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Abstract

We call T = (G1, G2, G3) a graph-triple of order t if the Gi are pairwise non-isomorphic graphs
on t non-isolated vertices whose edges can be combined to form Kt. If m ≥ t, we say T divides Km

if E(Km) can be partitioned into copies of the graphs in T with each Gi used at least once, and we
call such a partition a T -multidecomposition. In this paper, we study multidecompositions of Km for
graph-triples of order 6. We focus on graph-triples in which either one graph is a perfect matching
or all graphs have 5 edges each. Moreover, we determine maximum multipackings and minimum
multicoverings when Km does not admit a multidecomposition.

1 Introduction

The graph decomposition problem, in which the edges of a graph are decomposed into copies of a fixed
subgraph, has been widely studied (see [BHRS80], [BS77], and [Kot65]). In [AD03], A. Abueida and M.
Daven extended this notion to graph-pairs. Given graphs G1 and G2 such that G1∪G2 = Kt, they sought
complete graphs Km with m ≥ t whose edges can be partitioned into copies of G1 and G2 using at least
one copy of each graph. They called such a partition a (G1, G2)-multidecomposition.

In the same paper, the authors studied maximum multipackings and minimum multicoverings when
a multidecomposition is impossible. A maximum multipacking is a partitioning of a subset of E(Km)
into copies of G1 and G2, using at least one copy of each Gi where the number of edges outside the
partition, called the leave, is minimum. A minimum multicovering is a collection of copies of both Gi

that use all edges of Km at least once and where the number of edges used more than once, called the
padding, is minimum. A multidesign refers to a multidecomposition, a maximum multipacking, or a
minimum multicovering. The authors solved the existence problem for all optimal multidesigns of Km

into graph-pairs of order 4 and 5. In [ADR05], Abueida, Daven and K. Roblee proved similar results for
multidesigns of λKm into graph-pairs of orders 4 and 5 for any value of λ ≥ 1.

In this paper we define a graph-triple T = (G1, G2, G3) of order t to be a triple of non-isomorphic
graphs G1, G2, and G3 without isolated vertices that that factor Kt (i.e. G1 ∪G2 ∪G3 = Kt). We define
T -multidecompositions, T -multipackings, T -multicoverings, T -multidesigns, and the notion of T dividing
a graph analogously with the graph-pair definitions.

One can show that there are no graph-triples of order t ≤ 5. We therefore consider graph-triples of
order 6. An exhaustive search shows that there are 131 such graph-triples (see Appendix B). In Section 2,
we determine the sizes of the leave and padding for all optimal multidesigns of Km into graph-triples of
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order 6 that include a perfect matching (see Theorem 2.10). In Section 3, we prove analogous results for
graph-triples whose graphs have 5 edges each (see Theorem 3.12).

We list the graphs that are part of graph-triples of order 6 in Appendix A. In memory of Frank
Harary, we will denote the ith graph on 6 vertices with j edges and no isolated vertices with the notation
Hj

i . The graphs are obtained from [HP73], where we remove graphs that cannot be part of a graph-triple
of order 6. Note that the vertices are labeled a through f . If vk ∈ V (Km) for k ∈ {a, b, c, d, e, f}, we will
denote by [va, vb, vc, vd, ve, vf ] the subgraph of Km isomorphic to Hj

i in which each vk plays the role of

k. This will not be ambiguous as long as we specify Hj
i .

We write V (G) to denote the vertex set of G and deg(v) to denote the degree of v ∈ V (G). Further,
∆(G) = max{deg(v) : v ∈ G}. We write G1 + G2 to denote any graph with edge set E(G1) ∪ E(G2)
and kG1 to be a graph whose edges can be partitioned into k copies of G1. We let V (Kn) = Zn, and for
r ≤ n, we consider Zr ⊆ Zn in the natural way. Note that Zr induces a subgraph of Zn isomorphic to
Kr. We define Gr,m = Km − Kr with V (Gr,m) = Zn, and we let the vertices from which the edges of
Kr are removed be Zr. If m ≥ 6, we have Km = K6 ∪ G6,m. We can factor K6 into any graph-triple of
order 6, and so we get the following.

Lemma 1.1. Let m ≥ 6, and let T = (G1, G2, G3) be a graph-triple of order 6. Suppose G6,m has a
T -multipacking with leave L (resp. a T -multicovering with padding P ). Then Km has a T -multipacking
with leave L (resp. a T -multicovering with padding P ).

For other terminology used but not defined herein, see [BM79], [LR97].

2 Multidesigns for Graph-Triples (G1, G2, H
3
1)

In this section, we determine multidesigns of Km for graph-triples T = (G1, G2,H
3
1 ) of order 6. The

multidesigns are generated recursively. We begin with a lemma.

Lemma 2.1. H3
1 divides K3,m for all n ≥ 3.

Proof. The cases m = 3, 4, 5 are easy to prove. Let m = 3k + r with k ≥ 0, and r = 3, 4, or 5. We have
K3,m = K3,r + kK3,3. Then H3

1 divides K3,r and K3,3, which completes the proof.

This gives us the following.

Lemma 2.2. Let T = (G1, G2,H
3
1 ) be a graph-triple of order 6, and let m ≥ 6, m 6= 7. For each

T -multidesign of Km, there is a T -multidesign of Km+3 with the same leave or padding.

Proof. Take Zm ⊆ V (Km+3), whose induced subgraph is Km, which has the given T -multidesign. With-
out loss of generality, Z6 is the vertex set of H3

1
∼= [0, 1, 2, 3, 4, 5] in the T -multidesign. If m 6= 8, remove the

edges of H3
1 , and add in H3

1
∼= [0, 1,m,m + 1, 2,m + 2], [2, 3,m + 1,m + 2, 4,m], [4, 5,m,m + 2, 0,m + 1],

[1,m, 3,m + 1, 5,m + 2], [0,m, 2,m + 1, 4,m + 2], [1,m + 1, 3,m + 2, 5,m], [0,m + 2, 2,m, 4,m + 1],
[1,m + 2, 3,m, 5,m + 1]. The remaining edges between Zm and {m,m + 1,m + 2} form a graph iso-
morphic to K3,m−6, which can be filled in with copies of H3

1 by Lemma 2.1. The leave or padding is
unchanged.

What remains is the case m = 8. Now Z8 induces a K8 in K11, which has the given T -multidesign. We
remove H3

1
∼= [0, 1, 2, 3, 4, 5] and insert H3

1
∼= [6, 8, 7, 9, 5, 10], [6, 9, 7, 10, 0, 8], [6, 10, 7, 8, 1, 9], [8, 9, 3, 10, 4, 5],

[9, 10, 4, 8, 2, 3], [8, 10, 2, 9, 0, 1], [0, 9, 1, 8, 2, 10], [3, 8, 4, 10, 5, 9],
[0, 10, 2, 8, 3, 9], [1, 10, 4, 9, 5, 8] gives us a T -multidesign with the same leave or padding as that in K8.

Lemma 2.2 reduces our problem to determining optimal multidesigns for each congruence class modulo
3. The case m ≡ 0 (mod 3) is easily disposed of by a factorization of K6. It is different for m ≡ 1, 2
(mod 3), as in those cases not every multidesign is a multidecomposition. For m ≡ 1 (mod 3), we have
the following.

Theorem 2.3. Let T = (G1, G2,H
3
1 ) be a graph-triple of order 6.
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1. T divides K10.

2. If G1 = H8
i and G2 = H4

j , then T does not divide K7.

3. If G1 = H7
i and G2 = H5

j , then T divides K7 if and only if
(i, j) ∈ {(4, 2), (5, 2), (5, 3), (5, 7), (6, 2), (8, 3)}.

4. If G1 = H6
i and G2 = H6

j , then T divides K7 if and only if (i, j) 6= (1, 8).

Proof. For part (1), an H3
1 -decomposition of G6,10 is H3

1
∼= [0, 6, 1, 7, 8, 9], [7, 8, 2, 6, 3, 9], [6, 7, 4, 8, 5, 9],

[6, 8, 0, 7, 1, 9], [7, 9, 2, 8, 3, 6], [6, 9, 4, 7, 5, 8], [0, 8, 1, 6, 2, 7], [4, 9, 3, 7, 5, 6], [0, 9, 1, 8, 4, 6], [2, 9, 3, 8, 5, 7].
By Lemma 1.1, T divides K10

For (2) and (3), assume T divides K7. Then K7 = H8
i + H4

j + 3H3
1 , and so K7 − H8

i − H4
j
∼= 3H3

1 .

Thus, any vertex in K7 − H8
i − H4

j must have degree 3 or less. We assume V (H8
i ) = Z6 and note that

the vertex 6 does not appear in H8
i .

