Two-Path Convexity in Clone-Free Regular Multipartite Tournaments

Darren B. Parker* Randy F. Westhoff ${ }^{\dagger}$ Marty J. Wolf ${ }^{\ddagger}$

MR Subject Classifications: 05C20, 52A37
Keywords: Convex sets, rank, Helly number, Radon number, bipartite tournament

Abstract

We present some results on two-path convexity in clone-free regular multipartite tournaments. After proving a structural result for regular multipartite tournaments with convexly independent sets of a given size, we determine tight upper bounds for their size (called the rank) in clone-free regular bipartite and tripartite tournaments. We use this to determine tight upper bounds for the Helly and Radon number in the bipartite case. We also derive an upper bound for the rank of a general clone-free regular multipartite tournament.

1 Introduction

Convexity has been studied in many contexts. These contexts have been generalized to the concept of a convexity space, which is a pair $\mathcal{C}=(V, C)$, where V is a set and C is a collection of subsets of V such that $\emptyset, V \in C$ and such that C is closed under arbitrary intersections and nested unions. The set C is called the set of convex subsets of C . Given a subset $S \subseteq V$, the convex hull of S, denoted $C(S)$, is defined to be the smallest convex subset containing S.

In the case of graphs and digraphs, V is usually taken to be the vertex set and C to be a collection of vertex subsets that are determined by paths within the graph. For a (directed) graph $T=(V, E)$ and a set \mathcal{P} of (directed) paths in T, a subset $A \subseteq V$ is called \mathcal{P}-convex if, whenever $v, w \in A$, any (directed) path in \mathcal{P} that originates at v and ends at w can involve only vertices in A. We denote the collection of convex subsets of T by $\mathcal{C}(T)$.

[^0]In the case \mathcal{P} is the set of geodesics in T, we get geodesic convexity, which was introduced in undirected graphs by F. Harary and J. Nieminen in [HN81]. Geodesic convexity was also studied in [CFZ02] and [CCZ01]. When \mathcal{P} is the set of all chordless paths, we get induced path convexity (see [Duc88]). Other types of convexity include path convexity (see [Pfa71] and [Nie81]), two-path convexity (see [Var76], [EFHM72], [EHM72], and [Moo72]) and triangle path convexity (see [CM99]).

All work in tournaments has been in two-path convexity, where \mathcal{P} is the set of all 2paths. This is natural, as J. Varlet noted in [Var76], since if all directed paths are allowed, then the only convex subsets of strong tournaments are V and \emptyset. Indeed, this is true even when all paths of length three or less are allowed. Our interest is in two-path convexity in multipartite tournaments, and henceforth all references to convexity will be two-path convexity.

A convexly independent set is a set $F \subseteq V$ such that $x \notin C(F-\{x\})$ for all $x \in F$. The $\operatorname{rank} d(T)$ is the maximum size of a convexly independent set. The rank is an upper bound for the Helly number $h(T)$, the Radon number $r(T)$, and Caratheodory number $c(T)$, which are the most important convex invariants in convexity theory (see [vdV93, Ch. 2]). In [PWWa], we proved that $h(T)=r(T)=d(T)$ when T is a clone-free bipartite tournament. These convexity invariants were also studied in [PWWb]

In [PWWb], it was shown that a convexly independent set can have a nonempty intersection with at most two partite sets. Thus, we say that vertex sets A and B form a convexly independent set if $A \cup B$ is convexly independent and A and B are subsets of distinct partite sets. If this is the case, we must have either $A \rightarrow B$ or $B \rightarrow A$.

In this paper, we look at convexity in clone-free regular multipartite tournaments. In Section 2, we consider the structure of clone-free regular multipartite tournaments. The main result of this section is Theorem 2.8, which describes the orientation of the arcs between vertices in convexly independent sets and their distinguishing vertices.

Our other results center around determining upper bounds for the rank of clone-free regular multipartite tournaments. We study the bipartite case in Section 3, obtaining the bounds given in Theorem 3.3. We prove that these bounds are tight in Theorem 4.4 and use this result to obtain tight upper bounds for the Helly and Radon numbers. We then derive tight bounds for rank in the tripartite case (Theorem 5.3) and obtain bounds for rank in the p-partite case with $p \geq 3$ (Theorem 5.4). The latter bound is not tight for $p=3$, and it is unknown whether it is tight for any $p \geq 4$.

Let $T=(V, E)$ be a digraph with V the vertex set and E the arc set. We denote an $\operatorname{arc}(v, w) \in E$ by $v \rightarrow w$ and say that v dominates w. If $U, W \subseteq V$, then we write $U \rightarrow W$ to indicate that every vertex in U dominates every vertex in W. We denote by T^{*} the digraph with the same vertex set as T, and where (v, w) is an arc of T^{*} if and only if (w, v) is an arc of T. Recall that T is a p-partite tournament if one can partition V into p partite sets such that every two vertices in different partite sets have precisely one arc between them and no arcs exist between vertices in the same partite set. If $p=2$, then T is a bipartite tournament. If $A, B \in \mathcal{C}(T)$, we define $A \vee B$ to be the convex hull of $A \cup B$. We write $v \vee w$ instead of $\{v\} \vee\{w\}$ for convenience when $v, w \in V$.

For each $v \in V$, the outset of v is $N^{+}(v)=\{w \in T: v \rightarrow w\}$ and the inset of v is
$N^{-}(v)=\{w \in T: w \rightarrow v\}$. T is regular if there is some integer r such that, for every $v \in T,\left|N^{+}(v)\right|=\left|N^{-}(v)\right|=r$. An immediate consequence of regularity in the case of multipartite tournaments is that each partite set must have the same number of vertices. Moreover, if there are an even number of partite sets, then each partite set must have an even number of vertices. This holds, in particular, for bipartite tournaments.

Two vertices u and v are said to be clones if $N^{+}(u)=N^{+}(v)$ and $N^{-}(u)=N^{-}(v)$. A vertex w is said to distinguish the vertices x and y if $x \rightarrow w \rightarrow y$ or $y \rightarrow w \rightarrow x$. Thus, two vertices are clones if and only if there is no arc between them and no vertex distinguishes them. In particular, in a multipartite tournament, any two vertices that are clones must be in the same partite set. A digraph is said to be clone-free if it has no clones.

To facilitate our study of the rank of bipartite tournaments, it will be helpful to study their adjacency matrices. In the case of a bipartite tournament, however, the adjacency matrix can be represented more compactly. Let $\left\{v_{1}, \cdots, v_{k}\right\}$ and $\left\{w_{1}, \cdots, w_{\ell}\right\}$ be the partite sets of T for T a bipartite tournament. For each i and j with $1 \leq i \leq k$ and $1 \leq j \leq \ell$, let $m_{i, j}=1$ if $v_{i} \rightarrow w_{j}$ and let $m_{i, j}=0$ otherwise. We will call $M=\left(m_{i, j}\right)$ the matrix of T, and we say that T is the bipartite tournament induced by M. If $S \subseteq V$ and N is the matrix of the bipartite tournament induced by S, we say that S induces N. Notice that v_{i} distinguishes w_{j} and w_{k} if and only if $m_{i, j} \neq m_{i, k}$ and w_{i} distinguishes v_{j} and v_{k} if and only if $m_{j, i} \neq m_{k, i}$. In addition, identical rows or columns of the matrix of T correspond to clones.

2 Convexly Independent Sets and Their Distinguishers

In clone-free multipartite tournaments, the vertices that distinguish vertices in convexly independent sets are very important. Let $C \subseteq V$. We define

$$
\begin{aligned}
& D_{C}=\{z \in V: z \rightarrow x \text { for some } x \in C, y \rightarrow z \text { for all } y \in C-\{x\}\} \\
& D_{C}^{\leftarrow}=\{z \in V: z \leftarrow x \text { for some } x \in C, z \rightarrow y \text { for all } y \in C-\{x\}\}
\end{aligned}
$$

In order to derive upper bounds for the rank of clone-free regular multipartite tournaments, we need to get a handle on the structure of such multipartite tournaments. We make extensive use of the following results, which also appear in [PWWb].

Theorem 2.1. Let T be a clone-free multipartite tournament. Let A and B form a convexly independent set, with $A \rightarrow B$ when both sets are nonempty.

