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Abstract

The collection of convex subsets of a multipartite tournament T forms a lattice
C(T ). Given a lattice structure for C(T ), we deduce properties of T . In particular,
we find conditions under which we can detect clones in T (i.e. vertices with identical
arc orientations). We also determine conditions on the lattice which will imply that
T is bipartite, except for a few cases. We classify the ambiguous cases. Finally, we
study a property of C(T ) we call the anti-bipartite condition. We prove a result on
directed cycles in multipartite tournaments satisfying the anti-bipartite condition,
and determine the minimum number of partitions in such multipartite tournaments.

1 Introduction

Let T = (V, E) be a digraph. In [Pfa71], J. Pfaltz defines a convex subset to be C ⊆ V
which satisfies the condition that whenever a, b ∈ C, then all vertices in any directed
path from a to b are contained in C. The collection C(T ) of the convex subsets of T
forms a lattice by inclusion, and he investigated some of the properties of this lattice. In
particular, he proved that C(T ) is complete, semimodular, and A-regular. He also made
inferences about T from the lattice theoretic properties of C(T ).

In [Var76], J. Varlet looked at similar problems in the case where T is a tournament.
He used a less restrictive definition of convexity; if a, b ∈ C, then only directed 2-paths
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had to be contained in C. With this definition, he showed that C(T ) is weakly A-normal,
which implies that C(T ) is weakly distributive. He also showed that C(T ) has breadth 2,
a result that has been important in creating algorithms to construct convex subsets of a
given tournament. In [HW96], D. Haglin and M. Wolf used the fact that tournaments
have breadth 2 to construct an algorithm that runs in O(n4) serial time. They improved
this to O(n3) in [HW99].

In [PWW], the notion of the breadth of C(T ) was studied in the case of T a multi-
partite tournament. Using Varlet’s definition of convexity, they found upper bounds for
the breadth of multipartite tournaments and upper bounds for the breadth of clone-free
multipartite tournaments. They also classified all clone-free multipartite tournaments of
maximum breadth.

Many of the results above were motivated by similar problems: how do the graph-
theoretic properties of T reflect upon the lattice theoretic properties of C(T )? In this
paper, we consider the inverse problem. Given knowledge about the lattice structure of
C(T ), we seek to deduce properties of T . We approach this problem in the case where T
is a multipartite tournament, using Varlet’s definition of convexity.

As pointed out by Varlet, while each T gives rise to a unique C(T ), it is often true that a
given lattice can be the convex subset lattice of more than one multipartite tournament.
For instance, if T ∗ is the multipartite tournament obtained from T by reversing the
orientation of all of its arcs, then C(T ) = C(T ∗), but only rarely is it true that T ∼= T ∗

(see [Var76, p. 581]). As we shall see in Theorem 3.3, it is possible for two multipartite
tournaments to have identical convex subset lattices, yet not even have the same number
of partitions. Thus, these inverse problems offer a great deal of mathematical richness.

In section 2, we consider the question of determining clones (i.e. vertices with identical
arc orientations) from the lattice. We are able to derive conditions on C(T ) which enable
us to determine whether two vertices are clones, or at the very least detect the presence
of clones.

In section 3, we study the problem of determining, given C(T ), whether or not T is
bipartite. We find a condition which is satisfied by all bipartite tournaments. In addition,
this condition implies a multipartite tournament is bipartite in all but a very few cases.
We classify the ambiguous cases.

In section 4, we study multipartite tournaments satisfying what we call the anti-
bipartite condition. We prove a result concerning directed cycles in these multipartite
tournaments. We also determine the minimum number of partitions in clone-free multi-
partite tournaments satisfying the anti-bipartite condition.

Recall that a multipartite tournament is a complete multipartite graph whose edges
have been directed. As an abuse of notation, we use T to denote both the tournament
and its vertex set. We denote an arc (v, w) as v → w and say that v dominates w. If
A,B ⊆ T , then A → B means that for each a ∈ A, b ∈ B we have a → b. Two vertices
v, w ∈ T are called clones if, for each u ∈ T , we have v → u if and only if w → u and we
have u → v if and only if u → w. Note that this implies that v and w are in the same
partition. A multipartite tournament without clones is said to be clone-free. A vertex w
is said to distinguish u and v if either u → w → v or v → w → u. Thus, vertices u and v
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are clones if and only if they are in the same partition and no vertices distinguish them.
As noted before, T ∗ is the multipartite tournament which is identical to T except that
v → w in T ∗ if and only if w → v in T . We call it the dual of T .