Now we attack (2). If (i, j) 6= (4, 3), then ∆(H4
j ) = 2, so in K7 − H8

i − H4
j we have deg(6) ≥ 4.

But this implies that H3
1 does not divide K7 − H8

i − H4
j , a contradiction. For the remaining triple

T = (H8
4 ,H4

3 ,H3
1 ), assume that deg(0) = 1 in H8

4 , and observe that ∆(H4
3 ) = 3. In K7 − H8

4 − H4
3

we have deg(0) ≥ 4 or deg(6) ≥ 4 (or both), and thus H3
1 does not divide K7 − H8

4 − H4
3 . This is a

contradiction, and so T does not divide K7.
For (3), the T -decompositions of K7 with (i, j) ∈ {(4, 2), (5, 2), (5, 3), (5, 7), (6, 2), (8, 3)} are given in

Appendix C. If (i, j) = (9, 4), we may assume that deg(0) = deg(3) = 1 in H7
9 , and we observe that

∆(H5
4 ) = 3. In K7 −H7

9 −H5
4 we have deg(0) ≥ 4, deg(3) = 6, or deg(6) ≥ 4, and thus F does not divide

K7 − H7
9 − H5

4 . If (i, j) ∈ {(1, 1), (2, 1), (2, 5), (3, 1), (3, 6), (10, 1)}, then ∆(H5
2 ) = 2, so in K7 − G1 − G2

we have deg(6) ≥ 4. Thus, F does not divide K7 − G1 − G2, and so T does not divide K7.
For (4), the T -multidecompositions for (i, j) 6= (1, 8) are given in Appendix C. If (H6

1 ,H6
8 ,H3

1 ) divides
K7, we can assume H6

1
∼= [0, 1, 2, 3, 4, 5]. Since ∆(H6

1 ) = ∆(H6
8 ) = 2, the vertex 6 has degree at least

4 in K7 − H6
1 − H6

8 . Thus, the remaining edges cannot be partitioned into copies of H3
1 , and so there

must be a copy of either H6
1 or H6

8 remaining. This is impossible if V (H6
8 ) = Z6. Thus, without loss of

generality, H6
8
∼= [6, 1, 0, 2, 4, 3]. But then there are no copies of H6

8 and a unique copy [1, 4, 6, 0, 3, 5] of
H6

1 in K7 − H6
1 − H6

8 . The edges 26 and 25, remain, which cannot be part of H3
1 .

For the remaining multidesigns of K7, note that a (H8
i ,H4

j ,H3
1 )- multipacking can have a leave of no

fewer than two edges.

Theorem 2.4. Let T be a graph-triple of order 6.

1. If T = (H6
1 ,H6

8 ,H3
1 ), then there exist T -multidesigns of K7 whose leave and padding are both P4.

2. If T = (H8
i ,H4

j ,H3
1 ), then there exist T -multidesigns of K7 with leave P2 + P2 and padding P2.

3. If T = (H7
i ,H5

j ,H3
1 ), then there exists a T -multipacking of K7 with leave P2 for all (i, j) 6= (3, 6).

If (i, j) = (3, 6), we have an optimal leave of P3 + P2.

4. If T = (H7
i ,H5

j ,H3
1 ), then there exists a T -multicovering of K7 with padding P2 for (i, j) 6= (10, 1).

For (i, j) = (10, 1), we get a padding of P3.

Proof. For (1), we have the T -multipacking given by H6
1
∼= [0, 1, 2, 3, 4, 5], H6

8
∼= [0, 2, 1, 3, 5, 6], and H3

1
∼=

[0, 4, 1, 6, 2, 5], [0, 3, 1, 4, 5, 6]. The leave is {2, 4}, {4, 6}, {3, 6}, which can be part of a T -multicovering
with a 3-edge padding. This is clearly optimal.

The remaining multidesigns are listed in Appendix C. Part (2) follows easily, and so it suffices to
prove that for T = (H7

i ,H5
j ,H3

1 ), we have neither a T -multipacking with leave P2 for (i, j) = (3, 6) nor a
T -multicovering with leave P2 for (i, j) = (10, 1). These can be proven using arguments similar to those
in Theorem 2.3(2) and (3).
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We now consider the case m ≡ 2 (mod 3). We begin with the case T = (H6
i ,H6

j ,H3
1 ), in which a

T -multidecomposition is impossible. In Appendix C, we determine a T -multipacking with leave P2 for
each graph-triple T = (H6

i ,H6
j ,H3

1 ). Note that by adding in the remaining edge and two other edges
disjoint to the first, we get T -multicoverings with leaves P3 and P2 + P2. This gives us the following.

Theorem 2.5. Let T = (H6
i ,H6

j ,H3
1 ) and m ≡ 2 (mod 3). Then Km has T -multidesigns with leave P2

and padding P2 + P2.

For each of the remaining triples T = (G1, G2,H
3
1 ), we demonstrate a T -multidecomposition of K8.

We begin with the case T = (H8
i ,H4

j ,H3
1 ). Let H ∼= K6 be the graph induced by Z6, and factor it into

T . Let H ′ ∼= G6,8 be the complement of H.

Lemma 2.6. For any 1 ≤ j ≤ 3, if we remove the edges of H4
j , from H, we can partition these edges

and some of the edges of H ′ using only copies of H3
1 to obtain (up to relabeling V (H)) the graph with

the edge set E(H) ∪ {{6, 7}, {0, 6}, {1, 6}, {4, 7}, {5, 7}}.

Proof. Each H4
j has two connected components. After removing edges of H4

j from H, we get our first

copy of H3
1 from an edge of each component of H4

j and {6, 7}. Two edges of H4
j remain. Our next copy

of H3
1 uses one of these edges. The other edges are formed by the vertices of the remaining edge of H4

j

and 6 and 7, respectively, unless there is only one additional vertex available on the remaining edge. In
this case, we choose the second vertex of the edge from one of the other vertices in H. There are now two
vertices in H whose edges with 6 and 7 have not been used, and that are not on the remaining edge of
H4

j . Our last copy of H3
1 is formed from the edges formed by these two vertices with 6 and 7, respectively,

and the remaining edge of H4
j . This completes the proof.

We then get a T -multidecomposition for all graph-triples with j 6= 2.

Corollary 2.7. Any graph-triple T = (H8
i ,H4

j ,H3
1 ) divides K8 for j = 1, 3.

Proof. Fill in edges of K8 as in Lemma 2.6. We partition the remaining edges with either H4
1

∼=
[2, 6, 3, 0, 7, 1], [2, 7, 3, 4, 6, 5] or H4

3
∼= [2, 6, 3, 0, 7, 4], [1, 7, 2, 5, 6, 3].

We turn our attention to H4
2 .

Lemma 2.8. Given any factorization of the graph H into T , and any i, j ∈ Z6, we can remove the edges
of H3

1 from H and then add two copies of H3
1 to achieve the graph with edge set E(H) ∪ {67, i6, j7}.

Proof. Without loss of generality, let H3
1
∼= [0, 1, 2, 3, 4, 5]. If ij /∈ E(H3

1 ), we can assume i = 0, j = 5
and add in H3

1
∼= [0, 1, 4, 5, 6, 7], [2, 3, 0, 6, 5, 7]. If ij ∈ E(H3

1 ), we can assume i = 0, j = 1 and add in
H3

1
∼= [0, 6, 1, 7, 2, 3], [0, 1, 6, 7, 4, 5]. Each gives us the desired graph.

Corollary 2.9. (H8
i ,H4

2 ,H3
1 ) divides K8.

Proof. Relabel V (H) so that H4
2
∼= [0, 1, 2, 3, 4, 5], and remove these vertices. We remove and insert edges

as in Lemma 2.8 with i = 0, j = 5. We add in H3
1
∼= [2, 3, 1, 6, 4, 7], [1, 2, 0, 7, 4, 6], and the remaining

edges are H4
2
∼= [5, 6, 3, 7, 0, 1], [1, 7, 2, 6, 4, 5].

Now we consider T -multidecompositions of K8 for graph-triples of the form T = (H7
i ,H5

j ,H3
k). As

before, we take an induced H ∼= K6 with V (H) = Z6 in K8 and factor it into T . Let H ′ ∼= G6,8 be the
complement of H.

Consider j = 1. We remove and add in copies of H3
1 as in Lemma 2.8 with i = 0, j = 5, and we relabel

V (H) so that H5
1
∼= [3, 4, 5, 0, 1, 2]. Remove these edges, and add in H5

1
∼= [6, 4, 5, 0, 7, 2], [7, 1, 0, 5, 6, 3],

[3, 4, 7, 6, 1, 2].
For j = 2, we remove H3

1
∼= [0, 1, 2, 3, 4, 5] from H and then add in H3

1
∼= [0, 1, 2, 3, 6, 7], [1, 7, 2, 6, 4, 5].