1. If $A=\left\{x_{1}, \cdots, x_{m}\right\}, m \geq 2$, then one can order the vertices in A such that there exist $u_{2}, \cdots, u_{m} \in D_{A}^{\vec{~}}$ (resp., in D_{A}^{\leftarrow} if $D_{A}^{\vec{~}}=\emptyset$) such that $u_{i} \rightarrow x_{i}$ (resp., $x_{i} \rightarrow u_{i}$).
2. If $|A| \geq 3$, then $D_{A} \neq \emptyset$ if and only if $D_{A}^{\leftarrow}=\emptyset$, and D_{A} and D_{A}^{\leftarrow} each lie in at most one partite set.
3. Suppose $A, B \neq \emptyset$. If $|A| \geq 2$, then D_{A} is in the same partite set as B, and if $|B| \geq 2$, then D_{B}^{\leftarrow} is in the same partite set as A.
4. If $|A|,|B| \geq 2$, then $D_{B}^{\leftarrow} \rightarrow D_{A}$.
5. Any vertex that distinguishes vertices in A must be in either D_{A} or D_{A}^{\leftarrow} and any vertex that distinguishes vertices in B must be in D_{B}^{\leftarrow} or $D_{B}^{\vec{B}}$. If $A, B \neq \emptyset$, then any vertex that distinguishes vertices in A must be in D_{A} and any vertex that distinguishes vertices in B must be in D_{B}^{\leftarrow}.

Proof. We begin with (1). If $m=2$, let u_{2} be any vertex distinguishing x_{1} and x_{2}. By relabelling x_{1} and x_{2}, if necessary, we have $x_{1} \rightarrow u_{2} \rightarrow x_{2}$. If $m=3$, let u_{2} distinguish x_{1} and x_{2}. By relabelling and considering T^{*}, if necessary, we may assume $x_{1} \rightarrow u_{2} \rightarrow x_{2}$, and that $x_{3} \rightarrow u_{2}$. Since T is clone-free, there is some u_{3} that distinguishes x_{1} and x_{3}. By switching x_{1} and x_{3} if necessary, we may assume that $x_{1} \rightarrow u_{3} \rightarrow x_{3}$. It suffices to show that $x_{2} \rightarrow u_{3}$. If $u_{3} \rightarrow x_{2}$, then $x_{1} \rightarrow y_{2} \rightarrow x_{2}$ and $x_{1} \rightarrow u_{3} \rightarrow x_{2}$, so $u_{2}, u_{3} \in x_{1} \vee x_{2}$. But then $u_{3} \rightarrow x_{3} \rightarrow u_{2}$, so $x_{3} \in x_{1} \vee x_{2}$, a contradiction. Thus, $x_{2} \rightarrow y_{3}$.

Now assume the result for $r=m \geq 3$. For $r=m+1$, we know there exist y_{2}, \cdots, y_{m} such that $y_{i} \rightarrow x_{i}$ for all $2 \leq i \leq m$ and $x_{i} \rightarrow y_{j}$ for all $i \neq j$. It is easy to see that $x_{i} \vee x_{j}=y_{i} \vee y_{j}$ for all $2 \leq i \neq j \leq m$.

For the inductive step, we need to find $y_{m+1} \in D_{A}$ with $y_{m+1} \rightarrow x_{m+1}$. To this end, we first show that $x_{m+1} \rightarrow y_{i}$ for all $i \leq m$. Suppose that $y_{i} \rightarrow x_{m+1}$ for some $i \leq m$. In this case, we find that $y_{i} \rightarrow x_{m+1}$ for all $i \leq m$. For if there is some j for which $x_{m+1} \rightarrow y_{j}$, then $x_{m+1} \in y_{i} \vee y_{j}=x_{i} \vee x_{j}$, contradicting convex independence. Since $m \geq 3$, there exist $y_{i}, y_{j} \rightarrow x_{m+1}, i \neq j$. We have $x_{1} \rightarrow\left\{y_{i}, y_{j}\right\} \rightarrow x_{m}$, and so $x_{i} \vee x_{j}=y_{i} \vee y_{j} \subseteq x_{1} \vee x_{m}$, a contradiction. Thus, $x_{m+1} \rightarrow y_{i}$ for all $i \leq m$. Now we just take y_{m+1} to be a vertex distinguishing x_{1} and x_{m+1}. By switching x_{1} and x_{m+1}, if necessary, we can assume that $x_{1} \rightarrow y_{m+1} \rightarrow x_{m+1}$.

Finally, we have to show that $x_{i} \rightarrow y_{m+1}$ for all $2 \leq i \leq m$. If $y_{m+1} \rightarrow x_{i}$, then $x_{m+1} \in x_{1} \vee x_{i}$ by arguments similar to the $r=3$ case.

For the first part of (2), it follows from (1) that at least one of D_{A} and D_{A}^{\leftarrow} is nonempty. For contradiction, let $u \in D_{A}^{\vec{A}}, v \in D_{A}^{\leftarrow}$. Let $x_{1}, x_{2} \in A$ with $u \rightarrow x_{1}$ and $x_{2} \rightarrow v$. Then $A-\left\{x_{1}\right\} \rightarrow u$ and $v \rightarrow A-\left\{x_{2}\right\}$. We have the cases $x_{1}=x_{2}$ and $x_{1} \neq x_{2}$. In the case $x_{1}=x_{2}$, ignore the x_{2} and then let $x_{2}, x_{3} \in A-\left\{x_{1}\right\}$. In the case $x_{1} \neq x_{2}$, let $x_{3} \in A-\left\{x_{1}, x_{2}\right\}$. In either case, $u, v \in x_{1} \vee x_{2}$. Then $v \rightarrow x_{3} \rightarrow u$ implies $x_{3} \in x_{1} \vee x_{2}$, a contradiction.

For the second part of (2), suppose that $z_{1}, z_{2} \in D_{A}$ with $z_{1} \rightarrow z_{2}$. Then there exist $x_{1}, x_{2} \in A$ with $z_{1} \rightarrow x_{1}$ and $z_{2} \rightarrow x_{2}$. In the case $x_{1} \neq x_{2},|A| \geq 3$ implies that there exists some $x_{3} \in A$ distinct from x_{1} and x_{2}. By the definition of D_{A}, we have $x_{3} \rightarrow z_{2}$, so $x_{3} \rightarrow z_{2} \rightarrow x_{2}$, giving us $z_{2} \in x_{2} \vee x_{3}$. Similarly, we have $x_{3} \rightarrow z_{1} \rightarrow z_{2}$, and so $z_{1} \in x_{2} \vee x_{3}$. But $z_{1} \rightarrow x_{1} \rightarrow z_{2}$, so $x_{1} \in x_{2} \vee x_{3}$. This contradicts the convex independence of A. In the case of $x_{1}=x_{2}$, again ignore the x_{2} and let $x_{2}, x_{3} \in A-\left\{x_{1}\right\}$. By (1), there exists, without loss of generality, $u \in D_{A}$ with $u \rightarrow x_{2}$. Since z_{1} and z_{2} are in different partite sets, u must be in a partite set distinct from either z_{1} or z_{2}, contradicting the $x_{1} \neq x_{2}$ case.

For (3), suppose that $z \in D_{A}$ with z not in the same partite set as B. Clearly, z is also not in the same partite set as A. Since $|A| \geq 2$, there exist $x_{1}, x_{2} \in A$ such that $x_{1} \rightarrow z \rightarrow x_{2}$. Let $y \in B$. If $z \rightarrow y$, then $x_{1} \rightarrow z \rightarrow y$ and $z \rightarrow x_{2} \rightarrow y$ imply $x_{2} \in x_{1} \vee y$, which contradicts convex independence. If instead $y \rightarrow z$, we have $z \in x_{1} \vee x_{2}$, and so $x_{2} \rightarrow y \rightarrow z$ implies $y \in x_{1} \vee x_{2}$, which contradicts convex independence. This implies that z and y are incomparable and are thus in the same partite set. The argument for D_{B}^{\leftarrow} is similar.

For (4), suppose that we have $z_{1} \in D_{A}^{\rightarrow}, z_{2} \in D_{B}^{\leftarrow}$ with $z_{1} \rightarrow z_{2}$. Since $|A|,|B| \geq 2$, then there exist $x_{1}, x_{2} \in A, y_{1}, y_{2} \in B$ such that $x_{1} \rightarrow z_{1} \rightarrow x_{2}$ and $y_{1} \rightarrow z_{2} \rightarrow y_{2}$. It follows that $z_{2} \in y_{1} \vee y_{2}$. Then $x_{1} \rightarrow z_{1} \rightarrow z_{2}$ and $z_{1} \rightarrow x_{2} \rightarrow y_{1}$ imply $x_{2} \in y_{1} \vee y_{2} \vee x_{1}$, a contradiction.