Let C1, C2 ∈ C(T ). It is easy to show that C1 ∩ C2 ∈ C(T ), and so we may express
the infimum and supremum of C1 and C2 as C1 ∧ C2 = C1 ∩ C2 and C1 ∨ C2 = ∩{C ∈
C(T ) : C1, C2 ⊆ C}. Also note that all singleton sets of vertices are convex, so we may
identify the vertices of T from the atoms of C(T ) (i.e. the convex subsets C such that if
A is convex, and C ′ ≤ C, then either C ′ = C or C ′ = ∅).

There is a natural algorithm for forming the convex hull of a given subset U ⊆ T .
Begin by looking at all 2-paths between vertices in U . Then we repeat this process
recursively until no new vertices can be obtained with 2-paths. This process is formalized
in the following.

Definition 1.1. [HW96] Let U ⊆ T , and define CU(k) inductively by

CU(0) = U, CU(k) = CU(k − 1) ∪M(CU(k − 1)), k ≥ 1

where M(X) = {w ∈ T : x → w → y for some x, y ∈ X}, for any X ⊆ T .

Then CU(k) ⊆ CU(k + 1) for all k, and the convex hull of U is CU(∞) = ∪∞k=0CU(k).

2 Identifying Clones from C(T )

Given the lattice of convex subsets for a multipartite tournament T , we would like to find
a way of identifying the clones of T . This is not possible in general, as illustrated by the
multipartite tournaments in Figure 1.

bb

cc d

a a

d

Figure 1:

The convex subsets are identical in each one, but only the second one has a pair of
clones (namely, a and b). In some cases however, something can be said.

If S ⊆ T is a set of clones, then it is clear that any subset of S is a convex subset.
The following gives us a partial converse of this.

Lemma 2.1. Let S ⊆ T . If every subset of S is convex, then

1. S intersects at most two partitions of T nontrivially.

2. No two vertices in S can be distinguished by another vertex.
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Proof. For (1), let u, v, w ∈ S be in different partitions. Then there is a 2-path among u,
v, and w, say u → v → w. Then v ∈ u ∨ w, and so {u,w} /∈ C(T ), a contradiction.

For (2), any vertex distinguishing two vertices u, v ∈ S will form a 2-path, and will
thus be in any convex subset containing u and v. This is a contradiction.

In particular, Lemma 2.1(2) implies any two vertices which form a doubleton convex
subset are either clones, or they have an arc between them and identical arc orientations
otherwise.

Lemma 2.2. Suppose that u, v ∈ T are clones. Then, for all a ∈ T − {u, v}, we have
(u ∨ a)− {u, v} = (v ∨ a)− {u, v}. The converse is not true.

Proof. Let U = {u, a}, V = {v, a}. It suffices to show that CU(k)−{u, v} = CV (k)−{u, v}
for all k. We induct on k. The case k = 0 is obvious. We assume CU(k) − {u, v} =
CV (k) − {u, v}, and prove the result for k + 1. Let x ∈ CU(k + 1) − {u, v}. Then there
exists r, s ∈ CU(k) with r → x → s. We can not have both of r, s equal to u, v, since u
and v are clones. If either r or s is v, then x ∈ CV (k + 1) by induction and the fact that
v ∈ CV (k). If r = u, then we have u → x → s. Since u and v are clones, we then have
v → x → s, and again x ∈ CV (k + 1). The result is similar if u = s. Finally, if neither r
nor s is equal to u or v, then the result follows from induction.

The converse not being true follows from the example u → v → a ← u.

The above lemma suggests that we might want to consider when u ∈ v∨a and v ∈ u∨a
for a ∈ T − {u, v}.
Lemma 2.3. If u and v are clones and a ∈ T − {u, v}, then u ∈ v ∨ a if and only if
v ∈ u ∨ a.

Proof. Suppose that u ∈ v ∨ a. We have, by Lemma 2.2, that (v ∨ a)− {v} ⊆ u ∨ a. Let
k be minimal with u ∈ CV (k), where V = {v, a}. Then there exist x, y ∈ CV (k − 1) with
x → u → y. Since u and v are clones, we have v /∈ {x, y}. Thus, x, y ∈ (v∨a)−{v} ⊆ u∨a.
Again using the fact that u and v are clones, we have x → v → y, and so v ∈ u ∨ a. The
other part of the if and only if follows by symmetry.

