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Abstract

We call T = (G1,G2,G3) a graph-triple of order t if the G; are pairwise non-isomorphic graphs
on t non-isolated vertices whose edges can be combined to form K;. If m > t, we say T divides K,
if E(K) can be partitioned into copies of the graphs in T with each G; used at least once, and we
call such a partition a T-multidecomposition. In this paper, we study multidecompositions of K, for
graph-triples of order 6. We focus on graph-triples in which either one graph is a perfect matching
or all graphs have 5 edges each. Moreover, we determine maximum multipackings and minimum
multicoverings when K, does not admit a multidecomposition.

1 Introduction

The graph decomposition problem, in which the edges of a graph are decomposed into copies of a fixed
subgraph, has been widely studied (see [ I, [ ], and | D). In | ], A. Abueida and M.
Daven extended this notion to graph-pairs. Given graphs G1 and G such that Gy UG, = K3, they sought
complete graphs K, with m > t whose edges can be partitioned into copies of G; and G5 using at least
one copy of each graph. They called such a partition a (G1, Ga)-multidecomposition.

In the same paper, the authors studied maximum multipackings and minimum multicoverings when
a multidecomposition is impossible. A maximum multipacking is a partitioning of a subset of E(K,,)
into copies of GG; and Gs, using at least one copy of each G; where the number of edges outside the
partition, called the leave, is minimum. A minimum multicovering is a collection of copies of both G;
that use all edges of K, at least once and where the number of edges used more than once, called the
padding, is minimum. A multidesign refers to a multidecomposition, a maximum multipacking, or a
minimum multicovering. The authors solved the existence problem for all optimal multidesigns of K,
into graph-pairs of order 4 and 5. In | |, Abueida, Daven and K. Roblee proved similar results for
multidesigns of AK,, into graph-pairs of orders 4 and 5 for any value of A > 1.

In this paper we define a graph-triple T = (G1,G2,G3) of order ¢ to be a triple of non-isomorphic
graphs G1, G, and G5 without isolated vertices that that factor K; (i.e. G1 UG2UGs = K;). We define
T-multidecompositions, T-multipackings, T-multicoverings, T-multidesigns, and the notion of T" dividing
a graph analogously with the graph-pair definitions.

One can show that there are no graph-triples of order ¢ < 5. We therefore consider graph-triples of
order 6. An exhaustive search shows that there are 131 such graph-triples (see Appendix B). In Section 2,
we determine the sizes of the leave and padding for all optimal multidesigns of K, into graph-triples of
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order 6 that include a perfect matching (see Theorem 2.10). In Section 3, we prove analogous results for
graph-triples whose graphs have 5 edges each (see Theorem 3.12).

We list the graphs that are part of graph-triples of order 6 in Appendix A. In memory of Frank
Harary, we will denote the it" graph on 6 vertices with j edges and no isolated vertices with the notation
H!. The graphs are obtained from | ], where we remove graphs that cannot be part of a graph-triple
of order 6. Note that the vertices are labeled a through f. If vy, € V(K,,) for k € {a,b,c,d, e, f}, we will
denote by [va, Vs, Ve, Vg, Ve, V| the subgraph of K, isomorphic to H; in which each vy plays the role of
k. This will not be ambiguous as long as we specify Hf .

We write V(G) to denote the vertex set of G and deg(v) to denote the degree of v € V(G). Further,
A(G) = max{deg(v) : v € G}. We write G + G2 to denote any graph with edge set E(G1) U E(Gs)
and kG to be a graph whose edges can be partitioned into k copies of G;1. We let V(K,,) = Z,, and for
r < n, we consider Z, C Z, in the natural way. Note that Z, induces a subgraph of Z,, isomorphic to
K,. We define G, ,, = K,,, — K, with V(G,.,,,) = Z,, and we let the vertices from which the edges of
K, are removed be Z,. If m > 6, we have K,, = K¢ U Gg,,,. We can factor K into any graph-triple of
order 6, and so we get the following.

Lemma 1.1. Let m > 6, and let T = (G1, G2, G3) be a graph-triple of order 6. Suppose Gg,y, has a
T-multipacking with leave L (resp. a T-multicovering with padding P). Then K,, has a T-multipacking
with leave L (resp. a T-multicovering with padding P).

For other terminology used but not defined herein, see | I, [ ].

2 Multidesigns for Graph-Triples (G, Go, H})

In this section, we determine multidesigns of K,, for graph-triples T = (G, G2, H{) of order 6. The
multidesigns are generated recursively. We begin with a lemma.

Lemma 2.1. Hf’ divides K3, for all n > 3.

Proof. The cases m = 3,4,5 are easy to prove. Let m = 3k +r with £ > 0, and r = 3, 4, or 5. We have
K3, = K3, + kK3 3. Then H3 divides K3, and K3 3, which completes the proof. O]

This gives us the following.

Lemma 2.2. Let T = (G1,G2, H}) be a graph-triple of order 6, and let m > 6, m # 7. For each
T-multidesign of K,,, there is a T-multidesign of K,,3 with the same leave or padding.

Proof. Take Z,,, C V(K,,+3), whose induced subgraph is K,,,, which has the given T-multidesign. With-
out loss of generality, Zg is the vertex set of H} = [0,1,2, 3,4, 5] in the T-multidesign. If m # 8, remove the
edges of H{, and add in H} 2 [0,1,m,m+1,2,m+2], [2,3,m+1,m+2,4,m], [4,5,m,m+2,0,m + 1],
[1,m,3,m + 1,5;m + 2], [0,m,2,m + 1,4,m + 2], [I,m + 1,3,m + 2,5,m], [0,m + 2,2,m,4,m + 1],
[1,m + 2,3,m,5,m + 1]. The remaining edges between Z,, and {m,m + 1,m + 2} form a graph iso-
morphic to K3 ,,—¢, which can be filled in with copies of H3} by Lemma 2.1. The leave or padding is
unchanged.

What remains is the case m = 8. Now Zg induces a Kg in K11, which has the given T-multidesign. We
remove H} 22 [0,1,2,3,4, 5] and insert H} = [6,8,7,9, 5, 10], [6,9, 7, 10,0, 8], [6,10,7,8,1,9], [8,9, 3, 10,4, 5],
[9,10,4,8,2,3], [8,10,2,9,0,1], [0,9,1,8,2,10], [3,8,4,10,5,9],

[0,10,2,8,3,9], [1,10,4,9,5, 8] gives us a T-multidesign with the same leave or padding as that in Kg. O

Lemma 2.2 reduces our problem to determining optimal multidesigns for each congruence class modulo
3. The case m = 0 (mod 3) is easily disposed of by a factorization of Kg. It is different for m = 1,2
(mod 3), as in those cases not every multidesign is a multidecomposition. For m = 1 (mod 3), we have
the following.