For the first part of (5), suppose there exists a vertex u that distinguishes two vertices in A but is neither in D_{A}^{\leftarrow} nor $D_{A}^{\vec{A}}$. Then there exist $x_{1}, x_{2}, x_{3}, x_{4} \in A$ with $\left\{x_{1}, x_{2}\right\} \rightarrow$ $u \rightarrow\left\{x_{3}, x_{4}\right\}$. By (1), there exists, without loss of generality, $v \in D_{A}^{\rightarrow}$ with $v \rightarrow x_{3}$ (just choose v to be any vertex distinguishing x_{3} and x_{4} and consider T^{*} if necessary). We then have $x_{1} \rightarrow\{u, v\} \rightarrow x_{3}$ and $u \rightarrow x_{4} \rightarrow v$, and so $x_{4} \in x_{1} \vee x_{3}$, a contradiction.

For the second part of (5), let $y \in B$, and suppose $x_{1} \rightarrow u \rightarrow x_{2}$ for $x_{1}, x_{2} \in A$. If $u \rightarrow x_{3}$ for $x_{3} \in A$, then $x_{1} \rightarrow u \rightarrow x_{2}$ and $u \rightarrow x_{3} \rightarrow y$ imply that $x_{3} \in x_{1} \vee x_{2} \vee y$, a contradiction. Thus, $\left(A-\left\{x_{2}\right\}\right) \rightarrow u \rightarrow x_{2}$, and so $u \in D_{A}$.

For the rest of the section, let T be a clone-free regular p-partite tournament, $p \geq 2$, with partite sets P_{1}, \cdots, P_{p}, each of size k. Also, let $A \subseteq P_{1}$ and $B \subseteq P_{2}$ form a convexly independent set with $|A| \geq|B|$ and $|A| \geq 2$. Choose T or T^{*} (which does not affect $\mathcal{C}(T)$) so that $A \rightarrow B$ when $A, B \neq \emptyset$ and $D_{A} \neq \emptyset$ when $B=\emptyset$. We write $A=\left\{x_{1}, \cdots, x_{m}\right\}$, $B=\left\{y_{1}, \cdots, y_{n}\right\}$, and let $U=A \cup B$. We will primarily be interested in the bipartite tournament induced by $P_{1} \cup P_{2}$ and by the matrix M induced by $P_{1} \cup P_{2}$. We will always let P_{1} represent the columns of M and P_{2} represent the rows of M.

If we take the vertices u_{2}, \cdots, u_{m} in Theorem 2.1(1) and line them up in order along the rows of M, they form all but the first row of the identity matrix I_{m}. To balance the insets and outsets of x_{1} and x_{2}, there must be some vertex u_{1} with $x_{2} \rightarrow u_{1} \rightarrow x_{1}$. By Theorem 2.1(5), we have $u_{1} \in D_{A} \subseteq P_{2}$, and so $x_{i} \rightarrow u_{1}$ for all $i \neq 1$, which gives us a full identity submatrix in M. If there are any additional vertices in $D_{A}^{\vec{A}}$, then it is easy to see that regularity and Theorem 2.1(5) demand that they form (possibly several) full identity matrices as well. A similar phenomenon occurs with B and D_{B}^{\leftarrow} when $|B| \geq 2$. We get the following.
Lemma 2.2. If $|A| \geq 2$ (resp. $|B| \geq 2$), then the vertices in $A \cup D_{A}$ (resp. $B \cup D_{B}^{\leftarrow}$) can be ordered so as to form a vertical (resp. horizontal) sequence of identity matrices in M.

We thus define an identity block of D_{A} as a subset $S \subseteq D_{A}$ such that the matrix induced by $S \cup A$ is an identity matrix in M. An identity block of D_{B}^{\leftarrow} is defined similarly. We get the following as a corollary.
Corollary 2.3. If $|A| \geq 2$ (resp. $|B| \geq 2$), then D_{A} (resp. D_{B}^{\leftarrow}) is a disjoint union of identity blocks.

Identity blocks play an important role in the construction of the matrices of clone-free regular bipartite tournaments. In fact, our main result states that if $|U| \geq 4$ or $|A| \geq 3$, then the matrix M will have the form

$$
\left[\begin{array}{ccccc}
I_{d} & \cdots & I_{d} & 0 & 1 \tag{1}\\
\vdots & * & * & * & * \\
I_{d} & * & * & * & * \\
0 & * & * & * & * \\
1 & * & * & * & *
\end{array}\right]
$$

Here, $d=|U|, I_{d}$ is the $d \times d$ identity matrix, and the 0 's and 1 's are (possibly empty) blocks of 0's and 1's of appropriate sizes. The following lemma shows us how to form identity matrices in the case $B=\emptyset$.

Lemma 2.4. Let $S=\left\{u_{1}, \cdots, u_{m}\right\}$ be an identity block of D_{A} with $u_{i} \rightarrow x_{i}$. If $v \in P_{1}-A$ with $u_{i} \rightarrow v \rightarrow u_{j}$ for some $1 \leq i, j \leq m$, then $v \rightarrow u_{k}$ for all $k \neq i$.

Proof. Suppose there exists some $k \neq i, j$ with $u_{k} \rightarrow v$. Clearly, $u_{i}, u_{j} \in x_{i} \vee x_{j}$. Since $u_{i} \rightarrow v \rightarrow u_{j}$ and $x_{j} \rightarrow u_{k} \rightarrow v$, we get $u_{k} \in x_{i} \vee x_{j}$. But $x_{k} \in u_{j} \vee u_{k}$, and so $x_{k} \in x_{i} \vee x_{j}$, a contradiction.

Thus, when it is possible to distinguish vertices within an identity block of D_{A}, we can form blocks of vertices that induce identity matrices with an identity block of D_{A}. We get the following structure when we consider A and B individually.

Lemma 2.5. Let A and B form a convexly independent set. If $|A| \geq 2$, then the vertices of T can be ordered so that the matrix M of T has the form (1) with $d=|A|$. Moreover, this can be done so that A is represented by the columns of the upper left identity matrix. We get the same form when $|B| \geq 2$, except that B is represented by the rows of the upper left identity matrix and $d=|B|$.

Proof. Let $S=\left\{u_{1}, \cdots, u_{m}\right\} \subseteq D_{A}$ such that $u_{i} \rightarrow x_{i}$. Let x_{1}, \cdots, x_{m} represent the first m columns of M, and let u_{1}, \cdots, u_{m} represent the first m rows of M. The identity matrices going across the top of M are formed from the vertices that distinguish vertices in S as in Lemma 2.4. The matrices going down on the left are formed from the vertices of D_{A} as in Lemma 2.2. The remaining blocks of 0's and 1's exist because Theorem 2.1(5) and Lemma 2.4 demand that the remaining vertices can distinguish neither vertices in A nor vertices in D_{A}. The result for B follows similarly.

Note that this gives us our desired result in the case $B=\emptyset$. For the case $A, B \neq \emptyset$, we first look at the arc relationship of vertices in $P_{1} \cup P_{2}$ outside of D_{A} and D_{B}^{\leftarrow} with the identity blocks of D_{A} and D_{B}^{\leftarrow}.

Lemma 2.6. Suppose $B \neq \emptyset, u \in P_{1}-\left(A \cup D_{B}^{\leftarrow}\right)$ and $v \in P_{2}-\left(B \cup D_{A}\right)$.

1. If $|A| \geq 2$ and $v \rightarrow x_{i}$ for some i, then $v \rightarrow\left(A \cup D_{B}\right)$.
2. If $|B| \geq 2$ and $y_{i} \rightarrow u$ for some i, then $\left(B \cup D_{A}^{\leftarrow}\right) \rightarrow u$.
3. If $|A| \geq 3,|B|=1, S$ is an identity block of D_{A}, and $y_{1} \rightarrow u$, then u cannot distinguish any two vertices in S. In addition, if $u \rightarrow S$, then any vertex dominating u cannot distinguish any two vertices in A.
4. If $|A| \geq 3$ or $|A|,|B| \geq 2$, and if $u \rightarrow y_{\ell}$ for some ℓ, then u can be dominated by at most one vertex in each identity block of D_{A}. Moreover, if $z, z^{\prime} \in D_{A}$ with $\left\{z, z^{\prime}\right\} \rightarrow u$, then, for each $j, z \rightarrow x_{j}$ if and only if $z^{\prime} \rightarrow x_{j}$.

Proof. For (1), the fact that $v \rightarrow A$ follows from $v \notin D_{A}$. Suppose there exists $w \in D_{B}^{\leftarrow}$ with $w \rightarrow v$. Without loss of generality, $y_{k} \rightarrow w \rightarrow y_{\ell}$ for some k and ℓ. Consider x_{j} with $j \neq i$, which exists since $|A| \geq 2$. Clearly $w \in x_{i} \vee y_{k} \vee y_{\ell}$. Then $w \rightarrow v \rightarrow x_{i}$ and $v \rightarrow x_{j} \rightarrow y_{k}$ imply $x_{j} \in x_{i} \vee y_{k} \vee y_{\ell}$, a contradiction. Part (2) follows similarly.