Thus, given a vertex a /∈ {u, v}, we will want to consider whether or not u is in v ∨ a.
The following theorem details what happens in the case u /∈ v ∨ a.

Theorem 2.4. If {v, w} ∈ C(T ) and if there exists a ∈ T − {u, v} such that u /∈ v ∨ a,
then the following hold:

1. If v ∈ u ∨ a, then u and v are not clones.

2. If v /∈ u ∨ a, and if either {u, a} /∈ C(T ) and {v, a} ∈ C(T ) or {u, a} ∈ C(T ) and
{v, a} /∈ C(T ), then u and v are not clones.

3. If v /∈ u ∨ a, {u, a} /∈ C(T ) and {v, a} /∈ C(T ), then u and v are clones.
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4. If v /∈ u ∨ a, {u, a} ∈ C(T ) and {v, a} ∈ C(T ), then there are clones among u, v
and a.

Proof. (1) follows directly from Lemma 2.3.
For (2) suppose without loss of generality that {u, a} /∈ C(T ) and {v, a} ∈ C(T ). Then

there exists w ∈ T such that, without loss of generality, u → w → a (or w ∈ u ∨ a). If
u and v are clones, then it must be the case that v → w because u → w. But, then we
would have v → w → a which contradicts the assumption that {v, a} ∈ C(T ). Thus, u
and v are not in the same partition and therefore are not clones.

For (3) in order to show that u and v are clones, suppose, without loss of generality,
that u → v. Then u and v are in distinct partitions, say P1 and P2 respectively. Without
loss of generality a ∈ P1 or in a partition P3 distinct from P1 and P2. First, suppose
a ∈ P1. Since v /∈ u ∨ a we have that a → v and since {v, a} /∈ C(T ), there exists w ∈ P3,
a third partition, such that a → w → v or v → w → a. In the first case, a → w → v,
so w ∈ v ∨ a. But w → u → v, since w → v and {u, v} ∈ C(T ), and w is in a different
partition than u. Therefore u ∈ v ∨ a, which is a contradiction. In the second case we
have u → w → a, since v → w, {u, v} is convex, and w is in a different partition than u.
Thus w ∈ u∨ a. But a → v → w, so that v ∈ u∨ a, which is again a contradiction. Thus
a /∈ P1. In the case that a ∈ P3, we see that again, a → v. Now, if u → a then u → a → v
contradicts {u, v} ∈ C(T ), and if a → u, then a → u → v contradicts u /∈ v∨ a. Thus u, v
are in the same partition and {u, v} ∈ C(T ), so u and v are clones.

For (4) suppose that u, v, and a are in distinct partitions. Then there must be a
two-path between them, say u → v → a. Then {u, a} /∈ C(T ) which contradicts the
assumption. Thus, at least two are in the same partition. Say, u and v are in the same
partition. Since {u, v} ∈ C(T ) and u and v are in the same partition, u and v are
clones.

As an immediate consequence of Theorem 2.4 (4), we have

Corollary 2.5. If there exists S ⊆ T with |S| ≥ 3 and every subset of S is contained in
C(T ), then T is not clone-free.

3 The Bipartite Condition

In this section, we consider the problem of determining the number of partitions in a
multipartite tournament from its lattice of convex subsets. This is not always possible.
Consider the tripartite tournament x → y → z ← x and the bipartite tournament
x → y → z. Each of these has the same lattice of convex subsets, and thus there is no
lattice theoretic condition on the convex subsets that can uniquely determine the number
of partitions of a multipartite tournament.

More specifically, we explore the problem of determining whether a multipartite tour-
nament is bipartite. As demonstrated above, we will not be able to determine this in
every case. However, we will solve this problem in most cases, and show, in detail, what
happens in the ambiguous cases.
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We begin by considering necessary and sufficient conditions for a tournament to be
bipartite. The following is clear.

Lemma 3.1. If T is a bipartite tournament with partitions P1 and P2, then {x, y} ∈ C(T )
for all x ∈ P1 and y ∈ P2.

We use this lemma as the basis for defining a lattice theoretic condition which is
almost sufficient to imply that a tournament is bipartite. One can think of the partitions
as nonempty disjoint sets whose union is the entire vertex set for the tournament.

Definition 3.2. Let T be a multipartite tournament. We say T satisfies the bipartite
condition if there exist A, B ⊆ T such that A ∪ B = T and {x, y} ∈ C(T ) for any choice
of x ∈ A, y ∈ B.