Theorem 2.3. Let T = (G1,G2, H}) be a graph-triple of order 6.



1. T divides KlO-
2. If G4 = Hf and Go = H;l, then T' does not divide K.

3. If Gy = H] and Gy = Hf, then T divides K7 if and only if
(i,5) € {(4,2),(5,2),(5,3), (5,7), (6,2), (8,3)}.

4. If Gy = HY and Gy = HJG, then T divides K7 if and only if (4, ) # (1, 8).

Proof. For part (1), an H3-decomposition of Gg 10 is H} = 0,6,1,7,8,9], [7,8,2,6,3
[6,8,0,7,1,9], [7,9,2,8,3,6], [6,9,4,7,5,8], [0,8,1,6,2,7], [4,9,3,7,5,6], [0,9,1,8,4,6], [2,9,3,8,
By Lemma 1.1, T divides K1g

For (2) and (3), assume T divides K7. Then K7y = H} + Hj 4+ 3H}, and so K7 — HY — H} = 3Hj.
Thus, any vertex in K7 — Hf — H;‘ must have degree 3 or less. We assume V(Hf) = Zg and note that
the vertex 6 does not appear in HY.

Now we attack (2). If (4,7) # (4,3), then A(H;»l) =2, s0in K7 — H} — H;L we have deg(6) > 4.
But this implies that H} does not divide K; — Hf — Hf, a contradiction. For the remaining triple
T = (H$, H3, H}), assume that deg(0) = 1 in H$, and observe that A(H3) = 3. In K; — H — Hj
we have deg(0) > 4 or deg(6) > 4 (or both), and thus H} does not divide K; — H§ — H3. This is a
contradiction, and so T does not divide K.

For (3), the T-decompositions of K7 with (4, ) € {(4,2),(5,2), (5,3), (5,7),(6,2),(8,3)} are given in
Appendix C. If (i,5) = (9,4), we may assume that deg(0) = deg(3) = 1 in HJ, and we observe that
A(H) = 3. In K7 — Hf — H} we have deg(0) > 4, deg(3) = 6, or deg(6) > 4, and thus F does not divide
K — HJ — H5. If (i,) € {(1,1),(2,1), (2,5), (3,1), (3,6), (10,1)}, then A(HS) = 2, so in K7 — G1 — G2
we have deg(6) > 4. Thus, F does not divide Ky — G; — G2, and so T does not divide K.

For (4), the T-multidecompositions for (i, j) # (1,8) are given in Appendix C. If (HS, HS, H}) divides
K7, we can assume HY 22 [0,1,2,3,4,5]. Since A(HY) = A(HS) = 2, the vertex 6 has degree at least
4 in Ky — HY — HS. Thus, the remaining edges cannot be partitioned into copies of H}, and so there
must be a copy of either HS or H remaining. This is impossible if V(HE) = Zg. Thus, without loss of
generality, HS =2 [6,1,0,2,4,3]. But then there are no copies of HS and a unique copy [1,4,6,0,3,5] of
HY in K7 — HY — HS. The edges 26 and 25, remain, which cannot be part of H3. O

For the remaining multidesigns of K7, note that a (H, H]‘-l, H3)- multipacking can have a leave of no
fewer than two edges.

Theorem 2.4. Let T be a graph-triple of order 6.
1. If T = (HY, HS, H}), then there exist T-multidesigns of K7 whose leave and padding are both P;.
2. If T = (H, Hj, H}), then there exist T-multidesigns of K7 with leave P; 4+ P, and padding P».

3. U T = (H], Hf, H3), then there exists a T-multipacking of K; with leave Py for all (i, ) # (3,6).
If (4,4) = (3,6), we have an optimal leave of P5 + P,.

4. IfT = (H],H}, H}), then there exists a T-multicovering of K7 with padding P, for (i,7) # (10,1).
For (i,7) = (10,1), we get a padding of Ps.

Proof. For (1), we have the T-multipacking given by HY =[0,1,2,3,4,5], HS =[0,2,1,3,5,6], and H; =
[0,4,1,6,2,5], [0,3,1,4,5,6]. The leave is {2,4}, {4,6}, {3,6}, which can be part of a T-multicovering
with a 3-edge padding. This is clearly optimal.

The remaining multidesigns are listed in Appendix C. Part (2) follows easily, and so it suffices to
prove that for T = (H, Hjs’, H3), we have neither a T-multipacking with leave P for (i, ) = (3,6) nor a
T-multicovering with leave Py for (4,j) = (10,1). These can be proven using arguments similar to those
in Theorem 2.3(2) and (3). O



We now consider the case m = 2 (mod 3). We begin with the case T' = (Hf,Hj@,Hf), in which a
T-multidecomposition is impossible. In Appendix C, we determine a T-multipacking with leave P, for
each graph-triple T = (HY, Hjﬁ, H3). Note that by adding in the remaining edge and two other edges
disjoint to the first, we get T-multicoverings with leaves P3 and P, + P». This gives us the following.

Theorem 2.5. Let T = (H}, HY, H}?) and m = 2 (mod 3). Then K,, has T-multidesigns with leave P;
and padding P, + Ps.

For each of the remaining triples T = (G1, Ga, H}), we demonstrate a T-multidecomposition of Kg.
We begin with the case T = (Hf, H;l, H3). Let H = Kg be the graph induced by Zg, and factor it into
T. Let H' = Gg g be the complement of H.

Lemma 2.6. For any 1 < j < 3, if we remove the edges of H;‘, from H, we can partition these edges

and some of the edges of H' using only copies of H} to obtain (up to relabeling V (H)) the graph with
the edge set E(H) U {{6,7}, {0, 6}, {1,6}, {4,7}, {5, T} }.

Proof. Each H;»l has two connected components. After removing edges of H;L from H, we get our first
copy of H} from an edge of each component of H;-l and {6,7}. Two edges of H;-l remain. Our next copy
of H} uses one of these edges. The other edges are formed by the vertices of the remaining edge of H ;1
and 6 and 7, respectively, unless there is only one additional vertex available on the remaining edge. In
this case, we choose the second vertex of the edge from one of the other vertices in H. There are now two
vertices in H whose edges with 6 and 7 have not been used, and that are not on the remaining edge of
H;l. Our last copy of H; is formed from the edges formed by these two vertices with 6 and 7, respectively,
and the remaining edge of H;-l. This completes the proof. O

We then get a T-multidecomposition for all graph-triples with j # 2.
Corollary 2.7. Any graph-triple T = (H¢, Hj‘-ﬂ H}) divides Kg for j = 1,3.