We partition the remaining edges with H5
2
∼= [7, 5, 0, 1, 6, 4], [6, 5, 0, 2, 7, 3].

For j = 3, we remove H5
3

∼= [0, 1, 2, 3, 5, 4]. We then add in H3
1

∼= [1, 4, 2, 3, 6, 7] and H5
3

∼=
[0, 7, 2, 1, 6, 3], [2, 6, 1, 0, 7, 5], [5, 4, 6, 0, 1, 7].
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Next, consider j = 4. We remove H5
4
∼= [0, 1, 4, 3, 5, 2], and add in H3

1
∼= [1, 2, 3, 4, 5, 6], along with

H5
4
∼= [0, 6, 7, 3, 5, 2], [4, 6, 1, 0, 7, 3], [5, 4, 7, 0, 2, 1].
For j = 5, we remove H5

5
∼= [0, 1, 3, 4, 5, 2]. Without loss of generality, the copy of H3

1 in the factor-
ization of H is [0, 3, 1, 4, 2, 5]. We remove these edges and add in H3

1
∼= [7, 0, 6, 5, 3, 4], [6, 4, 7, 1, 0, 3]. We

then add in H5
5
∼= [6, 7, 0, 1, 2, 3], [6, 0, 7, 4, 5, 2], [7, 5, 6, 1, 4, 2].

We next consider j = 6. We remove H5
6
∼= [0, 1, 4, 5, 2, 3] from the factorization of H. We add in

H3
1
∼= [0, 3, 1, 2, 6, 7] and H5

6
∼= [0, 6, 4, 5, 1, 7], [6, 4, 2, 3, 7, 5], [6, 2, 1, 0, 7, 3].

Finally, consider j = 7. We remove H5
7
∼= [0, 1, 5, 4, 3, 2] from the factorization of H. We add in

H3
1
∼= [6, 4, 7, 0, 2, 3] and H5

7
∼= [0, 1, 7, 3, 2, 6], [1, 2, 3, 6, 4, 7], [6, 7, 0, 2, 4, 5].

We summarize our results as follows.

Theorem 2.10. Let T = (G1, G2,H
3
1 ) be a graph-triple of order 6, and let m ≥ 6.

1. If m 6= 7, and if either m ≡ 0, 1 (mod 3) or (G1, G2) 6= (H6
i ,H6

j ) for all 1 ≤ i, j ≤ 11, then T divides
Km.

2. T divides K7 if and only if either (G1, G2) = (H7
i ,H5

j ) with (i, j) ∈

{(4, 2), (5, 2), (5, 3), (5, 7), (6, 2), (8, 3)} or (G1, G2) = (H6
i ,H6

j ) with (i, j) 6= (1, 8).

3. Let T = (H6
i ,H6

j ,H3
1 ) with m ≡ 2 (mod 3). Km has T -multidesigns with leave P2 and padding

P2 + P2.

4. If T = (H6
1 ,H6

8 ,H3
1 ), then there exist T -multidesigns of K7 whose leave and padding are both P4.

5. If T = (H8
i ,H4

j ,H3
1 ), then there exist T -multidesigns of K7 with leave P2 + P2 and padding P2.

6. If T = (H7
i ,H5

j ,H3
1 ), then there exist T -multipackings of K7 with leave P2 for all (i, j) 6= (3, 6). If

(i, j) = (3, 6), we have an optimal leave of P3 + P2.

7. If T = (H7
i ,H5

j ,H3
1 ), then there exist T -multicoverings of K7 with leave P2 for (i, j) 6= (10, 1). For

(i, j) = (10, 1), we get an optimal leave of P3.

3 Multidesigns for Graph-Triples (H5
i , H

5
j , H

5
k)

We now consider graph-triples of order 6 of the form T = (H5
i ,H5

j ,H5
k). We construct multidesigns

recursively as before, but we address T - multidecompositions separately. Note that Km has m(m−1)
2

edges, so a necessary condition for a T -multidecomposition is m ≡ 0, 1 (mod 5). The following gives us
our induction step and delineates the necessary base cases.

Lemma 3.1. Suppose that T = (H5
i ,H5

j ,H5
k) is a graph-triple of order 6. Then

1. If T divides K10, and if the edges of K5,5, G5,10, and G6,11 can be partitioned into copies of H5
i ,

H5
j , and H5

k , then T divides all Km for m ≥ 6 and m ≡ 0,1 (mod 5).

2. If T divides K10 and K11, and if the edges of K5,5, K2,5, and G6,n can be partitioned into copies
of H5

i , H5
j , and H5

k for n = 10 or 11, then T divides all Km for n ≥ 6 and m ≡ 0 (mod 5).

3. If T divides K11 and K16, and K5k for all k ≥ 2, and if the edges of K5,5 and K2,5 can be partitioned
into copies of H5

i , H5
j , and H5

k , then T divides all Km for m ≥ 6 and m ≡ 1 (mod 5).

4. If T divides K10, and if the edges of K2,5 can be partitioned into copies of H5
i , H5

j , and H5
k , then

T divides K16
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Proof. For (1), we start with m ≡ 0 (mod 5). Let m = 5k. By assumption, T divides K10, which gives us
the case k = 2. For k ≥ 3, partition the vertices of Km into sets A, B, and C of sizes 5, 5, and 5k − 10,
respectively. By induction, T divides K5k−5, which is isomorphic to the graph induced by B ∪ C. The
remaining edges among A∪B form G5,10, and the remaining edges between B and C can be partitioned
into k − 2 copies of K5,5. For m ≡ 1 (mod 5), let m = 5k + 1. A factorization of K6 gives us k = 1.
For k ≥ 2, partition the vertices of Km into sets A, B, and C of sizes 5, 6, and 5k − 10, respectively. By
induction, T divides K5k−4, which is isomorphic to the graph induced by B ∪C. The remaining edges of
A∪B form G6,11, and the remaining edges between A and C form k−2 copies of K5,5. This gives us (1).

For (2), we first show that T divides K15. Partition the vertices of K15 into sets A, B, and C of size
4, 5, and 6, respectively. Now T divides the graph induced by B ∪C. The remaining edges among A∪C
form a copy of G6,10 and the remaining edges among A ∪ B form two copies of K2,5, which gives us the
case n = 10. The case n = 11 is similar. For m = 5k, k ≥ 4, partition the vertices of K5k into sets A
and B of size 10 and 5k − 10, respectively. We have that T divides the graphs induced by A and B. The
remaining edges form 2k − 4 copies of K5,5.

For (3), we need only show the result for m = 5k + 1, k ≥ 4. We partition the vertices of K5k+1 into
sets A, B, and C of sets 5, 6, and 5k − 10, respectively. By induction, T divides the graph induced by
A ∪ B, and T divides the graph induced by C by assumption. The remaining edges among A ∪ C form
k − 2 copies of K5,5, and the remaining edges among B ∪C form 3k − 6 copies of K2,5, which completes
the proof.

For (4), we partition the vertices of K16 into sets A and B of size 6 and 10, respectively. We factor
the graph induced by A into T . Also, T divides the graph induced by B. The remaining edges form six
copies of K2,5, which completes the proof.

For the base cases, we first consider triples with H5
1 . By Lemmas 1.1 and 3.1(1), we require only the

following lemma.

Lemma 3.2. H5
1 divides K5,5, G5,10, G6,10, and G6,11.

Proof. For K5,5, let the partite sets be given by Z5 and {a, b, c, d, e}. An H5
1 -decomposition is [b, 2, c, 0, a, 1],

[e, 4, a, 1, d, 3], [c, 3, b, 2, d, 4], [e, 0, d, 3, a, 2], [c, 1, e, 4, b, 0].
For G5,10, an H5

1 -decomposition is [7, 1, 8, 0, 5, 6], [5, 2, 8, 0, 6, 9],
[5, 3, 8, 0, 9, 7], [7, 4, 9, 1, 5, 8], [6, 3, 7, 2, 9, 8], [6, 4, 5, 3, 9, 1], [7, 2, 6, 4, 8, 0].

An H5
1 -decomposition of G6,10 is [1, 8, 9, 6, 0, 7], [7, 5, 8, 6, 1, 9],

[8, 2, 7, 6, 9, 3], [9, 4, 8, 7, 6, 5], [8, 0, 9, 7, 3, 6], [6, 2, 9, 8, 7, 4].
For G6,11, an H5

1 -decomposition is [8, 9, 1, 0, 6, 7], [6, 8, 4, 5, 10, 9],
[10, 6, 3, 2, 9, 7], [4, 7, 2, 0, 8, 10], [8, 5, 9, 0, 7, 1], [10, 3, 9, 4, 6, 2], [7, 5, 6, 2, 8, 3], [10, 1, 6, 4, 9, 0].