Note that the two examples at the beginning of this section satisfy the bipartite
condition, with A = {x, z} and B = {y}. We can also have A = {x} and B = {y, z}.
Thus, A and B are not necessarily unique, and are not necessarily the partitions of the
multipartite tournament, even when it is bipartite.

While the bipartite condition cannot always tell us whether a multipartite tournament
is bipartite, the following theorem says that it always implies that a multipartite tourna-
ment is bipartite unless it is impossible to determine the number of partitions from the
lattice of convex subsets.

Theorem 3.3. Let T be a multipartite tournament satisfying the bipartite condition.
Then

1. T has at most three partitions.

2. If T is tripartite, then T must be of the form P1 → P2 → P3 ← P1, where the Pi

are the partitions of T .

3. Suppose there exist nonempty sets X, Y, Z ∈ T such that A = X ∪Z, B = Y are as
in the definition of the bipartite condition. If, in addition, we have x∨z = {x, z}∪Y
for all x ∈ X, z ∈ Z, then T must be one of X → Y → Z, X → Y → Z ← X and
their duals. If there exist no such sets, then T is bipartite.

Before proving this theorem, we will need four lemmas. For each of these lemmas,
we will assume that the multipartite tournament T has at least three partitions. Let the
partitions be given by P1, P2, P3, . . . , and suppose that the sets A and B are as in the
definition of the bipartite condition. Note that this implies either that two vertices in
A are in distinct partitions or that two vertices in B are in distinct partitions. Without
loss of generality, suppose that there exist x1, x2 ∈ A with x1 → x2. For convenience, let
x1 ∈ P1 and x2 ∈ P2. We begin with the following lemma.

Lemma 3.4. All vertices of B are in the same partition of T .
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Proof. Suppose not. Then there exist y1, y2 ∈ B with y1 → y2. If x1 → y1, then
y1 ∈ x1 ∨ y2, a contradiction. Similarly, we cannot have y1 → x1, so y1 ∈ P1. An almost
identical argument gives us that y2 ∈ P2. Similar reasoning gives us x1 → y2 and y1 → x2.

Since T is at least tripartite, let z be a vertex in a third partition. If z ∈ A, then
{z, y2} ∈ C(T ), so we must have {x1, y1} → z. Since {y1, z} ∈ C(T ), we must have
z → y2 and z → x2. But now y1 → z → x2, so z ∈ y1 ∨ x2, a contradiction. A similar
contradiction occurs if z ∈ B. This proves the lemma.

The next lemma helps make it easier to determine the arcs involving the vertices in
the partition containing B.

Lemma 3.5. Let P be a partition of T with B ⊆ P , B 6= P , and let P ′ be any other
partition. If z ∈ P ′, then P → z or z → P .

Proof. Suppose that x ∈ P with x → z. Since B ⊆ P , we have z ∈ A. In the case of
x ∈ A, let y ∈ B. If z → y, then z ∈ x ∨ y, which violates the bipartite condition, and
so B → z. If u ∈ A ∩ P with z → u, then B → z → u, which also violates the bipartite
condition. Thus, P → z. A similar argument gives us z → P when z → x. The argument
is almost identical in the case x ∈ B; merely reverse the roles of A and B.

We have three possibilities. Either B ⊆ P1, B ⊆ P2, or B is in a third partition. We
look at the first two cases with the following lemma.

Lemma 3.6.

1. If B ⊆ P1, and if Pi is another partition of T (i ≥ 3), then Pi → P1 → P2 ← Pi.

2. If B ⊆ P2, and if Pi is another partition of T (i ≥ 3), then P1 → P2 → Pi ← P1.

Proof. Since x1 → x2, we have P1 → x2 by Lemma 3.5. If x2 → x ∈ Pi, then B → x2 → x,
violating the bipartite condition. Thus, Pi → x2. A similar argument gives Pi → B, and
so Pi → P1 by Lemma 3.5. It follows that Pi → P2, for otherwise x′ → x → B for some
x′ ∈ P2, x ∈ Pi, a contradiction. Similarly, B → P2, and so P1 → P2 by Lemma 3.5. This
completes (1).

Part (2) follows directly from applying (1) to T ∗, and so the lemma is proven.

We now take a look at the case of B in a partition other than P1 and P2.