Proof. Fill in edges of Kg as in Lemma 2.6. We partition the remaining edges with either Hj =2
[2,6,3,0,7,1], [2,7,3,4,6,5] or Hy 2 [2,6,3,0,7,4], [1,7,2,5,6,3]. O

We turn our attention to Hj.

Lemma 2.8. Given any factorization of the graph H into T, and any %, j € Zg, we can remove the edges
of H} from H and then add two copies of H} to achieve the graph with edge set E(H) U {67,i6,j7}.

Proof. Without loss of generality, let H} = [0,1,2,3,4,5]. If ij ¢ E(H}), we can assume i = 0, j = 5
and add in H} = [0,1,4,5,6,7], [2,3,0,6,5,7]. If ij € E(H}), we can assume i = 0, j = 1 and add in
H3} =[0,6,1,7,2,3], [0,1,6,7,4,5]. Each gives us the desired graph. O

Corollary 2.9. (HS, Hy, H}) divides Kg.

Proof. Relabel V(H) so that Hy 20, 1,2, 3,4, 5], and remove these vertices. We remove and insert edges
as in Lemma 2.8 with i = 0, 5 = 5. We add in H} = [2,3,1,6,4,7], [1,2,0,7,4,6], and the remaining
edges are Hy = [5,6,3,7,0,1], [1,7,2,6,4,5]. O

Now we consider T-multidecompositions of Kg for graph-triples of the form T' = (H{, H}, Hy). As
before, we take an induced H = Kg with V(H) = Zg in Kg and factor it into T. Let H' = Gg g be the
complement of H.

Consider j = 1. We remove and add in copies of H} as in Lemma 2.8 with i = 0, j = 5, and we relabel
V(H) so that H} = [3,4,5,0,1,2]. Remove these edges, and add in H} = [6,4,5,0,7,2], [7,1,0,5,6,3],
[3,4,7,6,1,2].

For j = 2, we remove H; = [0,1,2,3,4,5] from H and then add in H} =[0,1,2,3,6,7], [1,7,2,6,4,5].
We partition the remaining edges with H3 = [7,5,0,1,6,4], [6,5,0,2,7, 3].

For j = 3, we remove Hj = [0,1,2,3,5,4]. We then add in H} = [1,4,2,3,6,7] and H) =
0,7,2,1,6,3], [2,6,1,0,7,5], [5,4,6,0,1,7].



Next, consider j = 4. We remove H] = [0,1,4,3,5,2], and add in H} = [1,2,3,4,5,6], along with
H? =[0,6,7,3,5,2], [4,6,1,0,7,3], [5,4,7,0,2,1].

For j = 5, we remove H? = [0,1,3,4,5,2]. Without loss of generality, the copy of H} in the factor-
ization of H is [0,3,1,4,2,5]. We remove these edges and add in H} = [7,0,6,5,3,4], [6,4,7,1,0,3]. We
then add in H? = [6,7,0,1,2,3], [6,0,7,4,5,2], [7,5,6,1,4,2].

We next consider j = 6. We remove HE = [0,1,4,5,2,3] from the factorization of H. We add in
H3 210,3,1,2,6,7] and H? =10,6,4,5,1,7), [6,4,2,3,7,5], [6,2,1,0,7,3].

Finally, consider j = 7. We remove H? = [0,1,5,4,3,2] from the factorization of H. We add in
H? ~1[6,4,7,0,2,3] and H2 = [0,1,7,3,2,6], [1,2,3,6,4,7], [6,7,0,2,4, 5].

We summarize our results as follows.

Theorem 2.10. Let T' = (G1, Go, H}) be a graph-triple of order 6, and let m > 6.

1. If m # 7, and if either m = 0,1 (mod 3) or (G1,G2) # (HY, HY) for all 1 <i,5 < 11, then T divides
KTYL'

2. T divides K7 if and only if either (G1,G2) = (H], H}) with (i, ) €
{(47 2)a (5a 2)7 (57 3)7 (51 7)7 (67 2)7 (87 3)} or (G1> G2) = (Hzﬁa Hf) with (Z,j) 7é (17 8)
3. Let T = (H{, HY, HY) with m = 2 (mod 3). K,, has T-multidesigns with leave P, and padding
P+ Ps.
4. ¥ T = (HY, HS, H}), then there exist T-multidesigns of K; whose leave and padding are both Pj.
5. If T = (HS, H;l, H?3), then there exist T-multidesigns of K7 with leave P, + P, and padding P.

6. If T = (HJ, H}, H}), then there exist T-multipackings of K7 with leave P, for all (i,7) # (3,6). If
(i,7) = (3,6), we have an optimal leave of P; + Ps.

7. T = (H, Hf, H3}), then there exist T-multicoverings of K with leave P, for (i, ) # (10,1). For
(i,7) = (10,1), we get an optimal leave of Pj.

3 Multidesigns for Graph-Triples (H}, H}, Hy)

We now consider graph-triples of order 6 of the form T' = (H?, H ;’,H ?). We construct multidesigns
recursively as before, but we address T- multidecompositions separately. Note that K, has mim=1)
edges, so a necessary condition for a T-multidecomposition is m = 0,1 (mod 5). The following gives us

our induction step and delineates the necessary base cases.
Lemma 3.1. Suppose that T' = (H?, H}, Hy) is a graph-triple of order 6. Then

1. If T divides Ko, and if the edges of K55, G510, and Gg 11 can be partitioned into copies of Hf’,
H?, and Hy, then T divides all K,, for m > 6 and m = 0,1 (mod 5).

2. If T divides Ko and K1, and if the edges of K55, K35, and Gs, can be partitioned into copies
of H?, Hg’7 and H} for n =10 or 11, then T divides all K,, for n > 6 and m = 0 (mod 5).

3. If T' divides K1; and K¢, and K5y, for all £ > 2, and if the edges of K5 5 and K3 5 can be partitioned
into copies of H?, H?, and Hy, then T divides all K,, for m > 6 and m = 1 (mod 5).

