ∩ Cn−1 = KG+ ⊕ (δσ,h + δτ,g)(⊕σ,τ∈G(σCτ

n−1)
+)⊕ (⊕σ 6=h

τ 6=g
(σCτ

n−2)
+).

(ii) P
(n)
g,h (C) ∩ Cn−2 = KG+ ⊕ (⊕σ,τ∈G(σCτ

n−2)
+)

This brings us to the main theorem.

Theorem 2.7. For each g, h ∈ G, let P̄
(n)
g,h (C) be a vector space complement of P

(n)
g,h (C)∩

Cn−1 in P
(n)
g,h (C). Then Cn = Cn−1 ⊕ (⊕g,h∈GP̄

(n)
g,h (C)).

Proof. For each g, h ∈ G, Proposition 2.4(iv) gives us (hCg
n)+ ⊆ P

(n)
g,h (C). Also, KG ⊆

Cn−1. Thus, Cn = Cn−1 +
∑

g,h∈G P̄
(n)
g,h (C). It then suffices to prove that the sum is direct.

Suppose that there exist v ∈ Cn−1 and v̄g,h ∈ P̄
(n)
g,h (C) for each g, h ∈ G with v +∑

g,h∈G v̄g,h = 0. By Lemma 2.5, we can write v̄g,h = vg,h + wg,h, where vg,h ∈ hCg
n and

wg,h ∈ Cn−1. We then have
∑

g,h∈G vg,h = −v −
∑

g,h∈G wg,h ∈ Cn−1. Now xCy
n−1 ⊆ Cn−1

for all x, y ∈ G. Thus, vx,y = y(
∑

g,h vg,h)
x ∈ Cn−1, and so v̄x,y ∈ P̄

(n)
g,h (C) ∩ Cn−1 = 0.

Then also v = 0, completing the proof.

In the case of C cocommutative, we get a stronger result. We begin with a lemma.

Lemma 2.8. Let C be a cocommutative coalgebra.

(i) If g, h ∈ G(C) with g 6= h, then (gCh
n)+ = 0.

(ii) If c ∈ (gCg
n)+, then ∆(c)− c⊗ g − g ⊗ c ∈ (gCg

n−1)
+ ⊗ (gCg

n−1)
+.
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Proof. We prove (i) by induction. The case n = 0 is trivial. For n > 0, let c ∈ (gCh
n)+.

Applying Proposition 2.2(vi), induction, and the fact that g 6= h, we have ∆(c)− c⊗ h−
g ⊗ c ∈

∑
z∈G(gCz

n−1)
+ ⊗ (zCh

n−1)
+ = 0. Thus, c ∈ Ph,g(C). Since C is cocommutative,

this implies c ∈ K(g − h). But K(g − h) ∩ (gCh
n)+ = 0, completing the proof. Part (ii)

follows from (i) and Proposition 2.2(vi).

This gives us the following.

Corollary 2.9. Cn = ⊕g∈G
gCg

n.

Proof. Lemma 2.8 implies that Cn = KG +
∑

g∈G(gCg
n)+. For each g ∈ G, g ∈ gCg

n.
Thus, Cn =

∑
g∈G

gCg
n. It then follows that the gCg

n are the irreducible components of
Cn. [Mon93, 5.6.3] implies that the sum is direct.

This gives us a strengthened version of Theorem 2.7 for cocommutative coalgebras.

Theorem 2.10. Let C be a cocommutative coalgebra. For each g ∈ G, let P̄
(n)
g,g (C) be a

vector space complement of Cn−2 in P
(n)
g,g (C). Then Cn = Cn−2 ⊕ (⊕g∈GP̄

(n)
g,g (C)).

Proof. By Lemma 2.5 and Lemma 2.8, we have P
(n)
g,g (C) ∩ Cn−1 ⊆ Cn−2. The result then

follows from Theorem 2.7.

3 Extensions of the Base Field for Duals of Field Ex-

tensions

Given a K-coalgebra C, one can extend the base field to an extension K ⊆ E. The
resulting E-coalgebra is E⊗K C (see proof of [Mon93, 2.2.2]). In this section, we consider
how the coalgebra structure of C is affected by extension of the base field.