For (3), suppose that $u_{i} \rightarrow u \rightarrow u_{j}$ for some $u_{i}, u_{j} \in S$ with $u_{i} \rightarrow x_{i}$ and $u_{j} \rightarrow x_{j}$. Since S is an identity block, $i \neq j$. Let $x_{k} \in A$ with $k \neq i, j$, which exists since $|A| \geq 3$. Since $x_{k} \rightarrow u_{j} \rightarrow x_{j}, y_{1} \rightarrow u \rightarrow u_{j}$, and $x_{j} \rightarrow u_{i} \rightarrow u$, we get $u_{i} \in x_{j} \vee x_{k} \vee y_{1}$. Thus, $u_{i} \rightarrow x_{i} \rightarrow y_{1}$ implies $x_{i} \in x_{j} \vee x_{k} \vee y_{1}$, a contradiction. For the rest of (3), suppose that $u \rightarrow S$, that $z \rightarrow u$, and that $x_{i} \rightarrow z \rightarrow x_{j}$. Let u_{i} and u_{j} be as before. Clearly, $u_{j}, z \in x_{i} \vee x_{j}$. Moreover, $z \rightarrow u \rightarrow u_{j}$ and $x_{i} \rightarrow y_{1} \rightarrow u$ imply $y_{1} \in x_{i} \vee x_{j}$, a contradiction.

For (4), Let $u_{i}, u_{j} \in D_{A}$ with $u_{i} \rightarrow x_{i}, u_{j} \rightarrow x_{j}$ and $i \neq j$. For contradiction, suppose that $\left\{u_{i}, u_{j}\right\} \rightarrow u$. In the case $|A| \geq 3$, let x_{k} be a third vertex in A. Then there exists some $u_{k} \in D_{A}$ with $u_{k} \rightarrow x_{k}$. Clearly, we have $u_{i} \in x_{i} \vee x_{k} \vee y_{\ell}$. Then $u_{i} \rightarrow u \rightarrow y_{\ell}$, $x_{i} \rightarrow u_{j} \rightarrow u$, and $u_{j} \rightarrow x_{j} \rightarrow u_{i}$ imply $x_{j} \in x_{i} \vee x_{k} \vee y_{\ell}$, a contradiction. In the case $|A|,|B| \geq 2$, let $y_{k} \in B$ with $k \neq \ell$, and let $z_{k}, z_{\ell} \in D_{B}^{\leftarrow}$ with $y_{k} \rightarrow z_{k}$ and $y_{\ell} \rightarrow z_{\ell}$. As before, suppose $\left\{u_{i}, u_{j}\right\} \rightarrow u$. Clearly, $z_{k}, z_{\ell} \in x_{i} \vee y_{k} \vee y_{\ell}$. Since $z_{k} \rightarrow u_{i} \rightarrow x_{i}$ by Theorem 2.1(4), we get $u_{i} \in x_{i} \vee y_{k} \vee y_{\ell}$. Then $u_{i} \rightarrow u \rightarrow y_{\ell}, x_{i} \rightarrow u_{j} \rightarrow u$, and $u_{j} \rightarrow x_{j} \rightarrow y_{k}$ imply $x_{j} \in x_{i} \vee y_{k} \vee y_{\ell}$, a contradiction. For the rest of (4), if $z, z^{\prime} \in D_{A}$ with $z \rightarrow x_{j}, z^{\prime} \rightarrow x_{k}, j \neq k$, then z and z^{\prime} can be made a part of the same identity block. The result then follows from the first part of (4).

To simplify M, we would like to reduce our problem to one resembling the case where $B=\emptyset$. The following does just that.

Lemma 2.7. Suppose that $B \neq \emptyset$.

1. If $|A|,|B| \geq 2$, let S be any identity block of D_{A} and S^{\prime} be any identity block of D_{B}^{\leftarrow}. Then there exist subsets $B_{1}, \cdots, B_{r} \subseteq P_{2}$ and $A_{1}, \cdots, A_{s} \subseteq P_{1}$ such that the matrices induced by $A \cup S^{\prime} \cup B_{i}$ and $S \cup B \cup A_{i}$ are identity matrices and such that any vertex in $P_{1}-A-S^{\prime}-\left(\bigcup_{i=1}^{s} A_{i}\right)$ (resp. $P_{2}-B-S-\left(\bigcup_{i=1}^{r} B_{i}\right)$) cannot distinguish any vertices in $B \cup S$ (resp. $\left.A \cup S^{\prime}\right)$.
2. If $|A| \geq 3$ and $|B|=1$, let S be any identity block of D_{A}. Then there exists a vertex $u \in P_{1}$ with $B \rightarrow u \rightarrow S$, and there exist subsets $B_{1}, \cdots, B_{r} \subseteq P_{2}$ and
$A_{1}, \cdots, A_{s} \subseteq P_{1}$ such that the matrices induced by $A \cup\{u\} \cup B_{i}$ and $S \cup B \cup A_{i}$ are identity matrices and such that any vertex in $P_{1}-A-\{u\}-\left(\bigcup_{i=1}^{s} A_{i}\right)$ (resp. $\left.P_{2}-B-S-\left(\bigcup_{i=1}^{r} B_{i}\right)\right)$ cannot distinguish any vertices in $B \cup S$ (resp. $A \cup\{u\}$).

Proof. First note that, as we construct the matrix of T, we order vertices as follows. In P_{1}, we begin with $x_{1}, \cdots, x_{m}, w_{1}, \cdots, w_{n}$ where $w_{i} \in D_{B}^{\overleftarrow{~}}$ with $y_{i} \rightarrow w_{i}$. In P_{2}, we begin with $z_{1}, \cdots, z_{m}, y_{1}, \cdots, y_{n}$, where $z_{i} \in D_{A}$ with $z_{i} \rightarrow x_{i}$. This makes the matrix induced by $A \cup S^{\prime} \cup S \cup B$ an identity matrix.

For (1), let $u \in P_{1}$ distinguish any two vertices in $B \cup S$. It follows from Lemma 2.6(2) and (4) that v is dominated by a unique vertex in $B \cup S$. Thus, we can break up vertices in P_{1} into blocks as we did in the construction of identity blocks. These are the A_{i} 's. The remaining vertices cannot distinguish vertices in $B \cup S$ and we are done. The construction of the B_{i} are similar, which completes the proof of (1).

For (2), let $S=\left\{z_{1}, \cdots, z_{m}\right\}$, with $z_{i} \rightarrow x_{i}$. We have $A \rightarrow B$, so, by regularity, there exists $u \in T$ such that $y_{1} \rightarrow u \rightarrow z_{1}$. If $u \notin P_{1}$, then it is easy to see that u dominates both A and D_{A} (otherwise y_{1} makes $A \cup B$ convexly dependent). This then forces x_{3} to make $A \cup B$ convexly dependent, a contradiction. Thus, $u \in P_{1}$. By Lemma 2.6(3), we must have $u \rightarrow S$. If we place u as the first column of M, we have, as before, $A \cup\{u\} \cup D_{A} \cup B$ inducing an identity matrix. The construction of the A_{i} 's then follows as before, using Lemma 2.4 and Lemma 2.6(3). The construction of the B_{i} 's begins with an identity block of $D_{A} \overrightarrow{ }$. By regularity, there must be some vertex z that dominates u and is dominated by some vertex in A. By Lemma 2.6(3), $A \rightarrow z$, which completes the B_{i}. The rest follows using Theorem 2.1(5) and Lemma 2.6(4).

This gives us the main theorem of the section.
Theorem 2.8. Let $U=A \cup B$ be convexly independent with A and B in distinct partite sets and $|A| \geq|B|$. If $|U| \geq 4$ or $|A| \geq 3$ then the vertices of $P_{1} \cup P_{2}$ can be ordered so that the matrix of T has the form given in (1). Furthermore, this can be done in such a way that A is represented by the last $|A|$ columns and that B is represented by the first $|B|$ rows of the upper left identity matrix.

Proof. Follows from Lemma 2.5 and Lemma 2.7.

3 Upper Bounds on Rank in the Bipartite Case

We now consider rank in clone-free regular bipartite tournaments. Note that, by regularity, both partite sets have to be the same size. Moreover, each partite set must have an even number of vertices.