4. If T divides Kig, and if the edges of K3 5 can be partitioned into copies of H?, Hf, and H;;’, then
T divides K16



Proof. For (1), we start with m = 0 (mod 5). Let m = 5k. By assumption, T divides K¢, which gives us
the case k = 2. For k > 3, partition the vertices of K, into sets A, B, and C of sizes 5, 5, and 5k — 10,
respectively. By induction, T divides Kxi_5, which is isomorphic to the graph induced by B U C. The
remaining edges among AU B form G5 10, and the remaining edges between B and C' can be partitioned
into k — 2 copies of K55. For m = 1 (mod 5), let m = 5k + 1. A factorization of K¢ gives us k = 1.
For k > 2, partition the vertices of K, into sets A, B, and C of sizes 5, 6, and 5k — 10, respectively. By
induction, T' divides K54, which is isomorphic to the graph induced by BUC'. The remaining edges of
AU B form Gg 11, and the remaining edges between A and C' form k — 2 copies of K35 5. This gives us (1).

For (2), we first show that T divides K;5. Partition the vertices of Ki5 into sets A, B, and C of size
4, 5, and 6, respectively. Now T divides the graph induced by BUC. The remaining edges among AUC
form a copy of Gg 10 and the remaining edges among A U B form two copies of Ks 5, which gives us the
case n = 10. The case n = 11 is similar. For m = 5k, k > 4, partition the vertices of K5 into sets A
and B of size 10 and 5k — 10, respectively. We have that T" divides the graphs induced by A and B. The
remaining edges form 2k — 4 copies of K 5.

For (3), we need only show the result for m = 5k + 1, k > 4. We partition the vertices of Kzj11 into
sets A, B, and C of sets 5, 6, and 5k — 10, respectively. By induction, T' divides the graph induced by
AU B, and T divides the graph induced by C' by assumption. The remaining edges among A U C' form
k — 2 copies of K5 5, and the remaining edges among B U C' form 3k — 6 copies of K5 5, which completes
the proof.

For (4), we partition the vertices of Kig into sets A and B of size 6 and 10, respectively. We factor
the graph induced by A into T'. Also, T" divides the graph induced by B. The remaining edges form six
copies of K> 5, which completes the proof. O

For the base cases, we first consider triples with H7. By Lemmas 1.1 and 3.1(1), we require only the
following lemma.

Lemma 3.2. H15 divides K575, G’57107 G6710, and G6711.

Proof. For K3 5, let the partite sets be given by Zs and {a, b, ¢, d, e}. An H?-decomposition is [b,2,¢c,0, a, 1],
le,4,a,1,d,3], [¢,3,b,2,d,4], [e,0,d,3,a,2], [c,1,e,4,),0].
For G510, an H}-decomposition is [7,1,8,0,5,6], [5,2,8,0,6,9],
5,3,8,0,9,7], [7,4,9,1,5,8], [6,3,7,2.9.8], [6,4,5,3,9, 1], [7,2,6,4,8,0].
An H?p-decomposition of Gg 19 is [1,8,9,6,0,7], [7,5,8,6,1,9)],
8,2,7,6,9,3], [9,4,8,7,6,5], [8,0,9,7,3,6], [6,2,9,8,7, 4].
For Gg,11, an HY-decomposition is [8,9,1,0,6,7], [6,8,4,5,10,9],
[10,6,3,2,9,7], [4,7,2,0,8,10], [8,5,9,0,7,1], [10,3,9,4,6,2], [7,5,6,2,8,3], [10,1,6,4,9,0]. 0

Now we move on to the case i = 2. Lemma 1.1 and Lemma 3.1(2), (3), and (4) reduce our problem
to the following two lemmas:

Lemma 3.3. There exists an Hj-decomposition of Ks 5, K25, and Gg 10.

Proof. For K5, let the partite sets be Zs and {a,b,c,d,e}. An H3-decomposition is [1,d,a,b,0,],
[0,d,a,b,1,¢], [3,d,a,b,2,c], [4,d,a,e,3,V], [2,d,a,c,4,¢].

For K3 5, we have partite sets {a,b} and Zs. An H3-decomposition is [b, 3,0,1,a,2], [a,3,0,1,b,4].
Finally, for Gg,10, an H3-decomposition is [7,1,8,9,6,0], [6,3,7,9,8,2], [2,7,6,8,1,9], [4,6,7,8,3,9],
[0,8,6,7,5,9], [8,5,6,9,7, 4]. 0

Lemma 3.4. There exists a T-multidecomposition of K.

Proof. We factor the Kg induced by Zg into T so that HS = [4,5,2, 3,0, 1]. Remove {0, 2} and have it reap-
pear as {0,10}. This will still be a copy of H3. We partition the remaining edges into H3 = [7,1,8,9,6, 0],
9,3,8,6,7,2], [8,1,6,7,10,3], [10,5,7,8,9,4], [6,3,8,9,10,2], [7,3,0,2,8,5], [5,9,7,8,4, 6], [0,2,6,10,1,9]

O

What remains is the triple (H3, H?, H?). Lemmas 1.1 and 3.1(1) reduce our problem to the following.



Lemma 3.5. The following are true:
1. There exist an (H3, H?)-multidecompositions of K5 5 and G5 10.
2. There exists an (H3, H7, H?)-multidecompisiton of Gg 10.
3. There exists an Hi’—decomposition of G 11-

Proof. For (1),we start with K5 5. As before, let the partite sets be Zs and {a,b,c,d,e}. An (H3, H})-
multidecomposition is H3 = [d, 1,¢,0,4,b], [b,3,a,4,0,d] and H] = [2,a,0,b,c, 1], [2,¢e,4,¢,d,3], [1,¢,2,b,d, 3].
For G5 10, an (H3, H})-multidecomposition is HS = [1,9,5,3,8, 2] and H} = [0,5,6,2,3,1], 9,8,7,2,3,4],
[4,9,6,0,1,3], [2,5,8, 1,3, 4],
8,0,7,5,4,9], [4,6,7,1,9,8].
For (2), an (H3, H7, H?)-multidecomposition of Gg 10 is H3
[2’ 6,0,7,8, 1]7 [37 6,5,7,8, 4]3 [87 2,7,6,1, 9]3 [63 8,3,7,9, 0}7 Héi) =
[1,7,9,4,3,8], and HZ = [5,8,7,4,6,9].
Finally, for (3), an Hj-decomposition of Gg 11 is [0,6,7,2,5,1],
2,8,9,4,5,1],[0,7,10,4,5,1], [2,6,8,5,3,4], [0,8,10,1,6,4], [0,9,7,8,4,1], [3,6,9,2,10,5], [0, 10,3, 7,9, 2].
[

1

Putting Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.5 together, we get the following.
Theorem 3.6. For each m > 6 with m = 0,1 (mod 5), any triple T = (H}, H?, H}) divides K,,.