This question was considered in [Par01]. In particular, we obtained the following
result.

Theorem 3.1. Let H be a K-coalgebra, and suppose K ⊆ L is an extension of fields.
Then the following are equivalent.

(i) L⊗H is a grouplike coalgebra.
(ii) H is cocommutative, cosemisimple with separable coradical, and L contains the

normal closure of D∗ for each simple subcoalgebra D ⊆ H.

We will prove an analogous result in the case that the simple subcoalgebras are not
separable. One of the consequences of Theorem 3.1 is the following.

Corollary 3.2. Let H be a cocommutative coalgebra, and suppose that K ⊆ L is such
that L⊗H is pointed (e.g. L = K̄). Let {Hn}∞n=0 be the coradical filtration of H.

(i) [L⊗H]n ⊆ L⊗Hn for all n ≥ 0.
(ii) Equality holds for all n ≥ 0 if and only if H has separable coradical.
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As in the proof of Theorem 3.1, we take the view of finite-dimensional coalgebras
as duals of associative algebras. In fact, we take this a step further. Let A be a finite-
dimensional K-algebra, and let K ⊆ E be a field extension. If we take a basis {a1, · · · , an}
of A with dual basis {a∗1, · · · , a∗n} ⊆ A∗, then we have an E-vector space isomorphism
φ : HomK(A, E) → E ⊗ A∗ given by φ(f) =

∑
i f(ai) ⊗ a∗i . Note that this map is

independent of the choice of basis.
We use φ to give HomK(A, E) a comultiplication. We can identify HomK(A, E) ⊗E

HomK(A, E) with (E⊗A⊗A)∗. Then ∆(f)(α⊗a⊗ b) = αf(ab) gives a comultiplication
which is coassociative when A is associative. If A is associative, then ε(f) = f(1) makes
HomK(A, E) an E-coalgebra.

Lemma 3.3. φ is an E-coalgebra isomorphism.

Proof. We have aiaj =
∑

k αijkak for some αijk ∈ K. Then ∆(a∗k) =
∑

i,j αijka
∗
i ⊗ a∗j .

We need only prove that φ is a coalgebra morphism. Suppose ∆(f) =
∑

f1 ⊗E f2, so
f(ab) =

∑
f1(a)f2(b) for all a, b ∈ A. Then∑
φ(f1)⊗E φ(f2) =

∑
i,j

(f1(ai)⊗ a∗i )⊗E (f2(aj)⊗ a∗j)

=
∑
i,j

f1(ai)f2(aj)⊗ a∗i ⊗ a∗j =
∑
i,j

f(aiaj)⊗ a∗i ⊗ a∗j

=
∑
i,j,k

αijkf(ak)⊗ ai ⊗ aj = ∆(φ(f))

We also have ε(φ(f)) =
∑

i ε(a
∗
i )f(ai) = f(

∑
i a

∗
i (1)ai) = f(1) = ε(f), which completes

the proof.

Let G = AlgK(A, E). Then G = G(HomK(A, E)). This, along with Lemma 3.3 gives
us

Corollary 3.4. If A is a finite-dimensional associative algebra, and E is a field, then
(i) G(E ⊗ A∗) = {

∑
i σ(ai)⊗ a∗i : σ ∈ G}. Thus, |G(E ⊗ A∗)| = |Alg(A, E)|.

(ii) Let σ, τ ∈ G. Then φ(P
(n)
σ,τ (HomK(A, E))) = P

(n)
φ(σ),φ(τ)(E ⊗ A∗).

We also have that HomK(A, E) is well behaved when we restrict maps to subalgebras.

Lemma 3.5. Let A be a finite-dimensional associative algebra, E be a field. Suppose
that B ⊆ A is a subalgebra, and let σ, τ ∈ G. If f ∈ P

(n)
σ,τ (HomK(A, E)), then f |B ∈

P
(n)
σ|B ,τ |B(HomK(B, E)).