Now we move on to the case i = 2. Lemma 1.1 and Lemma 3.1(2), (3), and (4) reduce our problem
to the following two lemmas:

Lemma 3.3. There exists an H5
2 -decomposition of K5,5, K2,5, and G6,10.

Proof. For K5,5, let the partite sets be Z5 and {a, b, c, d, e}. An H5
2 -decomposition is [1, d, a, b, 0, c],

[0, d, a, b, 1, e], [3, d, a, b, 2, c], [4, d, a, e, 3, b], [2, d, a, c, 4, e].
For K2,5, we have partite sets {a, b} and Z5. An H5

2 -decomposition is [b, 3, 0, 1, a, 2], [a, 3, 0, 1, b, 4].
Finally, for G6,10, an H5

2 -decomposition is [7, 1, 8, 9, 6, 0], [6, 3, 7, 9, 8, 2], [2, 7, 6, 8, 1, 9], [4, 6, 7, 8, 3, 9],
[0, 8, 6, 7, 5, 9], [8, 5, 6, 9, 7, 4].

Lemma 3.4. There exists a T -multidecomposition of K11.

Proof. We factor the K6 induced by Z6 into T so that H5
2
∼= [4, 5, 2, 3, 0, 1]. Remove {0, 2} and have it reap-

pear as {0, 10}. This will still be a copy of H5
2 . We partition the remaining edges into H5

2
∼= [7, 1, 8, 9, 6, 0],

[9, 3, 8, 6, 7, 2], [8, 1, 6, 7, 10, 3], [10, 5, 7, 8, 9, 4], [6, 3, 8, 9, 10, 2], [7, 3, 0, 2, 8, 5], [5, 9, 7, 8, 4, 6], [0, 2, 6, 10, 1, 9]

What remains is the triple (H5
3 ,H5

4 ,H5
7 ). Lemmas 1.1 and 3.1(1) reduce our problem to the following.
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Lemma 3.5. The following are true:

1. There exist an (H5
3 ,H5

4 )-multidecompositions of K5,5 and G5,10.

2. There exists an (H5
3 ,H5

4 ,H5
7 )-multidecompisiton of G6,10.

3. There exists an H5
4 -decomposition of G6,11.

Proof. For (1),we start with K5,5. As before, let the partite sets be Z5 and {a, b, c, d, e}. An (H5
3 ,H5

4 )-
multidecomposition is H5

3
∼= [d, 1, e, 0, 4, b], [b, 3, a, 4, 0, d] and H5

4
∼= [2, a, 0, b, c, 1], [2, e, 4, c, d, 3], [1, c, 2, b, d, 3].

For G5,10, an (H5
3 ,H5

4 )-multidecomposition is H5
3
∼= [1, 9, 5, 3, 8, 2] and H5

4
∼= [0, 5, 6, 2, 3, 1], [9, 8, 7, 2, 3, 4],

[4, 9, 6, 0, 1, 3], [2, 5, 8, 1, 3, 4],
[8, 0, 7, 5, 4, 9], [4, 6, 7, 1, 9, 8].

For (2), an (H5
3 ,H5

4 ,H5
7 )-multidecomposition of G6,10 is H5

3
∼=

[2, 6, 0, 7, 8, 1], [3, 6, 5, 7, 8, 4], [8, 2, 7, 6, 1, 9], [6, 8, 3, 7, 9, 0], H5
4
∼=

[1, 7, 9, 4, 3, 8], and H5
7
∼= [5, 8, 7, 4, 6, 9].

Finally, for (3), an H5
4 -decomposition of G6,11 is [0, 6, 7, 2, 5, 1],

[2, 8, 9, 4, 5, 1], [0, 7, 10, 4, 5, 1], [2, 6, 8, 5, 3, 4], [0, 8, 10, 1, 6, 4], [0, 9, 7, 8, 4, 1], [3, 6, 9, 2, 10, 5], [0, 10, 3, 7, 9, 2].

Putting Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.5 together, we get the following.

Theorem 3.6. For each m ≥ 6 with m ≡ 0, 1 (mod 5), any triple T = (H5
i ,H5

j ,H5
k) divides Km.

We now turn to multidesigns for the cases m ≡ 2, 3, 4 (mod 5). If m ≡ 2, 4 (mod 5), then the number
of edges of Km is congruent 1 mod 5, and so an optimal multidesign must have at least a 1-edge leave
or 4-edge padding. If m ≡ 3 (mod 5), the number of edges is congruent 3 mod 5, and so an optimal
multidesign must have at least a 3-edge leave or 2-edge padding. We show that each of these lower bounds
is achieved for all triples.

We begin with some designs that will prove useful to us.
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Lemma 3.7.

1. There are H5
i -packings of K6,6 with leave P2 for i = 1, 2, 3, 4.

2. H5
i divides K4,5 for i = 1, 3.

3. H5
3 divides K3,5 and H5

1 divides K5,7.

Proof. Let Z6 and {a, b, c, d, e, f} be the partite sets of K6,6. For (1), an H5
1 -packing is [2, a, 1, c, 3, b],

[5, d, 4, f, 0, e], [4, c, 2, d, 1, f ], [5, b, 1, d, 0, a], [3, d, 2, e, 4, a], [0, b, 4, e, 1, c], [f, 5, c, 2, e, 3], with leave {2, f}.
An H5

2 -packing is [b, 3, 0, 1, a, 2], [4, c, f, e, 5, d], [a, 5, 1, 0, b, 4], [5, b, d, e, 2, c], [c, 1, 2, 4, f, 3], [1, d, c, e, 0, f ],
[d, 0, 1, 4, e, 3] with leave {3, a}. An H5

3 -packing is
[3, a, 1, b, c, 2], [0, a, 4, e, f, 5], [4, d, 3, c, f, 0], [4, b, 2, e, c, 5], [0, c, 1, d, f, 4],
[3, e, 0, b, d, 5], [3, f, 1, e, d, 2] with leave {3, b}. Finally, an H5

4 -packing is [b, 0, a, 1, 2, c], [d, 1, b, 2, 3, c],
[d, 2, c, 3, 4, e], [f, 3, d, 5, 4, e], [b, 5, f, 1, 2, c],
[d, 0, e, 1, 5, f ], [e, 4, a, 3, 5, f ] with leave {4, b}.

For (2), let the partite sets of K4,5 be Z5 and {a, b, c, d}. An H5
1 -decomposition is [2, a, 1, c, 3, b],

[d, 4, a, 1, c, 0], [a, 0, b, 2, d, 3], [b, 1, d, 2, c, 4]. An H5
3 -decomposition is [3, a, 1, b, c, 2], [3, b, 2, d, a, 4], [4, c, 3, d, a, 0],

[4, d, 1, c, b, 0].
For (3), label the vertices of K3,5 and K5,7 similarly as before. An H5

3 -decomposition of K3,5 is
[a, 1, b, 2, 3, c], [c, 4, a, 2, 3, b], [b, 0, a, 3, 2, c]. An H5

1 -decomposition of K5,7 is [2, a, 1, c, 3, b], [1, c, 2, e, 4, d],
[5, e, 3, a, 6, c], [0, a, 4, b, 5, d], [3, a, 5, e, 6, d], [4, b, 6, e, 0, c], [1, b, 0, d, 2, e].

Lemma 3.8. Let T = (H5
i ,H5

j ,H5
k). Suppose that K8 has a T -multipacking with leave L, and that Km

has a T -multipacking with leave P2 for m = 7, 9, 12, 14.