Lemma 3.7. Suppose that B ⊆ Pi, where Pi is a partition of T which is not P1 or P2.
Then P1 → Pi → P2 ← P1.

Proof. Recall our global assumption that x1, x2 ∈ A with x1 → x2, and x1 ∈ P1 and
x2 ∈ P2.

In the case B 6= Pi, let x ∈ Pi ∩ A. If x → x2, then the lemma follows from
Lemma 3.6(1) by letting x play the role of x1 and interchanging the roles of Pi and
P1. Similarly, if x2 → x, then the lemma follows from Lemma 3.6(2).

Now we consider the case of B = Pi. If y ∈ B with y → x1, then we have y → x1 → x2,
which violates the bipartite condition. Thus, x1 → B. Similarly, B → x2. If there is some
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x ∈ P2 with x → x1, then x → x1 → B, which violates the bipartite condition. Thus,
x1 → P2, and, similarly, P1 → x2. It is then easy to show that P1 → B → P2. It then
quickly follows that P1 → P2, and the lemma is proven.

Now we are ready to prove the main theorem.

Proof. (of Theorem 3.3)
By Lemmas 3.4, 3.6, and 3.7, to prove (1) and (2), we need only show that T is at

most tripartite. Suppose that T has partitions Pi for i = 1, . . . , 4, where B is contained in
either P1, P2, or P3, x1 ∈ A∩P1, x2 ∈ A∩P2 with x1 → x2. Then we must have P4 ⊆ A.

In the case of B ⊆ P1, we must have, by Lemma 3.6(1), P3 → P1 ∪ P2 ← P4. Let
x ∈ P3, y ∈ P4. If x → y, then we have x → y → B, a contradiction of the bipartite
condition. If y → x, then y → x → B, another contradiction. The case of B ⊆ P2 follows
similarly from Lemma 3.6(2). Thus, T is at most tripartite in these cases.

In the case of B ⊆ P3, let x ∈ P1, y ∈ P2, and z ∈ P4. By Lemma 3.7, we must have
P1 → P3 → P2 ← P1. We cannot have B → y → z. Thus, z → y. Also, for u ∈ B we can
not have u → z → y so z → B. Now we get x → z → B or z → x → B, which are both
contradictions of the bipartite condition. Thus T is at most tripartite, and (2) is proven.

For (3), let x ∈ X and z ∈ Z. Since Y ⊆ x∨ z, there exists, without loss of generality,
y ∈ Y with x → y → z.

We first show that the vertices of X are in the same partition. Suppose there is some
x′ ∈ X in a partition different from x. If x′ → x, then x′ → x → y, which violates the
bipartite condition. Suppose that x → x′. Since Y ⊆ x′ ∨ z, there exists y′ ∈ Y such that
either x′ → y′ → z or z → y′ → x′. If x′ → y′, then x → x′ → y′, which violates the
bipartite condition. Thus, we must have z → y′ → x′. Now observe that we cannot have
z → x, for then z → x → y. If x → z, then x → z → y′, which also violates the bipartite
condition. Thus, x and z are in the same partition. Similarly, x′ and z are in the same
partition, which implies that x and x′ are in the same partition, a contradiction. Thus,
all the vertices of X are in the same partition. Similarly, all the vertices of Z are in the
same partition.

We now show that all vertices in Y are in the same partition. Suppose that there is
some y′ ∈ Y in a partition different from y. If y → y′, then x → y → y′, which violates
the bipartite condition. If y′ → y, then y′ → y → z, which also violates the bipartite
condition. Thus, all vertices in Y are in the same partition. Note that since x → y → z,
all vertices in Y must be in a partition different from those of X and Z. Therefore Y is
one of the partitions of T .

Now we show that X → Y . Suppose that there exist x′ ∈ X, y′ ∈ Y such that y′ → x′.
Note that we must have y → x′. Otherwise, y′ → x′ → y, and since Y ⊆ x∨ z, this would
imply that x′ ∈ x ∨ z, a contradiction. But we have y ∈ x′ ∨ z. Since the only 2-path
through y must come from vertices in X ∪ Z, and since (x′ ∨ z) ∩ (X ∪ Z) = {x′, z}, it
must be true that y distinguishes x′ and z. But we have just shown that x′ ← y → z,
which contradicts this. Thus, X → Y . Similarly, Y → Z.