Proof. Using the definition of comultiplication, it follows that f ∈ P
(n)
σ,τ (HomK(A, E))

if and only if f(ab) = τ(a)f(b) + f(a)σ(b) + w(a ⊗ b) for all a, b ∈ A, where w ∈∑
κ∈AlgK(A,E) P

(n−1)
σ,κ (HomK(A, E)) ⊗ P

(n−1)
κ,τ (HomK(A, E)) for all a, b ∈ A. But when

we restrict to B, this will still hold for a, b ∈ B. In addition, when we restrict to B, we
will have w ∈

∑
κ∈AlgK(A,E) P

(n−1)
σ|B ,κ|B(HomK(B, E))⊗P

(n−1)
κ|B ,τ |B(HomK(B, E)) by induction,

so the proof is complete.
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Let C be a cocommutative K-coalgebra, and again let K ⊆ E be a field extension. If
E is algebraically closed, then E⊗C is pointed by [Mon93, 5.6]. We can be more specific
about how much we need to extend the field. We first need the following lemma.

Lemma 3.6. Let K ⊆ L be a finite field extension, and let L ⊆ E be any field extension.
Then G(E ⊗ L∗) 6= ∅.

Proof. Let {a1, · · · , an} be a basis for L over K. Then
∑

i ai ⊗ a∗i ∈ G(E ⊗ L∗) by
Corollary 3.4(i) (letting σ be the inclusion map).

We then get the following analogue of Theorem 3.1.

Theorem 3.7. Let C be a cocommutative coalgebra over K, and let K ⊆ E be a field
extension. Then E ⊗ C is pointed if and only if, for each simple subcoalgebra D ⊆ C, E
contains the normal closure of the field D∗ over K.

Proof. We first reduce the theorem to the case of C being a simple coalgebra. By Corol-
lary 3.2, we have (E⊗C)0 ⊆ E⊗C0, so (E⊗C)0 ⊆ (E⊗C0)0. In addition, E⊗C0 ⊆ E⊗C,
so (E ⊗ C0)0 ⊆ (E ⊗ C)0. Thus, (E ⊗ C)0 = (E ⊗ C0)0, and so E ⊗ C is pointed if and
only if E ⊗C0 is pointed. Now C0 = ⊕iDi, where each Di is a simple subcoalgebra. This
gives us E ⊗ C0 = ⊕iE ⊗Di, so E ⊗ C0 is pointed if and only if each E ⊗Di is pointed.
Thus, without loss of generality, C is simple. In particular, [Mon93, 5.1.4(3)] implies that
C is finite-dimensional.

Without loss of generality, K ⊆ E is an algebraic extension. Suppose that E contains
the normal closure of C∗ (note that C∗ is a field since C is simple and cocommutative).
If K̄ is an algebraic closure of K containing E, then K̄ ⊗ C is a pointed coalgebra. Let
σ ∈ Alg(C∗, K̄). Since C∗ is a field, we have σ(C∗) ∼= C∗. Thus, σ(C∗) ⊆ E, and so
Alg(C∗, K̄) = Alg(C∗, E). By Lemma 3.4, |G(K̄ ⊗ C)| = |Alg(C∗, K̄)| = |Alg(C∗, E)| =
|G(E ⊗ C)|.

Suppose that E ⊗C is not pointed. Then there exists a simple coalgebra D ⊆ E ⊗C
with D ∩ E(G(E ⊗ C)) = 0. Since D is a simple cocommutative E-coalgebra, then
D ∼= F ∗ = HomE(F, E) for some field extension E ⊆ F . By Lemma 3.6, there is some
g ∈ G(K̄ ⊗E D). Since D ∩ E(G(E ⊗ C)) = 0, we have g /∈ E(G(E ⊗ C)). This implies
that |G(K̄ ⊗ C)| > |G(E ⊗ C)|, which is a contradiction. Thus, E ⊗ C is pointed.

Conversely, suppose that E does not contain the normal closure of C∗. Then there is
some σ ∈ AlgK(C∗, K̄) such that σ(C∗) * E. Then Corollary 3.4 implies that |G(K̄ ⊗
C)| > |G(E ⊗C)|. But since K̄ ⊗C ∼= K̄ ⊗E (E ⊗C) is pointed, Corollary 3.2(i) implies
that (K̄ ⊗ C)0 ⊆ K̄ ⊗E (E ⊗ C)0. Since K̄ ⊗ C has more grouplikes than E ⊗ C, E ⊗ C
must have a simple subcoalgebra that is not grouplike.