We will make use of Theorem 2.8, letting $d=d(T)$. Let T be a clone-free regular bipartite tournament with $2 k$ vertices in each partite set. Note that, to preserve regularity, if there are b_{1} identity matrices going across and b_{2} identity matrices going down, the blocks of 1's are $d \times\left(k-b_{1}\right)$ and $\left(k-b_{2}\right) \times d$ and the blocks of 0 's are $d \times\left(k-b_{1}(d-1)\right)$ and $\left(k-b_{2}(d-1)\right) \times b$. The requirement $k-b_{i}(d-1) \geq 0$ gives us the following bound on $d(T)$.

Lemma 3.1. For $i=1,2, d(T) \leq \frac{k}{b_{i}}+1$.
In the case $b_{1}=b_{2}=1$, the next lemma identifies when vertices in one partite set are convexly independent.

Lemma 3.2. If $b_{1}=b_{2}=1$, then the set of vertices represented by the rows of the identity matrix (resp. the columns of the identity matrix) is a convexly independent set.

Proof. Let x_{1}, \cdots, x_{b} be the vertices represented by the rows of the identity matrix, and let y_{1}, \cdots, y_{b} be represented by the columns of the identity matrix. It suffices to show that $x_{i} \notin x_{1} \vee \cdots \vee x_{i-1} \vee x_{i+1} \vee \cdots \vee x_{b}$ for each i. But it is easy to see that $x_{1} \vee \cdots \vee x_{i-1} \vee x_{i+1} \vee \cdots \vee x_{b}=\left\{x_{j}, y_{k}: k, j \neq i\right\}$, which completes the proof.

The following theorem gives upper bounds for the rank of clone-free regular bipartite tournaments. We will show these bounds are tight in Section 4.

Theorem 3.3. Let T be a clone-free regular bipartite tournament with $2 k$ vertices in each partite set, $k \geq 1$.

1. If $k \leq 2$, then $d(T)=2$.
2. If $k \leq 6$, then $d(T) \leq 3$
3. If $k \geq 6$, then $d(T) \leq k+1-\sqrt{2 k-2}$.

Proof. For (1), the case of $k=1$ is trivial. For $k=2$, suppose that $d(T) \geq 3$. If $|A|=3$, then Lemma 2.2 implies that the vertices of T can be ordered to form a 3×3 identity matrix. Thus, there are no more 0's in the first three rows, so the first three entries of the fourth row are 1's. This violates regularity. Otherwise, $A=\left\{x_{1}, x_{2}\right\}$ and $B=\left\{y_{1}\right\}$. Let $u_{1}, u_{2} \in D_{A}^{\rightarrow}$ with $u_{i} \rightarrow x_{i}$, and let z be the remaining vertex in P_{2}. Let v_{1} and v_{2} be the remaining vertices in P_{1}. We order the vertices in P_{1} by $x_{1}, x_{2}, v_{1}, v_{2}$ or $x_{1}, x_{2}, v_{2}, v_{1}$, and the vertices in P_{2} by y_{1}, u_{1}, u_{2}, z. Then $A \rightarrow B$, the definition of D_{A}, and regularity gives us the following matrix.

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Clearly, $u_{1}, u_{2} \in x_{1} \vee x_{2}$. Also, $v_{1}, v_{2} \in x_{1} \vee x_{2}$, since $u_{1} \rightarrow v_{1} \rightarrow u_{2}$ and $u_{2} \rightarrow v_{2} \rightarrow u_{1}$. But then $x_{1} \rightarrow y_{1} \rightarrow v_{1}$, and so $y_{1} \in x_{1} \vee x_{2}$, violating convex independence. This proves (1).

For (2) and (3), recall $d=d(T)$ and consider the case $b_{i} \geq 2$ for some $i=1,2$. By Lemma 3.1, we have $d \leq \frac{k}{b_{i}}+1 \leq \frac{k}{2}+1$, which implies $d \leq \frac{k+2}{2}$. If also $d>k+1-\sqrt{2 k-2}$, then we have $k+1-\sqrt{2 k-2}<\frac{k+2}{2}$. This only occurs when $k<4+2 \sqrt{2}<7$, or $k \leq 6$. If $k \leq 5$, then $d \leq \frac{7}{2}$, so $d \leq 3$. If $k=6$, then $d \leq 4$. We therefore need only show that there cannot be a clone-free regular bipartite tournament of rank 4 and with 12 vertices in each partite set.

Suppose, for contradiction, that there exists such a bipartite tournament. Without loss of generality, $b_{1} \geq 2$. Then the matrix must have the following form, where each block is 4×4.

I_{4}	I_{4}	C^{\prime}
E	$*$	D^{\prime}
C	D	$*$

In each of the first four rows, there are six 0 's taken up by the two I_{4} matrices. Thus, each entry of C^{\prime} is 1 by regularity. Also, we have $E=I_{4}$ or each row of E contains all 0 's or all 1's by Theorem 2.8. In either case, we must have at least four rows of 1's in the first four columns, so we can arrange the rows of M so that every entry of C is 1 . Let x_{i} and y_{j} be the vertices representing the i th column and j th row for $1 \leq i, j \leq 4$. If $d(T)=4$, then we have a convexly independent set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, where $u_{i}=x_{i}$ or y_{i} for each i. In any case, we have $x_{i}, y_{i} \in u_{1} \vee u_{2} \vee u_{3}$ for each $1 \leq i \leq 3$. If x_{i}^{\prime} represents the $(i+4)$ th column of M for $1 \leq i \leq 4$, then $x_{i}^{\prime} \in u_{1} \vee u_{2} \vee u_{3}$ for each $1 \leq i \leq 3$.

For any z representing a row in $C, z \notin u_{1} \vee u_{2} \vee u_{3}$, for otherwise we have $z \rightarrow x_{4} \rightarrow y_{1}$, making $x_{4} \in u_{1} \vee u_{2} \vee u_{3}$. It quickly follows that $y_{4} \in u_{1} \vee u_{2} \vee u_{3}$, implying $u_{4} \in u_{1} \vee u_{2} \vee u_{3}$, a contradiction. Thus, each such z must either dominate or be dominated by all x_{i}^{\prime} for $1 \leq i \leq 3$. If z dominates all such x_{i}^{\prime}, then $\left|N^{+}(z)\right| \geq 7$, violating regularity. Thus, $x_{i}^{\prime} \rightarrow z$ for all $1 \leq i \leq 3$ and all z representing the last four rows of M. But now $\left|N^{+}\left(x_{i}^{\prime}\right)\right| \geq 7$, violating regularity. Thus, $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is convexly dependent, implying $d(T) \leq 3$.

Thus, it suffices to dispose of the case $b_{1}=b_{2}=1$. The matrix M of T has the following form.

d
$k-d+1$
d
$d-d+1$
I_{d}
0
$k-1$
1

We focus our attention on C and D. First note that C and D contain all the 0 's in the columns they occupy. Since D has $k-1$ rows, each column of C must have at least one

0 . Columns of C that have exactly one 0 and whose unique 0 's are in the same row must be identical (they have that 0 in the same entry, and the rest of the 0 's in each column are in the last $k-1$ rows). Any two such columns of C represent vertices that are clones, so there are at most $k-d+1$ columns in C with precisely one 0 . It follows that there are at least $d-2$ columns with at least two 0 's. If q is the number of 0 's in C, we must then have $q \geq k-d+1+2(d-2)=k+d-3$. In each row that M shares with C, we have accounted for d of the 0's (in the first d columns). Thus, each row of C has at most $k-d 0$'s. Since there are $k-d+1$ rows in C, this implies $q \leq(k-d)(k-d+1)$. Thus, $k+d-3 \leq(k-d)(k-d+1)$. Using $d \leq k+1$ by Lemma 3.1, this simplifies to $k \geq d+\sqrt{2 d-3}$ or $d \leq k+1-\sqrt{2 k-2}$.

4 Clone-Free Regular Bipartite Tournaments of Maximum Rank

The object of this section is to show that the bounds in Theorem 3.3 are tight. It is not difficult to produce clone-free regular bipartite tournaments of rank 3 for $3 \leq k \leq 6$. Thus, it suffices to construct matrices of clone-free regular bipartite tournaments with $2 k$ vertices in each partite set with rank d for each $k \geq 7$, where $d=\lfloor k+1-\sqrt{2 k-2}\rfloor$. We begin with a matrix M of the following form.

d $k-d+1$ $k-1$ d I_{d} $k-d+1$ $k-1$ 0 1 C 1 C^{T} D

Note that Lemma 3.2 implies that the rank of the bipartite tournament T induced by the matrix is at least d. It suffices to construct the submatrices C and D so that no two rows and no two columns are identical and so that the number of 0's and 1's in each row and column of M are equal. Notice that the first d rows and columns are already distinct.