If T is tripartite, we must have that each of X and Z are partitions of T . To avoid
violating the bipartite condition, we must have X → Z. Thus, T is either X → Y → Z
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or X → Y → Z ← X. If we started with z → y → x, then we would end up with the
duals of these.

If there do not exist sets X, Y, Z ∈ T such that A = X ∪ Z, B = Y satisfy the
hypotheses of the theorem and such that x∨ z = {x, z}∪Y for all x ∈ X, z ∈ Z, then we
specifically avoid the conditions which lead us to the tripartite tournament in (2). Thus
T must be bipartite.

4 The Anti-Bipartite Condition

We now look at the opposite situation to the above.

Definition 4.1. Let T be a multipartite tournament. We say T satisfies the anti-
bipartite condition if there exist disjoint subsets A and B of T with A ∪ B = T such
that {x, y} /∈ C(T ) for any choice of x ∈ A, y ∈ B. We call the collection of such
multipartite tournaments A(m,n), where m = |A| and n = |B|.

Note that A(m,n) = A(n,m), as we can always relabel the sets A and B. Also, a
tournament satisfying the anti-bipartite condition must have |T | ≥ 3.

Example 4.2. Let T ∈ A(1, 2) with A = {x} and B = {y1, y2}. We know that {x, y1} 6∈
C(T ), so y2 ∈ x ∨ y1. Without loss of generality, x → y2 → y1. Similarly, y1 ∈ x ∨ y2.
Since y2 → y1, this forces y1 → x, and so A(1, 2) consists of the 3-cycle.

Example 4.3. Consider T ∈ A(2, 2) with A = {x1, x2} and B = {y1, y2}. We claim
that there is a 3-cycle in T . Since {x1, y1} 6∈ C(T ) , then, without loss of generality,
x1 → x2 → y1. In order to avoid a 3-cycle among x1, x2, and y1, and to make sure
{x2, y1} 6∈ C(T ), we must have x2 → y2 → y1 or y1 → y2 → x2. The latter would create a
3-cycle among x2, y1, and y2, so x2 → y2 → y1. But now {x2, y2} 6∈ C(T ) forces y2 → x1,
giving us the 3-cycle x1 → x2 → y2 → x1.

Let us then suppose that x1 → x2 → y1 → x1. In order for {x2, y2} 6∈ C(T ), we must
either have y2 → x1 or y1 → y2. In order for {x1, y2} 6∈ C(T ), we have two cases. In the
case y2 → x1, we must have either y2 → y1 or x2 → y2. In either case, we get tripartite
tournaments (call them T1 and T2, respectively). In the case y1 → y2, we are forced to
have x2 ∈ x1 ∨ y2, and so x2 → y2. This tripartite tournament is isomorphic to T ∗

2 . Note
that T1 is self-dual. It follows that A(2, 2) = {T : T a multipartite tournament, |T | = 4,
and T has T1, T2 or T ∗

2 as a subdigraph}.
One might ask whether a multipartite tournament T satisfying the anti-bipartite con-

dition can be bipartite. The answer is no, as the following lemma shows.

Lemma 4.4. Suppose T is a multipartite tournament satisfying the anti-bipartite condi-
tion. Then T is not bipartite.

Proof. Let x1 ∈ A, y1 ∈ B. Since {x1, y1} 6∈ C(T ), there exists a 2-path between x1 and
y1 through a vertex x2. Without loss of generality, x2 ∈ A. But {x2, y1} 6∈ C(T ), so
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there must be a 2-path between x2 and y1. If the 2-path is through x1, then there exists
a 3-cycle, and hence T has at least 3 partitions. If the 2-path between x2 and y1 goes
through a fourth vertex z, then T is at least tripartite (as x2, y and z are in different
partitions).

Next, we consider the partitions of the multipartite tournaments in A(m,n). One
might expect these to have many partitions. It turns out, however, that for any choice
of m and n, there always exists a T ∈ A(m,n) that is tripartite. Consider the following
generalization of Example 4.2:

Let T = A∪B be a multipartite tournament, where A = A1 ∪A2 and |A| = m, |B| =
n. Let A1 → A2 → B → A1. Then T is tripartite and satisfies the anti-bipartite
condition. Thus A(m,n) contains a tripartite tournament regardless of the values of m
and n. However, note that in this example, all elements of A1 are clones, as are the
elements of A2 and of B. That means that a tournament T constructed in this fashion
will have clones whenever |T | ≥ 4.

One may then ask: What is the minimum number of partitions a clone-free multipar-
tite tournament T ∈ A(m,n) must have?