Let K ⊆ L be a finite field extension, K ⊆ E any field extension. We now study the
coradical filtration of E⊗L∗. Note that while L∗ is a simple coalgebra, it is possible that
E ⊗ L∗ is not if K ⊆ L is an inseparable field extension (see Corollary 3.2(ii)). Since
E ⊗ L∗ ∼= HomK(L, E), we can study HomK(L, E) when convenient.
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Lemma 3.8. Let K ⊆ L be a finite field extension, K ⊆ E any field extension.

(i) If K ⊆ L is a separable extension, then HomK(L, E) is cosemisimple.

(ii) If E contains the normal closure of L, then HomK(L, E) is pointed.

Proof. These follow directly from Theorem 3.1 and Theorem 3.7, respectively.

Now suppose that F is the normal closure of L over K, and let Ls be the separable
closure of K in L. Let {β1, · · · , βr} be a basis for L over Ls, and let {β∗1 , · · · , β∗r} be the
dual basis. We have that H = HomLs(L, Ls) is an Ls-coalgebra. Note that F ⊗Ls H is
connected by Corollary 3.4 and Theorem 3.7, since Ls ⊆ L is purely inseparable. Also
note that G(F ⊗Ls H) = Ke, where e =

∑
i βi ⊗ β∗i .

If c ∈ F ⊗Ls H, then we can write c =
∑

i f(βi) ⊗ β∗i for some f ∈ HomLs(L, F ) ⊆
HomK(L, F ). For each σ ∈ AlgK(L, F ), we define Ψσ : F ⊗Ls H → HomK(L, F ) as
follows. By a well-known theorem in field theory and the fact that K ⊆ F is a normal
extension, we can extend σ to a K-automorphism σ̄ : F → F . Fix such an automorphism
for each σ ∈ AlgK(L, F ). We then define Ψσ(

∑
i f(βi)⊗ β∗i ) = σ̄ ◦ f . One can check that

Ψσ is an F -coalgebra monomorphism.

Lemma 3.9. Let e, σ, L, and F be as above.
(i) Ψσ(e) = σ.

(ii) Ψσ(P
(n)
e,e (F ⊗Ls H)) ⊆ P

(n)
σ,σ (HomK(L, F ))

(iii) P
(n)
σ,σ (HomK(L, F )) = FG+⊕Ψσ(P

(n)
e,e (F⊗LsH)), for n ≥ 2, and Pσ,σ(HomK(L, F )) =

Ψσ(Pe,e(F ⊗Ls H)).

Proof. Part (i) follows directly. Part (ii) follows from a simple induction argument using

(i) and the fact that Ψσ is a coalgebra morphism. For (iii), let f ∈ P
(n)
σ,σ (HomK(L, F )).

Then f |Ls ∈ P
(n)
σ|Ls ,σ|Ls

(HomK(Ls, F )). By Lemma 3.8(i), f |Ls ∈ E(Alg(Ls, F )). By

extending each element of Alg(Ls, F ) to L, we can consider f |Ls = h ∈ FG. If we let
f ′ = f−h, then f ′(Ls) = 0, and so σ̄−1◦f ′ ∈ HomLs(L, F ). Note that Ψσ(

∑
i σ̄

−1(f ′(βi))⊗
β∗i ) = f ′, so it suffices to show that

∑
i σ̄

−1(f ′(βi)) ⊗ β∗i ∈ P
(n)
e,e (F ⊗Ls H). This follows

from the fact that Ψ−1
σ : Ψσ(F ⊗Ls H) → F ⊗Ls H is a coalgebra isomorphism.

Applying Theorem 2.10 and Lemma 3.9 gives us the following.

Lemma 3.10. (HomK(L, F ))n = FG⊕ (⊕σ∈GΨσ(P
(n)
e,e (F ⊗Ls H))).

This tells us a great deal about the coradical filtration of E⊗L∗ when E contains the
normal closure of L over K.