1. If m ≡ 2, 4 (mod 5) and m ≥ 17, then Km has T -multipacking with leave P2.

2. If m ≡ 3 (mod 5) and m ≥ 18, then Km has a T -multipacking with leave L.

Proof. Note that T includes either H5
1 , H5

2 , or H5
3 . Suppose T includes H5

1 . For (1), we begin with m ≡ 2
(mod 5), so m = 5k + 2, k ≥ 3. We first partition the vertices of Km into sets A and B of size 7 and
5k− 5, respectively. Now B induces a K5k−5, which T divides by Theorem 3.6. The graph induced by A
has a multipacking with leave P2 by assumption, and the remaining edges form copies of K5,7, which T
divides by Lemma 3.7(3). For H5

2 , we partition the vertices of Km into sets A, B, and C of size 6, 6, and
5k − 10, respectively. By Theorem 3.6, T divides the graph induced by B ∪ C, and the graph induced
by A can be factored into T . The remaining edges among A∪C form copies of K2,5, which T divides by
Lemma 3.3. The remaining edges among A∪B form K6,6, which has a T -multipacking with leave P2 by
Lemma 3.7(1). The argument for H5

3 is almost identical, using Lemma 3.7(3) in place of Lemma 3.3.
Now let m ≡ 4 (mod 5), so m = 5k + 4, k ≥ 3. We begin with H5

1 . Partition the vertices of Km into
sets A, B, and C of size 4, 5, and 5k−5, respectively. Now A∪B induces a K9, which has a T -multipacking
with leave P2 by assumption. The set C induces a K5k−5, which T divides. The remaining edges among
A∪C form copies of K4,5, which H5

1 divides by Lemma 3.7(2). The remaining edges among B ∪C form
copies of K5,5, which H5

1 divides by Lemma 3.2. The argument for H5
2 is identical, except we partition

the copies of K4,5 into copies of K2,5 and use Lemma 3.3. For H5
3 , we partition the vertices of Km into

sets A and B of size 9 and 5k−5, respectively. The set A induces a K9, which has a T -multipacking with
leave P2 by assumption. Moreover, T divides the graph induced by B, which is K5k−5. The remaining
edges form copies of K3,5, which H5

3 divides by Lemma 3.7(3).
For (2), we have m = 5k + 3, k ≥ 3, and we partition the vertices of Km into sets A and B of size

8 and 5k − 5, respectively. We have a T -multidecomposition of the subgraph induced by B as well as a
T -multipacking of the graph induced by A with leave L. The remaining vertices can be partitioned into
either copies of K2,5 or K4,5. H5

2 divides the first of these, and H5
1 and H5

3 divide the second.

This reduces the multipacking problem to finding optimal multipackings for Km, m = 7, 8, 9, 12, 13, 14.
We construct these multipackings so that the leave is a subgraph of one of the graphs in the triple, which
yields an optimal T -multicovering. We begin with a technical lemma.
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Lemma 3.9. Let G be the graph given by K3,3 along with an additional 2-path among the vertices of
one of the partite sets P . Then G has an H5

1 -packing with leave P2. Furthermore, the leave is between
two vertices in P .

Proof. Let the partite sets of K3,3 be Z3 and {a, b, c}, and let the additional edges of G be {0, 1} and
{1, 2}. We then have the H5

1 -packing [b, 2, c, 0, a, 1], [1, 2, a, b, 0, c] with leave {0, 1}.

The following gives us optimal multipackings for m ≡ 2, 4 (mod 5).

Lemma 3.10. For m = 7, 9, 12, 14 and T = (H5
i ,H5

j ,H5
k), Km has a T -multipacking with leave P2.

Proof. For K7, we begin with triples T that include H5
2 . Now Z6 induces a K6, which we can factor into

T . We remove the copy of H5
2 (say [1, 0, 4, 5, 3, 2]). We then insert H5

2
∼= [1, 0, 5, 3, 6, 2], [3, 5, 1, 0, 6, 4],

which gives us a multipacking with leave {2, 3}. For triples that include H5
3 , we factor an induced K6 into

T and remove H5
3
∼= [0, 1, 2, 3, 5, 4]. We then insert H5

3
∼= [3, 6, 0, 1, 5, 4], [5, 6, 2, 3, 4, 1]. The leave is {1, 2}.

The remaining triple is (H5
1 ,H5

5 ,H5
7 ). We remove H5

1
∼= [3, 4, 5, 0, 1, 2] and insert H5

1
∼= [6, 2, 1, 3, 4, 5] and

H5
7
∼= [0, 1, 2, 3, 4, 6]. The leave is {3, 6}.
For multipackings of K9, we first consider triples that include either H5

1 or H5
3 . By Theorem 1.1,

it suffices to construct an H5
i -decomposition of G6,9 for i = 1, 3. An H5

1 -packing is [6, 8, 4, 3, 7, 2],
[1, 8, 2, 0, 6, 7], [7, 8, 5, 3, 6, 4], [7, 0, 8, 1, 6, 5] with leave {3, 8}. An H5

3 -packing is [0, 6, 1, 8, 2, 7],
[3, 7, 0, 8, 6, 5], [2, 8, 4, 7, 6, 3], [5, 8, 6, 2, 1, 7], with leave {4, 6}.

Two triples remain, both of which include H5
2 . We factor the K6 induced by Z6 into H5

2
∼= [1, 0, 4, 5, 3, 2].

Remove the edges of this subgraph, and insert H5
2
∼= [1, 0, 8, 2, 7, 6], [3, 7, 1, 2, 8, 4], [2, 1, 4, 5, 6, 3], [3, 5, 0, 2, 6, 8],

[8, 5, 1, 4, 7, 0]. The leave is {5, 7}.
For multipackings of K12, we first consider triples T that include either H5

2 or H5
4 . Partition the

vertices of K12 into two sets of size 6. Each subset induces a K6, which can be factored into T . The
remaining vertices form K6,6, which has a T -multipacking with leave P2 by Lemma 3.7(1).

The only remaining triples include a copy of H5
1 . Partition the vertices of K12 into the sets A = Z6

and B = Z12 − Z6, and factor each induced subgraph into T . We remove H5
1
∼= [3, 4, 5, 0, 1, 2]. The

remaining edges among {0, 1, 2, 6, 7, 8} form the graph G from Lemma 3.9. We execute an H5
1 -packing

with leave {0, 1}. We do the same thing with the vertices {0, 1, 2, 9, 10, 11}, only this time with a leave
of {1, 2}. The same process with the vertices in {3, 4, 5} ∪ B give us a T -multipacking with leave {2, 3}.

For multipackings of K14, T divides the subgraph induced by Z11 by Theorem 3.6. For triples
that include H5

1 , we remove H5
1

∼= [3, 4, 5, 0, 1, 2] from the T -decomposition. We then insert H5
1

∼=
[11, 1, 2, 13, 12, 0],
[6, 11, 10, 1, 0, 13], [7, 11, 8, 12, 1, 13], [12, 4, 3, 13, 11, 5], [10, 12, 6, 4, 5, 13],
[8, 12, 7, 11, 4, 13], [3, 11, 9, 12, 2, 13], [12, 9, 13, 3, 2, 11]. The leave is {3, 12}. We proceed similarly for H5

2 ,
removing H5

2
∼= [1, 0, 4, 5, 3, 2] and adding in H5

2
∼= [13, 7, 0, 1, 12, 2], [13, 4, 7, 1, 11, 5], [5, 3, 13, 11, 6, 12],

[13, 0, 7, 3, 12, 10], [1, 2, 12, 10, 11, 0], [3, 4, 12, 13, 8, 11], [4, 11, 1, 3, 13, 12], [2, 3, 12, 13, 9, 11]. The leave is
{11, 13}. Our last case is the triple (H5

3 ,H5
4 ,H5

7 ). We take a T -multidecomposition on the subgraph
induced by Z10. We add in H5

4
∼= [1, 10, 11, 2, 3, 0], [0, 11, 12, 4, 5, 1], [2, 12, 13, 5, 4, 3], [3, 10, 12, 0, 1, 2],

[4, 11, 13, 2, 3, 5], [5, 10, 13, 0, 1, 4]. Then add in H5
3
∼= [6, 10, 8, 12, 11, 7], [13, 9, 12, 7, 6, 11], [7, 13, 8, 11, 12, 6].

The leave is {9, 10}.

We now proceed to optimal multipackings for m = 8, 13.

Lemma 3.11. For m = 8, 13 and T = (H5
i ,H5

j ,H5
k), Km has a multipacking with a 3-edge leave that is

a subgraph of least one of the graphs in T .

Proof. We begin with K8. For multipackings into triples T that include H5
1 , we factor an induced K6 into

T and remove H5
1
∼= [3, 4, 5, 0, 1, 2]. We then add in H5

1
∼= [3, 7, 5, 0, 6, 2], [7, 4, 5, 6, 1, 0], [6, 3, 4, 1, 2, 7].