Our efforts begin with C. To maintain regularity, every row of C must have $k-d 0$'s. There are $k-d+1$ rows, which gives us a total of $(k-d)(k-d+1) 0$'s in C. Since there are $k-1$ columns, there are, on average $s=\frac{(k-d)(k-d+1)}{k-1} 0$'s in each column. This number is important in the construction of C, and the following shows that s can only take on a small range of values.

Lemma 4.1. $2-\frac{\sqrt{2 k-2}}{k-1} \leq s<2+\frac{\sqrt{2 k-2}}{k-1}$.

Proof. Since $d=\lfloor k+1-\sqrt{2 k-2}\rfloor$, we have $k-\sqrt{2 k-2}<d \leq k+1-\sqrt{2 k-2}$, and thus $-1+\sqrt{2 k-2} \leq k-d<\sqrt{2 k-2}$ and $\sqrt{2 k-2} \leq k-d+1<1+\sqrt{2 k-2}$. The result follows from multiplying these two expressions together and dividing all sides by $k-1$.

We construct C so that two properties hold. First, no two rows of C will be identical. This ensures that the vertices represented by these rows (and, consequently, the vertices represented by the corresponding columns of C^{T}) are not clones. Second, the 0's in C are distributed as evenly as possible among the columns. Since Lemma 4.1 implies that s is quite close to 2 , this forces most columns of C to have two 0 's in them.

Define $r=(k-d)(k-d+1)-2(k-1)$. By Lemma 4.1, $|r| \leq \sqrt{2 k-2}$. From another perspective, $(k-d)(k-d+1)=2(k-1)+r$ is the number of 0 's in C. Therefore, if we require the 0 's of C to be distributed as evenly as possible among its columns, then there are precisely $|r|$ columns with three 0's each if $s \geq 2$ and precisely $|r|$ columns with one 0 each if $s<2$. In either case, the remaining $k-|r|-1$ columns have two 0 's each. The following will be useful.

Lemma 4.2. $r \neq 1$, and $|r| \leq k-d+1$.
Proof. Suppose, for contradiction, that $r=1$. Then we have $(k-d)(k-d+1)=2 k-1$. Solving for k, we get $k=\frac{2 d+1 \pm \sqrt{8 b-3}}{2}$. Since k is an integer, $8 d-3$ must be a perfect square. But no perfect square can be congruent $-3 \bmod 8$, which gives us a contradiction.

For the second part, if $|r|>k-d+1$, then $|r| \leq \sqrt{2 k-2}$ gives us $k-d+1<\sqrt{2 k-2}$, which implies that $d>k+1-\sqrt{2 k-2}$, a contradiction. The result follows.

We split the columns of C into three parts; we call them C_{1}, C_{2}, and C_{3}. The matrix C_{1} has $k-d+1$ columns, C_{3} has $|r|$ columns, and thus C_{2} has $d-|r|-2$. We need C_{2} to have a nonnegative number of columns, so we must prove the following.

Lemma 4.3. If $k \geq 7$, then $d-|r|-2 \geq 0$.
Proof. Suppose, for contradiction, that $d-|r|-2<0$, so $d<|r|+2$. Since $d>k-\sqrt{2 k-2}$ and $|r| \leq \sqrt{2 k-2}$, we have $k-\sqrt{2 k-2}<2+\sqrt{2 k-2}$. Solving this inequality for k, we get $k<6+2 \sqrt{6}<11$, and so $k \leq 10$. One can check that the result holds for $7 \leq k \leq 10$, and so the result follows.

We now begin our construction of C_{1}. If we denote the entry of C_{1} in the i th row and j th column by $C_{1}(i, j)$, then we let $C_{1}(i, i)=0, C_{1}(j+1, j)=0$ for all $1 \leq i \leq k-d+1$, $1 \leq j \leq k-d$, and $C_{1}(1, k-d+1)=0$. The remaining entries of C_{1} are 1 . No two rows of C_{1} are identical as long as $k-d+1 \geq 3$ (which is true for all $k \geq 4$). Therefore, no two rows of C are identical. Also, there are two 0 's in each row and column of C_{1}.

For C_{2}, distribute two 0 's in each column so that the 0 's are distributed as evenly as possible among the rows. For example, in the first column, one might place the 0's in the first two rows. In the second column, the 0's can be placed in the third and fourth row, and so on. The 0's can be wrapped around to the first row when the end of a column is reached.

Before we begin the construction of C_{3} and D, note that, out of the $(k-d)(k-d+1)$ 0's that need to be distributed in C (with $k-d$ in each row), we have placed $2(k-|r|-1$) among C_{1} and C_{2}, leaving $r+2|r|$ to be placed in C_{3}.

In the case of $r<0$, we have $-r=|r| 0$'s to place in C_{3}. Since C_{3} has $|r|$ columns, we can then place one 0 in each column of C_{3}. To determine which rows to place the remaining 0 's, we use $(k-d)(k-d+1)=2 k-2+r=2 k-2-|r|$ to get

$$
2(k-|r|-1)=(k-d-1)(k-d+1)+(k-d+1-|r|) .
$$

Since the 0 's in C_{1} and C_{2} are distributed as evenly as possible, and since $2(k-|r|-1)$ is the number of 0's in C_{1} and C_{2} combined, we get that the first $k-|r|-1$ columns of C each have at least $k-d-10$'s in each row, and $k-d+1-|r|$ of the rows have $k-d$ 0 's. Note that Lemma 4.2 implies that $k-d+1-|r| \geq 0$. This leaves $|r|$ rows that have only $k-d-10$'s. We then place one 0 in each column of C_{3} in a row that, in C_{1} and C_{2}, has $k-d-10$'s. We place 1's in the remaining entries.

This brings us to the construction of D. We define $D(i, i)=1$ for each $1 \leq i \leq k-|r|-1$ and $D(i, j)=0$ otherwise, making T regular. In addition, the way we have constructed the first $k-|r|-1$ rows of D guarantees that no two of the vertices represented by these rows and columns are clones. The way that C_{3} is constructed guarantees that no two of the remaining vertices are clones. Thus, T is clone-free, and this completes the case of $r<0$.

In the case of $r \geq 0$, we have $3|r|=3 r 0$'s to distribute into C_{3}. We distribute three 0 's per column in such a way that the 0 's in the matrix C are evenly distributed among the rows. This makes it so that each row of C now has $k-d 0$'s, as desired.

We begin the construction of D as before. We make $D(i, i)=1$ and $D(j, i)=0$ for each $1 \leq i \leq k-r-1, i \neq j$. This ensures regularity and guarantees that each of the first $k-r-1$ rows and columns are distinct. For the remainder of the matrix, note that each of the last r rows and columns of D must have two 1's for regularity. For $r \geq 3$, we do this in the same manner as the construction of C_{1}. We put 1's down the main diagonal and down the diagonal just below the main diagonal (of the last r rows and columns of $D)$, and then we put a 1 in the last column of D in the $(k-r)$ th row. In the remainder of the entries of D, we place 0's. This arrangement ensures that the last r rows and columns are distinct. This also works in the case of $r=0$; the construction of the last r rows will be null. Thus, our matrix represents a clone-free regular bipartite tournament of rank d except in the case of $r=2$ (recall that Lemma 4.2 eliminates the case of $r=1$).

In the case of $r=2$, if we construct the matrix as above, in the bottom right-hand corner of D we have

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] .
$$

This can be replaced by

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] .
$$

The replacement matrix preserves the number of 0's and 1's in each row and column, thus maintaining regularity and preventing clones. All of this together gives us the following.

Theorem 4.4. For each $k \geq 6$, there is a clone-free regular bipartite tournament of rank $d=\lfloor k+1-\sqrt{2 k-2}\rfloor$. Thus, d is a tight upper bound for the rank clone-free regular bipartite tournaments with $2 k$ vertices in each partite set and $k \geq 6$. The tight upper bounds for rank in the case $k \leq 5$ are given by Theorem 3.3.

Since $h(T)=r(T)=d(T)$ in clone-free bipartite tournaments [PWWa, Thm. 4.2], we have the following.

Corollary 4.5. For each $k \geq 6$, there is a clone-free regular bipartite tournament of Radon and Helly number $d=\lfloor k+1-\sqrt{2 k-2}\rfloor$. Thus, d is a tight upper bound for the Radon and Helly numbers clone-free regular bipartite tournaments with $2 k$ vertices in each partite set and $k \geq 6$. The tight upper bounds for the Radon and Helly number in the case $k \leq 5$ are the same as those in Theorem 3.3.

5 Upper Bounds on Rank in the Multipartite Case

Let T be a regular p-partite tournament with k vertices in each partite set. We consider the arcs between $P_{1} \cup P_{2}$ and the remaining partite sets of T. We will use these arcs to derive upper bounds for the rank of clone-free regular p-partite tournaments for $p \geq 3$.