Theorem 3.11. Let K ⊆ L be a finite field extension, and let E be a field containing
the normal closure of L over K. Then (E ⊗ L∗)n =

∑
g∈G(E⊗L∗) Cg, where each Cg

∼=
(E ⊗Ls H)n.
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Proof. First note that we can identify E⊗L∗ with HomK(L, E). The case of E = F then

follows from Lemma 3.10, letting Cg = Eg + Ψg(P
(n)
e,e (E ⊗Ls H))). For the general case,

we have, by Corollary 3.2(ii) and Theorem 3.7,

(E ⊗ L∗)n = (E ⊗F [F ⊗ L∗])n = E ⊗F (F ⊗ L∗)n

The result follows directly.

Thus, the coalgebra structure of E⊗L∗, including the coradical filtration, is completely
determined by that of E ⊗Ls H. The following is immediate.

Corollary 3.12. Let n = |L : Ls|. Then E ⊗ L∗ = (E ⊗ L∗)n.

4 Duals of Purely Inseparable Field Extensions

The thrust of Corollary 3.11 is that we can understand the coalgebra structure of duals of
field extensions when their base fields are extended as long as we understand the coalgebra
structure of duals of purely inseparable field extensions under an extension of the base
field.

Let char(K) = p > 0, and suppose that K ⊆ L is a purely inseparable finite field
extension. Let L ⊆ E be a field extension. Then E ⊗ L∗ is connected, with grouplike
element g. We then have (E ⊗ L∗)n = Eg ⊕ Pn, where Pn = P

(n)
g,g (E ⊗ L∗).

Corollary 3.12 gives an n such that (E ⊗ L∗)n = E ⊗ L∗. One may ask what the
minimum such n is. We shall address this question in this section. We begin with the
following lemma.

Lemma 4.1. For all n ≥ 1, dimE(Pn+1/Pn) ≤ dimE(Pn/Pn−1)
2.

Proof. Since Pn−1 is a coideal for each n ≥ 1, we have that (E ⊗L∗)/Pn−1 is a coalgebra.
We define the linear map f : Pn+1/Pn−1 → (Pn/Pn−1)⊗ (Pn/Pn−1) by

f(c) = ∆(c)− c⊗ (g + Pn−1)− (g + Pn−1)⊗ c

Since ker(f) = Pn/Pn−1 and im(f) ⊆ (Pn/Pn−1)⊗(Pn/Pn−1), we have dimE(Pn+1/Pn−1) ≤
dimE(Pn/Pn−1)+dimE(Pn/Pn−1)

2. Then dimE(Pn+1/Pn−1) = dimE(Pn+1/Pn)+dimE(Pn/Pn−1)
gives us the result.

By [Jac64, p. 182], there exists a p-basis of L over K. That is, there exist α1, · · · , αk ∈
L such that, for some fi > 0, {αe1

1 · · ·αek
k : 0 ≤ ei < pfi} is a basis for L over K.

We can then define derivations di ∈ DerK(L, E) such that di(αj) = δi,j. Let g = K-
span{d1, · · · dk}. Then DerK(L, E) = E ⊗ g. Since φ(DerK(L, E)) = P1, we have that
dimK(P1) = k.

Corollary 4.2. Let k be the size of a p-basis of L over K.
(i) For all n ≥ 1, dimE(Pn+1/Pn) ≤ k2n

.
(ii) For all n ≥ 0, dimE([E ⊗ L∗]n) ≤ 1 +

∑n−1
i=0 k2i

.
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Proof. For (i), we have dimK(P1/P0) = dimK(P1) = k by the above remarks, which gives
us n = 1. For n > 1, we have dimE(Pn+1/Pn) ≤ dimE(Pn/Pn−1)

2 by Lemma 4.1. By
induction, dimE(Pn/Pn−1)

2 ≤ (k2n−1
)2 = k2n

, and the result follows. Part (ii) follows
directly from (i).

Since dimE(E ⊗ L∗) ≥ pk, the following is immediate.