We now turn to multidesigns for the cases m = 2,3,4 (mod 5). If m = 2,4 (mod 5), then the number
of edges of K, is congruent 1 mod 5, and so an optimal multidesign must have at least a 1-edge leave
or 4-edge padding. If m = 3 (mod 5), the number of edges is congruent 3 mod 5, and so an optimal
multidesign must have at least a 3-edge leave or 2-edge padding. We show that each of these lower bounds
is achieved for all triples.

We begin with some designs that will prove useful to us.



Lemma 3.7.
1. There are H?-packings of Kg ¢ with leave P, for i = 1,2, 3, 4.
2. HZ5 divides K45 for i =1,3.
3. H3 divides K35 and H} divides K5 7.

Proof. Let Zg and {a,b,c,d,e, f} be the partite sets of Kgg. For (1), an H{-packing is [2,a,1,¢,3,b],
[5’d’47f7076]3 [4,6,2,d, 1?f]’ [5ab7 ].,d,O,CL}, [3’d7276747a]7 [Oab74767 170]7 [fa5ac,27673]3 with leave {27f}
An Hj-packing is [b,3,0,1,0a,2], [4,c, f,e,5,d], [a,5,1,0,b,4], [5,b,d,e,2,¢], [c,1,2,4, f,3], [1,d,c,e,0, f],
[d,0,1,4,e,3] with leave {3,a}. An H3-packing is

[3,a,1,b,¢,2], [0,a,4,€, f,5], [4,d,3,¢, f,0], [4,b,2,e,¢,5], [0,¢,1,d, f,4],

[3,e,0,b,d,5], [3, f,1,e,d,2] with leave {3,b}. Finally, an H}-packing is [b,0,a,1,2,c|, [d,1,b,2,3,¢],
[d7 2763 3’ 4’ 6}7 [f’ 3’ d’ 5747 6]7 [b7 5’ f’ ]" 2’ C:I’

[d,0,e,1,5, f], [e,4,a,3,5, f] with leave {4,b}.

For (2), let the partite sets of K45 be Zs and {a,b,c,d}. An Hp-decomposition is [2,a,1,¢,3,b],
[d,4,a,1,¢,0], [a,0,b,2,d,3], [b,1,d,2,c,4]. An H3-decomposition is [3,a,1,b,¢,2], [3,b,2,d,a,4], [4,¢,3,d,a,0],
[4,d,1,c,b,0].

For (3), label the vertices of K35 and Kj7 similarly as before. An H3-decomposition of K5 is
la,1,b,2,3,¢], [¢,4,a,2,3,b], [b,0,a,3,2,c]. An H7-decomposition of K57 is [2,a,1,¢,3,b], [1,¢,2,e,4,d],
[5,e,3,a,6,c, [0,a,4,b,5,d], [3,a,5,¢e,6,d], [4,b,6,e,0,c], [1,0,0,d,2,e]. O

Lemma 3.8. Let T' = (H?, Hf, H,‘z) Suppose that Kg has a T-multipacking with leave L, and that K,,
has a T-multipacking with leave P, for m = 7,9,12, 14.

1. If m = 2,4 (mod 5) and m > 17, then K,,, has T-multipacking with leave Ps.
2. If m = 3 (mod 5) and m > 18, then K,, has a T-multipacking with leave L.

Proof. Note that T includes either HY, H3, or HS. Suppose T includes H}. For (1), we begin with m = 2
(mod 5), so m = 5k + 2, k > 3. We first partition the vertices of K, into sets A and B of size 7 and
5k — 5, respectively. Now B induces a K55, which T' divides by Theorem 3.6. The graph induced by A
has a multipacking with leave P, by assumption, and the remaining edges form copies of K5 7, which T’
divides by Lemma 3.7(3). For H3, we partition the vertices of K,, into sets A, B, and C of size 6, 6, and
5k — 10, respectively. By Theorem 3.6, T' divides the graph induced by B U C, and the graph induced
by A can be factored into 7". The remaining edges among A U C' form copies of K 5, which T divides by
Lemma 3.3. The remaining edges among AU B form Kg g, which has a T-multipacking with leave P, by
Lemma 3.7(1). The argument for H3 is almost identical, using Lemma 3.7(3) in place of Lemma 3.3.

Now let m = 4 (mod 5), so m = 5k + 4, k > 3. We begin with Hy. Partition the vertices of K,, into
sets A, B, and C of size 4, 5, and 5k —5, respectively. Now AUB induces a Ky, which has a T-multipacking
with leave P, by assumption. The set C induces a Kri_5, which T divides. The remaining edges among
AUC form copies of Ky 5, which H} divides by Lemma 3.7(2). The remaining edges among B U C form
copies of K55, which H{ divides by Lemma 3.2. The argument for H3 is identical, except we partition
the copies of Ky 5 into copies of K35 and use Lemma 3.3. For HS, we partition the vertices of K,, into
sets A and B of size 9 and 5k — 5, respectively. The set A induces a Kg, which has a T-multipacking with
leave P, by assumption. Moreover, T' divides the graph induced by B, which is K5;_5. The remaining
edges form copies of K3 5, which H3 divides by Lemma 3.7(3).

For (2), we have m = 5k + 3, k > 3, and we partition the vertices of K, into sets A and B of size
8 and 5k — 5, respectively. We have a T-multidecomposition of the subgraph induced by B as well as a
T-multipacking of the graph induced by A with leave L. The remaining vertices can be partitioned into
either copies of Ky 5 or Ky 5. HS divides the first of these, and HY and H§ divide the second. O

This reduces the multipacking problem to finding optimal multipackings for K,,, m = 7,8,9,12,13, 14.
We construct these multipackings so that the leave is a subgraph of one of the graphs in the triple, which
yields an optimal T-multicovering. We begin with a technical lemma.



Lemma 3.9. Let G be the graph given by K33 along with an additional 2-path among the vertices of
one of the partite sets P. Then G has an H}-packing with leave P,. Furthermore, the leave is between
two vertices in P.