Theorem 4.5. For all m,n with m + n > 2, there exists a tournament T ∈ A(m,n) that
is clone-free and tripartite.

Proof. From Examples 4.2 and 4.3, we already know that the theorem holds for A(1, 2)
and A(2, 2), so we will assume that max(m,n) > 2.

First, suppose m ≥ 3, n = 1. Let A = {x1, . . . , xm}, B = {y1}. Define T as follows:
If m is even, let A → y1, xm → x1. In addition, let xi → xj whenever i < j, i + j is

odd and (i, j) 6= (1,m).
If m is odd, let A−{x1} → y1, y1 → x1, xm → x2, xi → xj for all i < j for which i + j

is odd and (i, j) 6= (2,m).
It is easily verified that T is tripartite with the following partitions:

P1 = {x2k+1 | 0 ≤ k ≤ dm
2
e − 1}, P2 = {x2k | 1 ≤ k ≤ bm

2
c}, P3 = {y1}

Next, we will show T ∈ A(m, 1).
If m is even, we have xi → xi+1 → y1 for 1 ≤ i ≤ m− 1. In addition, xm → x1 → y1,

so xi ∨ y1 is nontrivial for all i.
If m is odd, then xi → xi+1 → y1 for 1 ≤ i ≤ m − 1. In addition, xm → x2 → y1, so

xi ∨ y1 is nontrivial for all i. Therefore T satisfies the anti-bipartite condition and is thus
an element of A(m, 1).

Finally, we need to show that T is clone-free. Note that if xi, xj are in different
partitions, they are not clones. So assume xi, xj are in the same partition.

If i < j, we have xi → xi+1 → xj unless i = 1, j = m and m is odd. In that case,
xm → y1 → x1. Thus there are no clones.

Next, suppose m ≥ 3, n = 2. Let A = {x1, . . . , xm}, B = {y1, y2}. Define T as follows:
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If m is even, let A → y1, xm → x1 and y2 → A. In addition, let xi → xj whenever
i < j < m and i + j is odd.

If m is odd, let A−{x1} → y1, y1 → x1, xm → x2, xi → xj for all i < j for which i + j
is odd and (i, j) 6= (2,m). Further, let A− {x1, x3} → y2 and y2 → x1, y2 → x3.

It is easily verified that T is tripartite with the following partitions:

P1 = {x2k+1 | 0 ≤ k ≤ dm
2
e − 1}, P2 = {x2k | 1 ≤ k ≤ bm

2
c}, P3 = {y1, y2}

We need show that T ∈ A(2,m). We know that {xi, y1} 6∈ C(T ), as the arcs between
xi and y1 are identical to those in the case where n = 1. Thus we need only show that
{xi, y2} 6∈ C(T ) for all i.

If m is even, y2 → xi → xi+1 for i < m, and y2 → xm → x1.
If m is odd, then xi → xi+1 → y2 for i < m and i 6= 2. Finally, xm → x2 → y2 and

y2 → x1 → x2.
Thus xi ∨ y2 is nontrivial for all i.
The proof that there are no clones among the elements of A is the same as in the case

when n = 1. In addition, we have y2 → x3 → y1 (whether m is even or odd), so T is
clone-free.

Finally, suppose m,n > 2. Let A = X1 ∪X2 ∪ {x} and B = Y1 ∪ Y2 ∪ {y} with |A| =
m, |B| = n such that |X1| and |X2| differ by at most one, and |Y1|, |Y2| differ by at most
one. Suppose without loss of generality that X1 = {a1, . . . , ar} and X2 = {b1, . . . , bs},
and Y1 = {c1, . . . , ck}, Y2 = {d1, . . . , d`}.

Define T as follows: y → X1 → Y1 → y → X2, x → X1 ∪ X2 ∪ Y1 ∪ Y2, and
X2 → Y2 → y. Further, ai → bi ∀i, and bi → aj whenever i 6= j. Similarly, let ci → di ∀i,
and di → cj whenever i 6= j.

Then T is tripartite, with partitions

P1 = X1 ∪ Y2, P2 = X2 ∪ Y1, P3 = {x} ∪ {y},
and it is straightforward to show that T is clone-free.

Lastly, we show that T satisfies the anti-bipartite condition. We need to show that,
given xi ∈ Xi, yj ∈ Yj that each of xi∨xj, x∨yj, and xi∨y are nontrivial, or, equivalently,
that the vertices in each of the above suprema have a 2-path between them. This is easily
checked.