The leave is {4, 6}, {5, 6}, {1, 7}, which is a subgraph of H5
1 . For triples that include H5

2 , we factor a K6

into T as before. We then add in H5
2
∼= [7, 3, 0, 1, 6, 2], [6, 5, 0, 1, 7, 4]. The leave is {3, 6}, {6, 7}, {5, 7},

which is a subgraph of H5
2 . What remains is the triple (H5

3 ,H5
4 ,H5

7 ). We remove H5
4
∼= [1, 2, 3, 4, 5, 0]
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of from a factorization of K6 into T and add in H5
4
∼= [1, 6, 7, 4, 5, 0], [1, 2, 6, 3, 4, 7], [0, 7, 3, 4, 5, 1]. The

leave is {0, 2}, {2, 3}, {5, 6}, which is a subgraph of any graph in T .
For K13, we begin with triples that include H5

1 . By Theorem 3.6, T divides the graph induced by
Z11. We remove H5

1
∼= [3, 4, 5, 0, 1, 2] and insert H5

1
∼= [12, 2, 1, 0, 11, 3], [12, 0, 1, 6, 11, 7], [11, 2, 3, 6, 12, 1],

[5, 12, 8, 3, 4, 11], [9, 11, 10, 5, 4, 12]. The leave is {8, 11}, {11, 12}, {12, 10}, which is a subgraph of H5
1 . For

triples that include H5
2 , we get a T -multidecomposition of the subgraph induced by Z11 by Theorem 3.6.

The bipartite subgraph induced by Z5 and {12, 13} is isomorphic to K2,5, which H5
2 divides by Lemma 3.3.

We add in H5
2
∼= [11, 5, 7, 8, 12, 6], [11, 7, 5, 10, 12, 9]. The leave is {8, 11}, {10, 11}, {11, 12}, which is a

subgraph of H5
2 . The final triple is T = (H5

3 ,H5
4 ,H5

7 ), which divides the subgraph induced by Z10.
The remaining edges minus the subgraph induced by {10, 11, 12} form two copies of K3,5, which can
be partitioned into copies of H5

3 by Lemma 3.7(3). The leave is {10, 11}, {11, 12}, {12, 10}, which is a
subgraph of H5

7 .

The leaves in the multipackings of Lemmas 3.10 and 3.11 are subgraphs of at least one graph in the
given graph-triple. Thus, if the leave has size s, we can obtain a multicovering of size 5−s. We summarize
this, along with the other results of this section, in the following theorem.

Theorem 3.12. Let T = (H5
i ,H5

j ,H5
k) be a graph-triple of order 6, and let m ≥ 6.

1. If m ≡ 0, 1 (mod 5), then T divides Km.

2. If m ≡ 2 or 4 (mod 5), then Km has a T -multipacking with leave P2 and a T -multicovering with a
4-edge padding.

3. If m ≡ 3 (mod 5), then Km has a T -multipacking with a leave of three edges and a T -multicovering
with a 2-edge padding.

4 Conclusion

We have settled the T -multidesign problem of Km into graph-triples T of order 6 that are of the form
(G1, G2,H

3
1 ) or (H5

i ,H5
j ,H5

k), but the problem is still open for graph-triples of the forms (H7
i ,H4

j ,H4
k)

and (H6
i ,H5

j ,H4
k). Another extension of this work will be to investigate multidesigns into graph-triples

of order 6 with various specified leaves.
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A Graphs of Order 6 that are Part of Graph-Triples
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b c
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b c
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b c
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b c

d
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H5
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b c
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b c

d

f e

H5
4
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b c
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b c
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b c
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b c
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b c
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b c

d

f e

H6
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∼= a

b c
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4
∼= a

b c
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H6
5
∼= a

b c

d
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H6
6
∼= a

b c

d

f e
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H6
7
∼= a

b c

d

f e

H6
8
∼= a

b c

d

f e

H6
9
∼= a

b c

d

f e

H6
10

∼= a

b c

d

f e

H6
11

∼= a

b c

d

f e

H7
1
∼= a

b c

d

f e

H7
2
∼= a

b c

d

f e

H7
3
∼= a

b c

d

f e

H7
4
∼= a

b c

d

f e

H7
5
∼= a

b c

d

f e

H7
6
∼= a

b c
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H7
7
∼= a

b c
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f e

H7
8
∼= a

b c
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f e

H7
9
∼= a

b c

d

f e

H7
10

∼= a

b c

d

f e

H8
1
∼= a

b c

d

f e

H8
2
∼= a

b c

d

f e

H8
3
∼= a

b c

d

f e

H8
4
∼= a

b c

d

f e

H8
5
∼= a

b c

d

f e
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B The Graph-Triples of Order 6

The graph triples of order six T = (G1, G2, G3) = (Hj1
i1

,Hj2
i2

,Hj3
i3

), where jk represents the number of
edges in the graph Gk.

For j1 = 8, j2 = 4, j3 = 3,
T = (G1, G2, G3) ∈ {(H8

1 , H4
1 , H3

1 ), (H8
1 , H4

2 , H3
1 ), (H8

2 , H4
2 , H3

1 ),
(H8

3 , H4
1 , H3

1 ), (H8
4 , H4

3 , H3
1 )}, (H8

5 , H4
1 , H3

1 ).

For j1 = 7, j2 = 4, j3 = 4,
T = (G1, G2, G3) ∈ {(H7

1 , H4
1 , H4

2 ), (H7
2 , H4

1 , H4
2 ), (H7

3 , H4
1 , H4

2 ),
(H7

4 , H4
1 , H4

2 ), (H7
4 , H4

1 , H4
3 ), (H7

4 , H4
2 , H4

3 ),
(H7

5 , H4
1 , H4

2 ), (H7
5 , H4

2 , H4
3 ), (H7

6 , H4
1 , H4

2 ),
(H7

6 , H4
2 , H4

3 ), (H7
8 , H4

1 , H4
3 ), (H7

9 , H4
1 , H4

2 ),
(H7

10, H4
1 , H4

2 )}.

For j1 = 7, j2 = 5, j3 = 3,
T = (G1, G2, G3) ∈ {(H7

1 , H5
1 , H3

1 ), (H7
2 , H5

1 , H3
1 ), (H7

2 , H5
5 , H3

1 ),
(H7

3 , H5
1 , H3

1 ), (H7
3 , H5

6 , H3
1 ), (H7

4 , H5
2 , H3

1 ),
(H7

5 , H5
2 , H3

1 ), (H7
5 , H5

3 , H3
1 ), (H7

5 , H5
7 , H3

1 ),
(H7

6 , H5
2 , H3

1 ), (H7
8 , H5

3 , H3
1 ), (H7

9 , H5
4 , H3

1 ),
(H7

10, H5
1 , H3

1 )}.