Proof. Let the partite sets of K33 be Zs and {a,b,c}, and let the additional edges of G be {0,1} and
{1,2}. We then have the H}-packing [b,2,¢,0,a,1], [1,2,a,b,0,c] with leave {0,1}. O

The following gives us optimal multipackings for m = 2,4 (mod 5).
Lemma 3.10. For m = 7,9,12,14 and T = (H?, Hf, H?), K, has a T-multipacking with leave Ps.

Proof. For K7, we begin with triples T' that include HS. Now Zg induces a Kg, which we can factor into
T. We remove the copy of H3 (say [1,0,4,5,3,2]). We then insert Hj = [1,0,5,3,6,2], [3,5,1,0,6,4],
which gives us a multipacking with leave {2, 3}. For triples that include H3, we factor an induced Kg into
T and remove Hj =2 [0,1,2,3,5,4]. We then insert H = [3,6,0,1,5,4],[5,6,2,3,4,1]. The leave is {1,2}.
The remaining triple is (H7, H2, H?). We remove H} = [3,4,5,0,1,2] and insert H} = [6,2,1,3,4, 5] and
H2 2[0,1,2,3,4,6]. The leave is {3,6}.

For multipackings of Ky, we first consider triples that include either HY or H3. By Theorem 1.1,
it suffices to construct an Hp-decomposition of Ggg for i = 1,3. An Hp-packing is [6,8,4,3,7,2],
[1,8,2,0,6,7], [7,8,5,3,6,4], [7,0,8,1,6,5] with leave {3,8}. An H3-packing is [0,6,1,8,2,7],
[3,7,0,8,6,5], [2,8,4,7,6,3], [5,8,6,2,1,7], with leave {4,6}.

Two triples remain, both of which include H3. We factor the K¢ induced by Zg into H3 2 [1,0, 4,5, 3, 2].
Remove the edges of this subgraph, and insert H = [1,0,8,2,7,6], [3,7,1,2,8,4], [2,1,4,5,6,3], [3,5,0,2,6, 8],
[8,5,1,4,7,0]. The leave is {5,7}.

For multipackings of K12, we first consider triples T that include either HJ or Hj. Partition the
vertices of K1, into two sets of size 6. Each subset induces a Kg, which can be factored into 7. The
remaining vertices form Kg g, which has a T-multipacking with leave P by Lemma 3.7(1).

The only remaining triples include a copy of Hy. Partition the vertices of K5 into the sets A = Zg
and B = Zj5 — Zg, and factor each induced subgraph into 7. We remove H} = [3,4,5,0,1,2]. The
remaining edges among {0,1,2,6,7,8} form the graph G from Lemma 3.9. We execute an H}-packing
with leave {0,1}. We do the same thing with the vertices {0,1,2,9,10,11}, only this time with a leave
of {1,2}. The same process with the vertices in {3,4,5} U B give us a T-multipacking with leave {2, 3}.

For multipackings of Kj4, T divides the subgraph induced by Z;; by Theorem 3.6. For triples
that include H}, we remove H} = [3,4,5,0,1,2] from the T-decomposition. We then insert Hy =
[11,1,2,13,12,0],

[6,11,10,1,0,13], [7,11,8,12,1,13], [12,4,3,13,11,5], [10,12,6,4,5,13],

[8,12,7,11,4,13], [3,11,9,12,2,13], [12,9,13,3,2,11]. The leave is {3,12}. We proceed similarly for H3,
removing HS = [1,0, ,5,3,2] and adding in Hj = [13,7,0,1,12,2], [13,4,7,1,11,5], [5,3,13,11,6,12],
[13,0,7,3,12,10], [1,2,12,10,11,0], [3,4,12,13,8,11], [4,11,1,3,13,12], [2,3,12,13,9,11]. The leave is
{11,13}. Our last case is the triple (H3, H}, H2). We take a T-multidecomposition on the subgraph
induced by Z19. We add in H} = [1,10,11,2,3,0], [0,11,12,4,5,1], [2,12,13,5,4,3], [3,10,12,0,1,2],
[4,11,13,2,3,5], [5,10,13,0,1,4]. Then add in H = [6,10,8,12,11,7], [13,9,12,7,6,11], [7,13,8,11, 12, 6].
The leave is {9,10}. O

We now proceed to optimal multipackings for m = 8, 13.

Lemma 3.11. For m = 8,13 and T = (H}, H}, H}), K, has a multipacking with a 3-edge leave that is
a subgraph of least one of the graphs in T

Proof. We begin with Kg. For multipackings into triples T that include H7, we factor an induced Kg into
T and remove H} = [3,4,5,0,1,2]. We then add in H} = [3,7,5,0,6,2], [7,4,5,6,1,0], [6,3,4,1,2,7].
The leave is {4,6}, {5,6}, {1, 7}, which is a subgraph of H}. For triples that include HS, we factor a Kg
into T as before. We then add in HS = [7,3,0,1,6,2], [6,5,0,1,7,4]. The leave is {3,6}, {6,7}, {5, 7},
which is a subgraph of HS. What remains is the triple (H3, H, H2). We remove H} = [1,2,3,4,5,0]



of from a factorization of K into T and add in H} = [1,6,7,4,5,0], [1,2,6,3,4,7], [0,7,3,4,5,1]. The
leave is {0, 2}, {2,3}, {5,6}, which is a subgraph of any graph in T.

For K3, we begin with triples that include HY. By Theorem 3.6, T' divides the graph induced by
Zy,. We remove H? = [3,4,5,0,1,2] and insert H? = [12,2,1,0,11,3], [12,0,1,6,11,7], [11,2,3,6,12,1],
[5,12,8,3,4,11], [9,11,10, 5,4, 12]. The leave is {8,11}, {11,12}, {12, 10}, which is a subgraph of H}. For
triples that include H3, we get a T-multidecomposition of the subgraph induced by Z; by Theorem 3.6.
The bipartite subgraph induced by Zs and {12, 13} is isomorphic to K3 5, which HS divides by Lemma 3.3.
We add in HS ¢ [11,5,7,8,12,6], [11,7,5,10,12,9]. The leave is {8,11}, {10,11}, {11,12}, which is a
subgraph of H3. The final triple is T = (H3, H, H?), which divides the subgraph induced by Zjo.
The remaining edges minus the subgraph induced by {10, 11,12} form two copies of K35, which can
be partitioned into copies of H3 by Lemma 3.7(3). The leave is {10,11}, {11,12}, {12,10}, which is a
subgraph of H2. O

The leaves in the multipackings of Lemmas 3.10 and 3.11 are subgraphs of at least one graph in the
given graph-triple. Thus, if the leave has size s, we can obtain a multicovering of size 5—s. We summarize
this, along with the other results of this section, in the following theorem.