First note that regularity demands that the inset and outset of each vertex contains $\frac{(p-1) k}{2}$ vertices. Let $A \subseteq P_{1}$ and $B \subseteq P_{2}$ be as in the previous section. If $B=\emptyset$, we again assume $D_{A} \neq \emptyset$ and choose P_{2} so that $D_{A} \subseteq P_{2}$.

Note that, by Theorem 2.1(5), if $|A \cup B| \geq 3$, then there are no vertices in $T-\left(P_{1} \cup P_{2}\right)$ that distinguish vertices in A. When this is the case, we define $W=\left\{w \in T-\left(P_{1} \cup P_{2}\right)\right.$: $w \rightarrow A\}$ and $R=\left\{z \in T-\left(P_{1} \cup P_{2}\right): A \rightarrow z\right\}$. These two sets partition $T-\left(P_{1} \cup P_{2}\right)$.

Lemma 5.1. $W \rightarrow B$, and $|W| \geq d(T)-1$.
Proof. Suppose there exists some $y_{i} \in B$ and $w \in W$ with $y_{i} \rightarrow w$. We have $y_{i} \rightarrow w \rightarrow x_{1}$ and $w \rightarrow x_{2} \rightarrow y_{i}$, so $x_{2} \in x_{1} \vee y_{i}$, a contradiction. For the second part, we have that x_{1} dominates all of B and at least $|A|-1$ vertices in $D_{A}^{\vec{A}}$. Thus, $\left|N^{+}\left(x_{1}\right) \cap P_{2}\right| \geq$ $|B|+|A|-1=d(T)-1$. That leaves at most $k-d(T)+1$ vertices in $P_{2} \cap N^{-}\left(x_{1}\right)$. Since $\left|N^{-}\left(x_{1}\right)\right|=k$, that implies that $\left|N^{-}\left(x_{1}\right)-P_{2}\right| \geq d(T)-1$. And since only vertices in P_{2} can distinguish vertices in A, we have $N^{-}\left(x_{1}\right)-P_{2} \subseteq W$, which proves the result.

There are no such restrictions on the arcs between vertices in R and B, so we can partition R into the sets $R_{1}=\{z \in R: B \rightarrow z\}$ and $R_{2}=\{z \in R: z \rightarrow B\}$.

Lemma 5.2. Let A and B be as above with $|A \cup B| \geq 3$.

1. If $B \neq \emptyset$, then $D_{A} \rightarrow R_{1}$ and $W \rightarrow D_{B}^{\leftarrow}$.
2. If $|A| \geq 3$ or $|A|,|B| \geq 2$, then $W \rightarrow D_{A}^{\rightarrow}$ and $D_{B}^{\leftarrow} \rightarrow R_{1}$.
3. If $|A| \geq 3$, then no vertex in R can distinguish vertices in D_{A}.
4. If $|A| \geq 3,|B|=1$, and u is as in Lemma 2.7(2) (i.e., for some identity block S of $\left.D_{A}, B \rightarrow u \rightarrow S\right)$, then $W \rightarrow u$.

Proof. For (1), let $u \in D_{A}$ with $u \rightarrow x_{i}$, let $v \in R_{1}$, and let $j \neq i$ with $x_{j} \in A$. For contradiction, assume that $v \rightarrow u$. We have $x_{j} \rightarrow u \rightarrow x_{i}, x_{i} \rightarrow v \rightarrow u$, and $x_{i} \rightarrow y_{1} \rightarrow v$, so $y_{1} \in x_{i} \vee x_{j}$, a contradiction. Thus, $D_{A} \rightarrow R_{1}$, and the rest of (1) follows similarly.

For (2), let $u \in D_{A}$ with $u \rightarrow x_{i}$ and $w \in W$. For contradiction, suppose $u \rightarrow w$. In the case $|A| \geq 3$, let $j, k \neq i$ with $x_{j}, x_{k} \in A$. Clearly, $u \in x_{i} \vee x_{j}$. Then $u \rightarrow w \rightarrow x_{i}$ and $w \rightarrow x_{k} \rightarrow u$ imply $x_{k} \in x_{i} \vee x_{j}$, a contradiction. In the case $|B| \geq 2$, let $j \neq i$ with
 we have $v \in x_{i} \vee y_{1} \vee y_{2}$. Then $v \rightarrow u \rightarrow x_{i}$ gives us $u \in x_{i} \vee y_{1} \vee y_{2}$. As in the $|A| \geq 3$ case, we get $x_{j} \in x_{i} \vee y_{1} \vee y_{2}$, a contradiction. This gives us the first part of (2), and the rest follows similarly.

For (3), suppose we have $u_{i}, u_{j} \in D_{A}$ with $u_{i} \rightarrow x_{i}, u_{j} \rightarrow x_{j}$, and $z \in R$ with $u_{i} \rightarrow z \rightarrow u_{j}$. Let $k \neq i, j$ with $x_{k} \in A$. We have $u_{j} \in x_{j} \vee x_{k}$. Then $x_{j} \rightarrow z \rightarrow u_{j}$, $x_{j} \rightarrow u_{i} \rightarrow z$, and $u_{i} \rightarrow x_{i} \rightarrow u_{j}$ imply $x_{i} \in x_{j} \vee x_{k}$, a contradiction.

Finally, for (4), suppose that $u \rightarrow w$ for some $w \in W$. Let $v \in S$ with $v \rightarrow x_{1}$. Then $v \in x_{1} \vee x_{2} \vee y_{1}$. We have $y_{1} \rightarrow u \rightarrow v, u \rightarrow w \rightarrow x_{1}$, and $w \rightarrow x_{3} \rightarrow y_{1}$, so $x_{3} \in x_{1} \vee x_{2} \vee y_{1}$, a contradiction.

If $|A| \geq 3$, and q is the number of vertices in R that are dominated by the vertices in D_{A}, then $|R|-q$ is the number of vertices in R that dominate the vertices in D_{A}. We can then consider the inset of D_{A}. We get $|A|-1$ vertices from $A,|W|$ vertices from W, and $|R|-q$ vertices from R. We then get

$$
\frac{(p-1) k}{2} \geq|A|-1+|W|+|R|-q
$$

Putting this together with $|R|+|W|=(p-2) k$ gives us $q \geq|A|-1+\frac{(p-3) k}{2}$. Since T has at least three partite sets, we get $q \geq|A|-1$ and the following.

Theorem 5.3. Let T be a clone-free regular tripartite tournament with $k \geq 1$ vertices in each partite set.

1. If $k \leq 5$, then $d(T)=2$.
2. If $k=6$, then $d(T) \leq 3$.

3 . If $k \geq 7$, then $d(T)<\frac{k}{2}$.
4. For each $k \geq 5$, there is a clone-free regular tripartite tournament with rank $\left\lfloor\frac{k-1}{2}\right\rfloor$, so the bound is tight.

Proof. Let T be a clone-free regular tripartite tournament with $d(T) \geq 3$, and let A and B form a maximum convexly independent subset of V. We claim that $d(T)<\frac{k}{2}$ unless $|A|=2$ and $|B|=1$. If $B=\emptyset$, then $q \geq|A|-1 \geq 2$, so let $v, v^{\prime} \in R$ with $D_{A} \rightarrow\left\{v, v^{\prime}\right\}$. By Theorem 2.8, $\left|D_{A}\right| \geq|A|$. Thus, $k=\left|N^{-}(v)\right| \geq 2|A|=2 d(T)$, and so $d(T) \leq \frac{k}{2}$. If $d(T)=\frac{k}{2}$, then $N^{-}(v)=N^{-}\left(v^{\prime}\right)=A \cup D_{A}$, and so v and v^{\prime} are clones. This forces $d(T)<\frac{k}{2}$. The case $|B| \geq 2$ follows similarly, using W and its outset in place of $\left\{v, v^{\prime}\right\}$ and its inset, and applying Lemma 5.1 and Lemma 5.2(1) and (2). If $|B|=1$ and $|A| \geq 3$, then the result follows similarly using Lemma 5.2(4). This gives us (2) and (3).