Corollary 4.3. If E ⊗ L∗ = (E ⊗ L∗)n and k is the size of a p-basis of L over K, then
pk ≤ 1 +

∑n−1
i=0 k2i

.

This leads to some very restrictive conditions for E ⊗ L∗ = (E ⊗ L∗)1.

Corollary 4.4. Let K ⊆ L be a purely inseparable extension. Then E ⊗L∗ = (E ⊗L∗)1

if and only if either K = L or char(K) = |L : K| = 2.

Proof. If K = L, then E⊗L∗ = (E⊗L∗)0 ⊆ (E⊗L∗)1. In the case that K 6= L, we have
k > 0. By Corollary 4.3(ii), we have pk ≤ 1 + k. But this can only happen if p = 2 and
k = 1, in which case we have equality. This forces |L : K| = 2. Since char(K) = p = 2,
this completes the proof.

We get corresponding results for the case K ⊆ L is not purely inseparable, using
Corollary 3.11.

Theorem 4.5. Let K ⊆ L be a field extension with char(K) = p > 0, and let Ls be
the separable closure of K in L. Suppose E contains the normal closure of L over K.
For each g ∈ G(E ⊗ L∗) and n ≥ 0 , let P̄

(n)
g,g be a vector space complement of KG+ in

P
(n)
g,g (E ⊗ L∗) such that P̄

(n)
g,g ⊆ P̄

(n+1)
g,g . Finally, let k be the size of a p-basis for L/Ls.

Then
(i) For all n ≥ 1, dimE(P̄

(n+1)
g,g /P̄

(n)
g,g ) ≤ dimE(P̄

(n)
g,g /P̄

(n−1)
g,g )2.

(ii) For all n ≥ 1, dimE(P̄
(n+1)
g,g /P̄

(n)
g,g ) ≤ k2n

.
(iii) For all n ≥ 0, dimE([E ⊗ L∗]n) ≤ |G|(1 +

∑n−1
i=0 k2i

).

(iv) If E ⊗ L∗ = (E ⊗ L∗)n, then pk ≤ 1 +
∑n−1

i=0 k2i
.

(v) E ⊗ L∗ = (E ⊗ L∗)1 if and only if either L is separable or char(K) = |L : Ls| = 2.

Proof. These follow directly from Corollary 3.11, Lemma 4.1, Corollary 4.2, Corollary 4.3,
and Corollary 4.4.

5 A Generalization of (σ, τ )-Derivations

Recall that if A and B are K-algebras (not necessarily associative), and σ, τ : A → B
are K-algebra homomorphisms, a (σ, τ)-derivation is a map d : A → B such that, for all
a, b ∈ A, we have d(ab) = σ(a)d(b) + d(a)τ(b). There is a duality between derivations
and primitive elements. In fact, if A is an associative algebra and B is a field, then
Corollary 3.4 implies that σ, τ ∈ G(HomK(A, B)) and Pσ,τ (HomK(A, B)) consists of the
(τ, σ)-derivations between A and B.
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Since Pg,h(C) = P
(1)
g,h (C), it makes sense to generalize (σ, τ)-derivations to the nth

level of the coradical filtration. Indeed, since the definition of P
(n)
g,h (C) depends only on

comultiplication in HomK(A, B), we can define such maps when B is not a field, or even
when A and B are not associative.

Definition 5.1. Let A and B be K-algebras, let G be the set of algebra homomorphisms
A → B, and let σ, τ ∈ G. The set of (σ, τ)-derivations of degree n (denoted D

(n)
σ,τ (A, B))

can be defined inductively as follows.

D(0)
σ,τ (A, B) = 0,

D(n)
σ,τ (A, B) = {f : A → B : ∀a, b ∈ A, f(ab) = σ(a)f(b) + f(a)τ(b)

+ w(a⊗ b), where w ∈
∑
κ∈G

D(n−1)
σ,κ (A, B)⊗D(n−1)

κ,τ (A, B)}

Note that we do not require A to be finite-dimensional. An easy induction gives us
the following.

Proposition 5.2. If A is an associative finite-dimensional K-algebra, and E is a field,
then D

(n)
σ,τ (A, E) = P

(n)
τ,σ (HomK(A, E)).
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