Theorem 3.12. Let T = (H}, H?, H}) be a graph-triple of order 6, and let m > 6.
1. If m =0,1 (mod 5), then T divides K,,.

2. If m =2 or 4 (mod 5), then K,, has a T-multipacking with leave P, and a T-multicovering with a
4-edge padding.

3. If m = 3 (mod 5), then K, has a T-multipacking with a leave of three edges and a T-multicovering
with a 2-edge padding.

4 Conclusion

We have settled the T-multidesign problem of K, into graph-triples 7" of order 6 that are of the form
(G1,Ga, H}) or (H?, H?, HY), but the problem is still open for graph-triples of the forms (H], H}, H}!)
and (HS, H j5 , Hg) Another extension of this work will be to investigate multidesigns into graph-triples
of order 6 with various specified leaves.
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A Graphs of Order 6 that are Part of Graph-Triples
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B The Graph-Triples of Order 6

The graph triples of order six T' = (G1,G2,G3) = (Hfll,Hf;, HB)7 where jj represents the number of
edges in the graph Gy.

FOYj1:87 j2:47 j3:37
T = (G17G27G3) € {(ngv Hilv Hi)))’ (va Héa H%)u (H287 H247 Hf’),
(H3, H, HY), (Hf, H3, H})}, (HS, H{, H?).

Forj1:7a j2:47 j3:47

T= (G17G27G3) € {(H177 I_{?v H;) (H2:7 Hii, H%)ﬂ (H%a Hiv H%l)7
(Hflrv H}L’ Hi)a (H{L?v H}lv Hi)a (H4’177 Hiv Hi)v
e N A s U Ay
(Hg‘.a 247 H34)7 <H87 Hla HS)) (HQ’ H17 H2>7

(H107 Hlv H2 }

Forj1:77 j2:57 j3:37

T= (G17G27G3) € {(H;l?v H5157 -H:)v (H’Q’Zv lev le)a (Hé’;? Hg;v Hli)v
(H?n Hla H1)7 <H37 HG? Hl)a (H47 H27 H1>7
(H57 H27 H%)’ (H577 H??) H%)a (H57’ H757 H%)v
(H$7 H23 ng) (Hg7 H??: H%)a (Hga Héi)v H?)7

(Hlo, Hla H )}

FOI‘j1:6,j2—5 j3 4

(G13G27G3) € {(176{37 1{515) Hl)’ (nga H157 H%)7 (nga HEE7 H%)a
(Hl’ H6’ Hl)v (HQa H17 H1)7 (H25 Hla HQ)a
(Hy, HY, H3), (HS, H3, Hy), (HS, H3, HY),
(H3, H3, Hy), (H3, Hy, Hy), (H3, Hg, Hy),
(G . G
H7HaH7 HaH7H7 H‘5H7H7
o N e e s s i i
(HS’ H2v Hi)v (H?n H37 Hi)v (HSa H5v H%l)v
(H??v H55v H3)7 (H??v Hgv H2)7 (H?(ja H?v Hl)v
(Hz?v Hir)v H%)v (HE, Hir’v Hé)a (HE, Hlsv H§)a
G g (g b (e A
(H47 H5v HQ)’ (H4’ HG? H1)7 (H4a H67 H3)7
(HY, H?, HY), (HS, H7, Hy), (Hg, Hy, Hj),
(H56a H25a Hé)v (Hga Hf;), H%)v (H565 Hga Hg),
(Hfza H3:a Hijii)v (H527 H4Za Hi)v (H52a H7Za H%)a
EH%a H157 H}lgv EH?S’ H157 Hi;v EH%a H25a H}lgj
HG’ H27 H2 ’ H67 H27 Hd ) H67 H37 Hl )
(Hg, H3, Hy), (Hg, H3, Hy), (Hg, H, Hy),
(Hg’ Hg)’ Hé)? (Hg’ H757 H%)? (Hg’ H%r)’ Hg)’
(H§7 H’%:)? H%)? (HE’ Hf? H%)? (H’g5 Hé?? H%)?
(H7’ Hé)v H2)v (H77 Hzi)v HQ)’ (H7a Hé)a Hl)v
(H?, Hg, Hy), (H?, H?, Hy), (H?, H?, H),

(Hg, HY, Hy), (Hg, H3, H{
(H§, H3, Hy), (Hg, H}, H;
( ), (Hiy, H3, Hj),
(H?O’ H55’ Hf)v (H?O, H?? H?il)’
( ) )
( )

);
)

)

) (Hlﬁlv Hf’?a H% )
3/ (H1617 H757 Hé)}

Forj1:67 j2:67 j3:37

13



T = (G1,G2,G3) € {(H}, HS, H}),

For j1 =5, jo =5, js =5

(H3, HS, HY),
(HS, HS, H}), (HF, H?, H}),

(H?, Hiy, HP)}.

T =(G1,G2,Gs) € {(Hy, H3, H3), (Hy, H3, Hp),
(Hy, H3, H3), (HY, H3, H?),
(H3, H3, H}), (H3, H3, H3),
(H3, H3, H), (H3, HE, H?),

C Multidesigns for K; and Kjy

For the following, V(K7) = Z7 and V(Kg) = Zs. We begin with T-multidecompositions of K7 for

T = (H],Hj, HY).

o T = (H] H3, H}):

B

T = (HI, H, HY):

=

T = (HI, H, HY):

=

T= (HgvH?aHf)

=

T = (H]. . HY):

=

T = (HI, H, H):

The T-multidecompositions of

o T'=(H3, Hg, H}): H.