For (1), assume that $k \leq 5$. If $d(T) \geq 3$, then, by the above argument, we must have $|A|=2$ and $|B|=1$. Let $u_{1}, u_{2} \in D_{A}$ with $u_{i} \rightarrow x_{i}$. Note that since $A \rightarrow y_{1}$, at most $k-2$ vertices in P_{3} dominate y_{1}. Since $\left(W \cup R_{2}\right) \rightarrow y_{1}$, at least two vertices must be in R_{1}. Let $r_{1}, r_{2} \in R_{1}$. We have $D_{A} \rightarrow R_{1}$ by Lemma 5.2(1), and so $u_{1}, u_{2} \in N^{-}\left(r_{i}\right), i \in\{1,2\}$. Combining this with $x_{1}, x_{2}, y_{1}, \in N^{-}\left(r_{1}\right)$ gives us $N^{-}\left(r_{1}\right)=N^{-}\left(r_{2}\right)=\left\{x_{1}, x_{2}, y_{1}, u_{1}, u_{2}\right\}$, making r_{1} and r_{2} are clones, a contradiction. Thus, $d(T)=2$, which gives us (1).

We now prove the bounds are tight. The bound in (1) is trivially tight. The following is a clone-free regular tripartite tournament of rank 3 with 6 vertices in each partite set. The maximum convexly independent set is given by the first row and the second and third columns.

	P_{1}	P_{3}	P_{2}
P_{2}	$\begin{array}{llllll} \hline 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{array}$	$\begin{array}{llllll\|} \hline 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{array}$	
P_{3}	$\left\|\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0\end{array}\right\|$		$\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}$

For the bound in (3), we must construct for each $k \geq 5$, a tripartite tournament T with rank $\frac{k-1}{2}$ when k is odd and $\frac{k}{2}-1$ when k is even. In both cases, we partition $P_{1}=A \cup P_{1}^{d} \cup P_{1}^{r}, P_{2}=D_{A} \cup P_{2}^{d} \cup P_{2}^{r}$, and $P_{3}=W \cup R$.

If k is even and $d=\frac{k}{2}-1$, then we let $\left|P_{1}^{b}\right|=\left|P_{2}^{r}\right|=2,\left|P_{1}^{r}\right|=\left|P_{2}^{b}\right|=\frac{k}{2}-1$, and $|W|=|R|=\frac{k}{2}$. We then construct the arcs of T according to the following matrix.

	A	P_{1}^{b}	P_{1}^{r}	W	R	D_{A}	P_{2}^{r}	P_{2}^{b}
D_{A}	I_{d}	0	1	0	1			
P_{2}^{r}	0	1	1	1	0			
P_{2}^{b}	1	1	0	$\left(I_{d}\right)_{c}$	0			
W	1	0	0			1	0	I_{d}
R	0	C^{\prime}	D^{\prime}			0	1	1

A blank block denotes an empty matrix (no arcs). If M is a binary matrix, we define M_{c} to be the matrix obtained from M by interchanging the 0 's and 1's. Thus, we need only specify C and D. Let C be the $2 \times(d+1)$ matrix with entries $C(1,1)=C(2,2)=0$ and 1's otherwise. Also, let D be the $d \times(d+1)$ matrix with entries $D(i, i)=0$ for each $1 \leq i \leq d, D(i, i+2)=0$ for each $1 \leq i \leq d-1, D(d, d+1)=0$, and 1's otherwise. It is not difficult to see that T is regular and clone-free, and that A is a convexly independent set.

In the case k is odd, and $d=\frac{k-1}{2}$, we have $\left|P_{1}^{d}\right|=2,\left|P_{1}^{r}\right|=d-1,\left|P_{2}^{r}\right|=1,\left|P_{2}^{d}\right|=d$, $|W|=d$, and $|R|=d+1$. We then construct the arcs as follows.

	A	P_{1}^{b}	P_{1}^{r}	W	R	D_{A}	P_{2}^{r}	P_{2}^{b}
$D_{\vec{A}}$	I_{d}	0	1	0	1			
P_{2}^{r}	0	1	1	1	0			
P_{2}^{b}	1	1	0	$\left(I_{d}\right)_{c}$	0			
W	1	0	0			1	0	I_{d}
R	0	C^{\prime}	D^{\prime}			0	1	1

In this case, let C^{\prime} be the $(d+1) \times 2$ matrix with $C^{\prime}(1,1)=C^{\prime}(2,2)=0$ and 1^{\prime} 's otherwise, and let D^{\prime} be the $(d+1) \times(d-1)$ matrix with $D^{\prime}(i+2, i)=0$ for $1 \leq i \leq d-1$ and 1 's otherwise.

We achieve a bound almost as good in the general case.
Theorem 5.4. Let T be a clone-free regular p-partite tournament with $p \geq 3$ and $k \geq 2$ vertices in each partite set. Then $d(T) \leq \frac{k+2}{2}$.

Proof. Let A and B form a maximum convexly independent subset of V. For the case $B \neq \emptyset$, we get $\frac{(p-1) k}{2}=\left|N^{+}\left(x_{i}\right)\right| \geq\left|R_{1}\right|+\left|R_{2}\right|+d(T)-1$. These correspond to vertices in R, B, and D_{A}. Similarly, we get $\frac{(p-1) k}{2}=N^{-}\left(y_{j}\right) \geq|W|+\left|R_{2}\right|+d(T)-1$. Combining these with $|W|+\left|R_{1}\right|+\left|R_{2}\right|=(p-2) k$ gives us $d(T) \leq \frac{k+2-\left|R_{2}\right|}{2} \leq \frac{k+2}{2}$.

We use a similar argument in the case $B=\emptyset$. In this case we may assume $|A| \geq 3$. We have $\frac{(p-1) k}{2} \geq|R|+d(T)-1$, corresponding to vertices in R and D_{A}. Similarly, we get $\frac{(p-1)}{2} \geq|W|+d(T)-1$, since $W \rightarrow D_{A}$ by Lemma 5.2(2). Combining these inequalities with $|R|+|W|=(p-2) k$ gives us the result.

While this bound is tantalizingly close to the tight bound we derived in the tripartite case, it is unclear whether the above bound is tight. One might expect the bound to be asymptotically tight, but we have not yet found a proof for this.

6 Open Problems

We conclude with some open problems.
(1) Determine the structure of clone-free regular multipartite tournaments. Theorem 2.8 gives us significant insight into the rank of clone-free regular bipartite tournaments. Can anything more be said about the structure of clone-free regular bipartite tournaments? In particular, what form does the matrix have? What if there are three or more partite sets?
(2) Determine tight upper bounds for the rank of clone-free regular multipartite tournaments. We have taken care of the case $p=2,3$ with Theorem 4.4 and Theorem 5.3. One would guess that the bound in Theorem 5.4 is either tight or very nearly tight, but we have not verified this.
(3) Classify all clone-free regular bipartite/tripartite tournaments of maximum rank.

References

[CCZ01] G. Chartrand, A. Chichisan, and P. Zhang, On convexity in graphs, Cong. Numer. 148 (2001), 33-41.
[CFZ02] G. Chartrand, J.F. Fink, and P. Zhang, Convexity in oriented graphs, Discrete Applied Math. 116 (2002), 115-126.
[CM99] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999), 91-95.
[Duc88] P. Duchet, Convexity in graphs II. Minimal path convexity, J. Combin. Theory, Ser. B 44 (1988), 307-316.
[EFHM72] P. Erdös, E. Fried, A. Hajnal, and E.C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972), 238-245.
[EHM72] P. Erdös, A. Hajnal, and E.C. Milner, Simple one-point extensions of tournaments, Mathematika 19 (1972), 57-62.
[HN81] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geometry 16 (1981), 185-190.
[Moo72] J.W. Moon, Embedding tournaments in simple tournaments, Discrete Math. 2 (1972), 389-395.
[Nie81] J. Nieminen, On path- and geodesic-convexity in digraphs, Glasnik Matematicki 16 (1981), 193-197.
[Pfa71] J.L. Pfaltz, Convexity in directed graphs, J. Combinatorial Theory 10 (1971), 143-152.
[PWWa] D.B. Parker, R.F. Westhoff, and M.J. Wolf, Convex independence and the structure of clone-free multipartite tournaments, Preprint.
[PWWb] , On two-path convexity in multipartite tournaments, Submitted.
[Var76] J.C. Varlet, Convexity in Tournaments, Bull. Societe Royale des Sciences de Liege 45 (1976), 570-586.
[vdV93] M.L.J van de Vel, Theory of Convex Structures, North Holland, Amsterdam, 1993.

[^0]: *Department of Mathematics, University of Dayton, Dayton, Ohio 45469, dbparker@udayton.edu, http//academic.udayton.edu/darrenparker
 ${ }^{\dagger}$ Department of Mathematics \& Computer Science, Bemidji State University, Bemidji, MN 56601, rwesthoff@bemidjistate.edu
 ${ }^{\ddagger}$ Department of Mathematics \& Computer Science, Bemidji State University, Bemidji, MN 56601, USA, mjwolf@bemidjistate.edu, http//cs.bemidjistate.edu/mjwolf