In light of Example 4.3 one may ask whether T must always have a 3-cycle. If not,
then what can we say about the cycles of T?

To answer the first question: a 3-cycle is not required. Consider the tripartite tourna-
ment in A(1, 4) given by x1 → yi for all i and y1 → y2 → y3 → y4 → y1. Here, A = {x1}
and B = {y1, y2, y3, y4}. However, notice that T does have a 4-cycle, and that all vertices
in the 4-cycle are in B.

Theorem 4.6. Suppose that T satisfies the anti-bipartite condition, and that |T | ≥ 3. If
there is no 3-cycle containing vertices from both A and B, then there exists a cycle which
either contains only vertices from A or only vertices from B.
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Note that the length of the cycle in Theorem 4.6 is at most max{m,n}.
Proof. Suppose that there are no 3-cycles containing vertices from both A and B. By
Examples 4.2 and 4.3, we can assume that at least one of m and n is at least 3.

We index the elements of A and B as follows. Arbitrarily choose elements x11 ∈ A,
y1 ∈ B. Since {x11, y1} /∈ C(T ), there must be either some x12 ∈ A or some y2 ∈ B with
x11 → x12 → y1, y1 → x12 → x11, or similarly with y2 in place of x12. Without loss of
generality, either x11 → x12 → y1 or x11 → y2 → y1.

Let x11, . . . , x1j1 be the longest sequence of elements in A such that x1j → x1(j+1) for
all 1 ≤ j ≤ j1 − 1 and x1j → y1 for all 1 ≤ j ≤ j1. Now {x1j1 , y1} /∈ C(T ). If x ∈ A,
we cannot have x1j1 → x → y1 because this would give us a longer sequence. If v is
any vertex, we cannot have y1 → v → x1j1 , because this would give us a 3-cycle between
y1, v, and x1j1 . We must then have some y2 ∈ B with x1j1 → y2 → y1. Note that, by
convention, this will still occur if j1 = 1.

We repeat this process with x21 = x1j1 . We find the longest sequence x21, . . . , x2j2

with x2j → x2(j+1) and x2j → y2. Note that if x2j = x1k then we have the cycle x1k →
· · · → x1j1 = x21 → · · · → x2j = x1k, which has length at most |A|. If this occurs, we are
done. If not, label x2j2 = x31 and repeat the process.

Assuming that a cycle amongst either vertices in A or vertices in B has not been
constructed, we can continue this process, with xij ∈ A, yi ∈ B, where xij → xi(j+1) and
xij → yi. We have a directed path between xij and xkl whenever either i < k or i = k and
j < l, unless xij = xkl (this would happen, for example, if j = ji, k = i + 1, and l = 1).
Also, there is a path between yi and yj whenever j < i.

Since A and B are both finite, this process cannot continue indefinitely. So there is
a point where we get to the last xiji

. At this point, we note that {xiji
, yi} /∈ C(T ). We

cannot have yi → v → xiji
for any vertex v, for this would create a forbidden 3-cycle.

Thus, we must either have xiji
→ xkl → yi for either k < i or k = i and k < ji or

xiji
→ yk → yi for some k < i. In the first case, we get a cycle amongst elements of

A, and in the second case we get a cycle amongst elements of B. This completes the
proof.

5 Open Questions

We end with some questions for further inquiry.

1. Is it generally possible to determine the partitions of T from the lattice C(T )? We
have settled when bipartite tournaments can be determined from C(T ). Can some-
thing like this be done for p-partite tournaments for p ≥ 3? If we know how many
partitions T must have, can we determine what they are from C(T )? If not, can we
at least determine what the sizes of the partitions of T are?

2. Is it possible to determine whether or not u and v are clones if {u, v} is convex, and
if, for all vertices a /∈ {u, v} we have u ∈ v ∨ a and v ∈ u∨ a? This is the only case
not settled by Theorem 2.4, and it has the highest potential for ambiguity. The
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examples in Figure 1 tell us that in this case, we may not be able to tell if clones
exist, let alone determine what the clones are.

3. Given a lattice L, what can we say about the multipartite tournaments T such that
L ∼= C(T )? It would be nice to have a way of constructing all possible T with L as
their lattice of convex subsets. If not, could we at least have some sort of test as to
whether there are any multipartite tournaments T with L ∼= C(T )?
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