L8

T — (H3, HY. 1Y)

T = (HS, HS, H):

»—Amc,g mm@

T = (HS, HS, H):

T

T= (H66aH1613H§)
H

T = (HS, HS),H}): H

(s

7

o:N: cnm\]

'—‘mc,c l\% N GTN:

B

[}

6

3
1
6
3

1

=~ [3,4,5,0,1,2], HS = [3,1,2,5,6,0],
~o,1,3,5,4,6],[0,2,3,6,4,5],[0,4,1,6,2,5]
= [3,4,5,0,1,2],H§ ~13,5,2,1,6,0],
=~ 10,2,1,4,5,6],[0,4,2,5,3,6],[0,5,1,3,4, 6]
= [3,4,5,0,1,2], H} = [4,6,0,2,3,5],
=~10,3,1,6,2,5,[0,4,1,3,2,6],[0,5,1,4, 3, 6]
g [33475707172}7H$ g [07571747376}7
~[0,2,1,6,3,5],[0,3,2,5,4,6],[0,4,1,3,2,6]
=~ [3,1,5,0,4,2], H3 = [5,0,1,2,6, 3],
~[0,2,1,3,4,6],[0,3,1,4,5,6],[0,6,2,5, 3, 4]
= [2,175,074,3],H§ ~13,6,2,4,1,0],
~0,2,1,3,5,6],[0,3,2,5,4,6],[0,4,1,6,3,5]
Ky for T = (HJ, H}, H}) are given by
g [47076717273}7
= [3767274)5’ 1]7 [57334767072]7
~[0,5,1,4,2,6].
~3,4,6,0,1,2,], HS =~ [1,3,4,6,2,5],
=~ 0,3,2,4,5,6], [0,5,1,4,3,6], [0,2,1,6,4,5].
~1,0,6,4,3,2], Hg ~16,4,0,2,1,5],
~[1,6,2,4,3,5], [1,3,2,6,0,5], [1,4,2,5,3,6].
=~ [2,3,4,6,0,1], HS ~[1,4,2,0,6,5],
~1,3,4,6,0,5], [1,4,3,6,2,5], [1,6,3,5,0,4].
~11,2,3,4,6,0], Hfl =~ [4,5,3,0,1,6],
=~ [1,4,2,6,0,5], [1,5,3,6,2,4], [1,6,2,5,0,4].
= [074737175?6]7 H160 = [17274a5a350]7
~[1,4,2,6,0,5], [1,5,2,4,3,6], [1,6,2,5,0,4].

(H, HY, HY),
(Hga H?la Hf)a

)

(Hy, H3, H?)
(Hy, H3, H?)
(H3, H3, H?),
(H3, Hf, H?)}.

)

We now move on to optimal T-multipackings of K7 for T = (H, H;l, H}).
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The optimal T-multipackings of K for

o T=(HT,H? H3): HT

T= (HlsvHilaHf)

T = (HY, Hi, H}):

T = (H3, H, HY):

T= (HgvHilaHf)

T = (H, H}, HY):

T = (B3, HYHY):

T = (H, 1Y, 1Y),

T = (H]. HE. H}):

T = (HJ, H}, HY):

T = (H], H. HY):

T = (Hj, H}, H):

1R 1R 1R MR 1R 1R R

11 1R

BAN BEE HEN

1R 1R

111 1R

By

Hy
Hy

1R 1R

Hj
Hy
HY

11111

Hj
H
Hy

1R 1R

11 1R

111

SR oW oOFw oOF" oFw

i

S Sow OFR TSuw oFw

o ot en

W W ot

O O o

N DO

oSO = O Ut

WwW Ul DT O W

= ootot o ot an

.
S
<
)
=

1R 1R

BB

S o=

S =N

=N O

— o O

=W o

— s =

»—A»JkJO

— W O

—= W o

— O O

=N O

= O

— O W

[NCRE N}

.2

W w =

e V)—l

DN W N

W N~ QU = =

ot Ot =

SN =

S O =

O = =

U N

[SR-NN

ISR

I =2) ot O N

[N

ISR

Lo N

N =N

[\DJ)—‘[\D

ua ~
w

w Ut

N

)

SN R N R R

SR

[SARNVV]

1
.3
5

S

A~ Ot W oL =W D B~ W

RSSO

=)

]
]

]
]

]
]

]
]

]
]

9 []'7 67 2’ 37 07 4]’
. Leave is 56 & 14.

a[0a671557274]a
. Leave is 04 & 56

) [47 67 27 57 17 3]
. Leave is 06 & 24.

) [07 57 17 27 37 4]
. Leave is 12 & 56.

) [3a la 4) 07 27 6]7
. Leave is 06 & 35.

]

]

]
]

]
]

]
]

T

]
]

Y [07 4’ ]‘52767 3]3

,5]. Leave is 01 & 56.

(H,H}, H}) are

) [5a 3a 17 27 07 6]7
. Leave is 46.

) [67 2? 5’ 17 3? 0]’
. Leave is 46.

) [2a 57 0) 47 17 6])
. Leave is 36.

) [Oa 5a 37 47 67 2]7
. Leave is 06.

7H65 = [072737574’ 6}7
) [0737 1763235]'
6.

) [Oa 47 2) 57 67 1])
. Leave is 36.

T = (HZO’HiS’HiO’) HI’L?O = [17273?47570]a

Hp 21,42,
Hf g [0747 1’ ’2’

0
)

767

3]
6]

) [2? 3? 07 17 67 5]’
. Leave is 46.

The optimal T-multicoverings of K7 for (T = H, Hjs’, H}) are
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1,15,3,1,4,2,6],
]. Padding is 24.
1,15,3,0,4,6,1],
]. Padding is 35.
1,10,3,6,5,1,4],
]. Padding is 34.
1,13,1,5,6,2,0],
]. Padding is 23.

)

)3
,0
4

)

3
)
6

[3,2,0,1,5,4],[0,2,5,6,1,4],
[3a 67 2; 5? 47 1];

f’): HT >~

(HI,HZ H

o T =

1,10,1,4,5,2,6],
]. Padding is 23.

[0,6,4,2,3,5]. Padding is 14.

ing is

3
5_
3~

6
1

Padd

H,

(HY, HY, HY).

Finally, we have the following optimal T-multipackings of Kg for T’

b

7,2,6
2,1,6

)

0
0

[
[

4
4
4

b

5
7
0

— NS

,3
5
1

0
0
2

[
[

Leave is 13.

2l

ek

o = (HGaHGaHf): H

3,5],[1,7,3,6,4, 5],
3

5 Lty Yy 77]7
[6,7,1,4,2,5].

6 ~
5 =

)

~ow™

)

b

)

)

)
)

=)

~

s
=
< <
s
PN
m:mA..v
< oS
7757Wv
R
. ~C©
=N
~~"=
+ S
S < e
— — <
NN S
So.a.
Al

3H1

e
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76]7

7477}7 [03671757274}7
3

,2,3,4,5,0].

0,4,3,6,5,7),[0,5,1,3,2,7],[0,6,2,4,3,7],

.T:(Hﬁ’ 160’ f’) %g

]7H160 = [1a074567372]'

75]7[1a532767374]7
7

3

2
6

=
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