For j1 = 6, j2 = 5, j3 = 4,
T = (G1, G2, G3) ∈ {(H6

1 , H5
1 , H4

1 ), (H6
1 , H5

1 , H4
2 ), (H6

1 , H5
5 , H4

2 ),
(H6

1 , H5
6 , H4

1 ), (H6
2 , H5

1 , H4
1 ), (H6

2 , H5
1 , H4

2 ),
(H6

2 , H5
1 , H4

3 ), (H6
2 , H5

2 , H4
2 ), (H6

2 , H5
3 , H4

1 ),
(H6

2 , H5
3 , H4

2 ), (H6
2 , H5

5 , H4
2 ), (H6

2 , H5
6 , H4

2 ),
(H6

2 , H5
7 , H4

1 ), (H6
2 , H5

7 , H4
2 ), (H6

3 , H5
1 , H4

1 ),
(H6

3 , H5
1 , H4

2 ), (H6
3 , H5

1 , H4
3 ), (H6

3 , H5
2 , H4

1 ),
(H6

3 , H5
2 , H4

2 ), (H6
3 , H5

3 , H4
2 ), (H6

3 , H5
5 , H4

1 ),
(H6

3 , H5
5 , H4

3 ), (H6
3 , H5

6 , H4
2 ), (H6

3 , H5
7 , H4

1 ),
(H6

4 , H5
1 , H4

1 ), (H6
4 , H5

1 , H4
2 ), (H6

4 , H5
1 , H4

3 ),
(H6

4 , H5
2 , H4

2 ), (H6
4 , H5

3 , H4
1 ), (H6

4 , H5
3 , H4

2 ),
(H6

4 , H5
5 , H4

2 ), (H6
4 , H5

6 , H4
1 ), (H6

4 , H5
6 , H4

3 ),
(H6

4 , H5
7 , H4

1 ), (H6
4 , H5

7 , H4
2 ), (H6

5 , H5
1 , H4

2 ),
(H6

5 , H5
2 , H4

2 ), (H6
5 , H5

3 , H4
1 ), (H6

5 , H5
3 , H4

2 ),
(H6

5 , H5
3 , H4

3 ), (H6
5 , H5

4 , H4
1 ), (H6

5 , H5
7 , H4

2 ),
(H6

6 , H5
1 , H4

1 ), (H6
6 , H5

1 , H4
2 ), (H6

6 , H5
2 , H4

1 ),
(H6

6 , H5
2 , H4

2 ), (H6
6 , H5

2 , H4
3 ), (H6

6 , H5
3 , H4

1 ),
(H6

6 , H5
3 , H4

2 ), (H6
6 , H5

3 , H4
3 ), (H6

6 , H5
4 , H4

2 ),
(H6

6 , H5
5 , H4

2 ), (H6
6 , H5

7 , H4
1 ), (H6

6 , H5
7 , H4

2 ),
(H6

6 , H5
7 , H4

3 ), (H6
7 , H5

1 , H4
2 ), (H6

7 , H5
2 , H4

2 ),
(H6

7 , H5
3 , H4

2 ), (H6
7 , H5

4 , H4
2 ), (H6

7 , H5
6 , H4

1 ),
(H6

7 , H5
6 , H4

2 ), (H6
7 , H5

7 , H4
2 ), (H6

7 , H5
7 , H4

3 ),

(H6
8 , H5

1 , H4
2 ), (H6

8 , H5
6 , H4

1 ), (H6
9 , H5

2 , H4
1 ),

(H6
9 , H5

3 , H4
2 ), (H6

9 , H5
4 , H4

3 ), (H6
10, H5

1 , H4
1 ),

(H6
10, H5

2 , H4
1 ), (H6

10, H5
2 , H4

2 ), (H6
10, H5

2 , H4
3 ),

(H6
10, H5

5 , H4
1 ), (H6

10, H5
7 , H4

3 ), (H6
11, H5

1 , H4
2 ),

(H6
11, H5

2 , H4
2 ), (H6

11, H5
3 , H4

1 ), (H6
11, H5

3 , H4
2 ),

(H6
11, H5

3 , H4
3 ), (H6

11, H5
7 , H4

2 )}.

For j1 = 6, j2 = 6, j3 = 3,
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T = (G1, G2, G3) ∈ {(H6
1 , H6

8 , H3
1 ), (H6

2 , H6
3 , H3

1 ), (H6
2 , H6

4 , H3
1 ),

(H6
5 , H6

6 , H3
1 ), (H6

5 , H6
7 , H3

1 ), (H6
6 , H6

11, H3
1 ),

(H6
7 , H6

10, H3
1 )}.

For j1 = 5, j2 = 5, j3 = 5
T = (G1, G2, G3) ∈ {(H5

1 , H5
2 , H5

3 ), (H5
1 , H5

2 , H5
6 ), (H5

1 , H5
2 , H5

7 ),
(H5

1 , H5
3 , H5

5 ), (H5
1 , H5

3 , H5
7 ), (H5

1 , H5
5 , H5

7 ),
(H5

2 , H5
3 , H5

4 ), (H5
2 , H5

3 , H5
5 ), (H5

2 , H5
3 , H5

7 ),
(H5

2 , H5
5 , H5

6 ), (H5
2 , H5

6 , H5
7 ), (H5

3 , H5
4 , H5

7 )}.

C Multidesigns for K7 and K8

For the following, V (K7) = Z7 and V (K8) = Z8. We begin with T -multidecompositions of K7 for
T = (H7

i ,H5
j ,H3

1 ).

• T = (H7
4 ,H5

2 ,H3
1 ): H7

4
∼= [3, 4, 5, 0, 1, 2],H5

2
∼= [3, 1, 2, 5, 6, 0],

H3
1
∼= [0, 1, 3, 5, 4, 6], [0, 2, 3, 6, 4, 5], [0, 4, 1, 6, 2, 5]

• T = (H7
5 ,H5

2 ,H3
1 ): H7

5
∼= [3, 4, 5, 0, 1, 2],H5

2
∼= [3, 5, 2, 1, 6, 0],

H3
1
∼= [0, 2, 1, 4, 5, 6], [0, 4, 2, 5, 3, 6], [0, 5, 1, 3, 4, 6]

• T = (H7
5 ,H5

3 ,H3
1 ): H7

5
∼= [3, 4, 5, 0, 1, 2],H5

3
∼= [4, 6, 0, 2, 3, 5],

H3
1
∼= [0, 3, 1, 6, 2, 5], [0, 4, 1, 3, 2, 6], [0, 5, 1, 4, 3, 6]

• T = (H7
5 ,H5

7 ,H3
1 ): H7

5
∼= [3, 4, 5, 0, 1, 2],H5

7
∼= [0, 5, 1, 4, 3, 6],

H3
1
∼= [0, 2, 1, 6, 3, 5], [0, 3, 2, 5, 4, 6], [0, 4, 1, 3, 2, 6]

• T = (H7
6 ,H5

2 ,H3
1 ): H7

6
∼= [3, 1, 5, 0, 4, 2],H5

2
∼= [5, 0, 1, 2, 6, 3],

H3
1
∼= [0, 2, 1, 3, 4, 6], [0, 3, 1, 4, 5, 6], [0, 6, 2, 5, 3, 4]

• T = (H7
8 ,H5

3 ,H3
1 ): H7

8
∼= [2, 1, 5, 0, 4, 3],H5

3
∼= [3, 6, 2, 4, 1, 0],

H3
1
∼= [0, 2, 1, 3, 5, 6], [0, 3, 2, 5, 4, 6], [0, 4, 1, 6, 3, 5]

The T -multidecompositions of K7 for T = (H6
i ,H6

j ,H3
1 ) are given by

• T = (H6
2 ,H6

3 ,H3
1 ): H6

2
∼= [4, 0, 6, 1, 2, 3],

H6
3
∼= [3, 6, 2, 4, 5, 1], [5,3,4,6,0,2],

H3
1
∼= [0, 5, 1, 4, 2, 6].

• T = (H6
2 ,H6

4 ,H3
1 ): H6

2
∼= [3, 4, 6, 0, 1, 2, ], H6

4
∼= [1, 3, 4, 6, 2, 5],

H3
1
∼= [0, 3, 2, 4, 5, 6], [0,5,1,4,3,6], [0,2,1,6,4,5].

• T = (H6
5 ,H6

6 ,H3
1 ): H6

5
∼= [1, 0, 6, 4, 3, 2], H6

6
∼= [6, 4, 0, 2, 1, 5],

H3
1
∼= [1, 6, 2, 4, 3, 5], [1,3,2,6,0,5], [1,4,2,5,3,6].

• T = (H6
5 ,H6

7 ,H3
1 ): H6

5
∼= [2, 3, 4, 6, 0, 1], H6

7
∼= [1, 4, 2, 0, 6, 5],

H3
1
∼= [1, 3, 4, 6, 0, 5], [1,4,3,6,2,5], [1,6,3,5,0,4].

• T = (H6
6 ,H6

11,H
3
1 ): H6

6
∼= [1, 2, 3, 4, 6, 0], H6

11
∼= [4, 5, 3, 0, 1, 6],

H3
1
∼= [1, 4, 2, 6, 0, 5], [1,5,3,6,2,4], [1,6,2,5,0,4].

• T = (H6
7 ,H6

10,H
3
1 ): H6

7
∼= [0, 4, 3, 1, 5, 6], H6

10
∼= [1, 2, 4, 5, 3, 0],

H3
1
∼= [1, 4, 2, 6, 0, 5], [1,5,2,4,3,6], [1,6,2,5,0,4].

We now move on to optimal T -multipackings of K7 for T = (H8
i ,H4

j ,H3
1 ).
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• T = (H8
1 ,H4

1 ,H3
1 ): H8

1
∼= [4, 5, 0, 1, 2, 3],

H4
1
∼= [1, 5, 2, 3, 6, 4], [1, 6, 2, 3, 0, 4],

H3
1
∼= [0, 6, 1, 3, 2, 4]. Leave is 56 & 14.

• T = (H8
1 ,H4

2 ,H3
1 ): H8

1
∼= [4, 5, 0, 1, 2, 3],

H4
2
∼= [1, 3, 6, 4, 2, 5], [0, 6, 1, 5, 2, 4],

H3
1
∼= [0, 3, 1, 4, 2, 6]. Leave is 04 & 56

• T = (H8
2 ,H4

2 ,H3
1 ): H8

2
∼= [4, 5, 0, 1, 2, 3],

H4
2
∼= [1, 6, 3, 5, 0, 4], [4, 6, 2, 5, 1, 3]

H3
1
∼= [0, 2, 1, 4, 5, 6]. Leave is 06 & 24.

• T = (H8
3 ,H4

1 ,H3
1 ): H8

3
∼= [4, 0, 1, 3, 6, 2],

H4
1
∼= [0, 6, 4, 2, 5, 3], [0, 5, 1, 2, 3, 4]

H3
1
∼= [0, 2, 1, 6, 4, 5]. Leave is 12 & 56.

• T = (H8
4 ,H4

3 ,H3
1 ): H8

4
∼= [4, 5, 0, 1, 2, 3],

H4
3
∼= [5, 6, 4, 1, 2, 3], [3, 1, 4, 0, 2, 6],

H3
1
∼= [0, 4, 1, 5, 2, 6]. Leave is 06 & 35.

• T = (H8
5 ,H4

1 ,H3
1 ): H8

5
∼= [5, 0, 2, 4, 3, 1],

H4
1
∼= [0, 6, 4, 2, 5, 3], [0, 4, 1, 2, 6, 3],

H3
1
∼= [1, 6, 2, 3, 4, 5]. Leave is 01 & 56.

The optimal T -multipackings of K7 for T = (H7
i ,H5

j ,H3
1 ) are

• T = (H7
1 ,H5

1 ,H3
1 ): H7

1
∼= [4, 5, 0, 1, 2, 3],

H5
1
∼= [1, 6, 3, 5, 2, 4], [5, 3, 1, 2, 0, 6],

H3
1
∼= [0, 4, 1, 5, 2, 6]. Leave is 46.

• T = (H7
2 ,H5

1 ,H3
1 ): H7

2
∼= [4, 5, 0, 1, 2, 3],

H5
1
∼= [5, 6, 3, 2, 4, 1], [6, 2, 5, 1, 3, 0],

H3
1
∼= [0, 4, 1, 6, 3, 5]. Leave is 46.

• T = (H7
2 ,H5

5 ,H3
1 ): H7

2
∼= [4, 5, 0, 1, 2, 3],

H5
5
∼= [1, 3, 0, 6, 4, 5], [2, 5, 0, 4, 1, 6],

H3
1
∼= [0, 3, 1, 6, 2, 4]. Leave is 36.

• T = (H7
3 ,H5

1 ,H3
1 ): H7

3
∼= [4, 5, 0, 1, 2, 3],

H5
1
∼= [6, 5, 2, 4, 1, 3], [0, 5, 3, 4, 6, 2],

H3
1
∼= [0, 3, 1, 6, 2, 4]. Leave is 06.

• T = (H7
3 ,H5

6 ,H3
1 ): H7

3
∼= [4, 5, 0, 1, 2, 3],H5

6
∼= [0, 2, 3, 5, 4, 6],

H3
1
∼= [0, 5, 1, 4, 3, 6], [0, 3, 1, 6, 2, 5].

Leave is 13, 26, & 56.

• T = (H7
9 ,H5

4 ,H3
1 ): H7

9
∼= [1, 2, 3, 4, 5, 0],

H5
4
∼= [0, 1, 6, 4, 5, 3], [0, 4, 2, 5, 6, 1],

H3
1
∼= [0, 6, 1, 5, 3, 4]. Leave is 36.

• T = (H7
10,H

5
1 ,H3

1 ): H7
10

∼= [1, 2, 3, 4, 5, 0],
H5

1
∼= [1, 4, 2, 0, 6, 3], [2, 3, 0, 1, 6, 5],

H3
1
∼= [0, 4, 1, 5, 2, 6]. Leave is 46.

The optimal T -multicoverings of K7 for (T = H7
i ,H5

j ,H3
1 ) are
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• T = (H7
1 ,H5

1 ,H3
1 ): H7

1
∼= [4, 5, 0, 1, 2, 3], [5, 3, 1, 4, 2, 6],

H5
1
∼= [4, 6, 3, 5, 2, 0],

H3
1
∼= [0, 6, 1, 5, 2, 4]. Padding is 24.

• T = (H7
2 ,H5

1 ,H3
1 ): H7

2
∼= [4, 5, 0, 1, 2, 3], [5, 3, 0, 4, 6, 1],

H5
1
∼= [6, 2, 4, 1, 3, 5],

H3
1
∼= [1, 4, 2, 5, 3, 6]. Padding is 35.

• T = (H7
2 ,H5

5 ,H3
1 ): H7

2
∼= [4, 5, 0, 1, 2, 3], [0, 3, 6, 5, 1, 4],

H5
5
∼= [2, 4, 1, 3, 5, 6],

H3
1
∼= [0, 6, 2, 5, 3, 4]. Padding is 34.

• T = (H7
3 ,H5

1 ,H3
1 ): H7

3
∼= [4, 5, 0, 1, 2, 3], [3, 1, 5, 6, 2, 0],

H5
1
∼= [4, 6, 3, 0, 5, 2],

H3
1
∼= [0, 6, 1, 4, 2, 3]. Padding is 23.

• T = (H7
3 ,H5

6 ,H3
1 ): H7

3
∼= [3, 2, 0, 1, 5, 4], [0, 2, 5, 6, 1, 4],

H5
6
∼= [3, 6, 2, 5, 4, 1],

H3
1
∼= [0, 6, 4, 2, 3, 5]. Padding is 14.

• T = (H7
9 ,H5

4 ,H3
1 ): H7

9
∼= [1, 2, 3, 4, 5, 0], [0, 1, 4, 5, 2, 6],

H5
4
∼= [0, 6, 3, 1, 4, 5],

H3
1
∼= [0, 4, 1, 5, 2, 3]. Padding is 23.

• T = (H7
10,H

5
1 ,H3

1 ): H7
10

∼= [1, 2, 3, 4, 5, 0],
H5

1
∼= [4, 1, 5, 3, 6, 2], [4, 6, 5, 1, 3, 0],

H3
1
∼= [0, 6, 1, 4, 2, 3], [1, 6, 2, 5, 3, 4].

Padding is 14 & 34.

Finally, we have the following optimal T -multipackings of K8 for T = (H6
i ,H6

j ,H3
1 ).

• T = (H6
1 ,H6

8 ,H3
1 ): H3

1
∼= [1, 6, 2, 4, 5, 7], [0, 2, 1, 3, 4, 7], [1, 7, 3, 5, 4, 6],

[1, 4, 3, 6, 2, 7], [0, 4, 1, 5, 6, 7].
H6

1
∼= [0, 1, 2, 3, 4, 5],H6

8
∼= [0, 3, 2, 5, 6, 7].

Leave is 06.

• T = (H6
2 ,H6

3 ,H3
1 ): H3

1
∼= [1, 6, 2, 4, 5, 7], [0, 2, 3, 7, 4, 6], [1, 7, 2, 6, 3, 5],

[2, 7, 3, 6, 4, 5], [0, 3, 2, 5, 4, 7]
H6

2
∼= [3, 4, 6, 0, 1, 2],H6

3
∼= [7, 0, 4, 1, 5, 6].

Leave is 13.

• T = (H6
2 ,H6

4 ,H3
1 ): H3

1
∼= [0, 3, 1, 5, 4, 7], [0, 7, 2, 6, 3, 5], [1, 7, 3, 6, 4, 5],

[0, 5, 2, 7, 4, 6], [0, 2, 1, 6, 3, 7],
H6

2
∼= [2, 1, 6, 0, 4, 3],H6

4
∼= [6, 7, 1, 4, 2, 5].

Leave is 13.

• T = (H6
5 ,H6

6 ,H3
1 ): H3

1
∼= [0, 6, 1, 5, 4, 7], [0, 2, 3, 7, 4, 6], [0, 4, 1, 3, 2, 6],

[0, 5, 1, 4, 2, 7], [1, 7, 2, 5, 3, 6],
H6

5
∼= [2, 3, 4, 7, 0, 1],H6

6
∼= [7, 5, 4, 2, 1, 6].

Leave is 35.

• T = (H6
5 ,H6

7 ,H3
1 ): H3

1
∼= [0, 2, 1, 6, 3, 7], [0, 4, 1, 5, 2, 7], [0, 5, 1, 3, 2, 4],

[1, 7, 2, 6, 3, 4], [1, 4, 3, 6, 5, 7],
H6

5
∼= [1, 0, 6, 5, 3, 2],H6

7
∼= [0, 4, 5, 2, 6, 7].

Leave is 46.
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• T = (H6
6 ,H6

11,H
3
1 ): H3

1
∼= [0, 3, 2, 7, 4, 6], [0, 5, 1, 3, 4, 7], [0, 6, 1, 5, 2, 4],

[1, 7, 2, 6, 4, 5], [1, 4, 2, 5, 3, 6],
H6

6
∼= [5, 7, 0, 4, 1, 6],H6

11
∼= [1, 2, 3, 4, 5, 0].

Leave is 37.

• T = (H6
7 ,H6

10,H
3
1 ): H3

1
∼= [0, 4, 3, 6, 5, 7], [0, 5, 1, 3, 2, 7], [0, 6, 2, 4, 3, 7],

[0, 7, 1, 6, 2, 5], [1, 5, 2, 6, 3, 4],
H6

7
∼= [1, 4, 5, 3, 6, 7],H6

10
∼= [1, 0, 4, 6, 3, 2].

Leave is 14.
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