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ABSTRACT

A-theory is a recently developed area of algebraic combinatorics that takes concepts

from algebraic topology and transfers them to a combinatorial setting. This dissertation

focusses on a discrete homotopy theory de�ned on simple graphs and simplicial complexes.

Early appearances of this concept of discrete homotopy can be found in the work of Atkin,

and, later on, Malle. More recently, Laubenbacher and Kramer became aware of Atkin's

work while conducting research in social and communications networks. With Barcelo and

Weaver, they pursued Atkin's ideas and extended them to form what is now known as A-

theory. This theory provides a general framework encompassing homotopy methods that

can be used to prove connectivity results for graphs and matroids, for example.

In this dissertation, it is shown that the discrete fundamental group of the box

product of two graphs is isomorphic to the direct product of the discrete fundamental groups

of the individual graphs. Isomorphisms of the discrete fundamental group of a graph, �,

to the free product of the discrete fundamental groups of a collection of subgraphs of � are

presented in the cases where � has a single cut vertex or a minimal cut set of size two. A

graph may also arise in relation to the order complex of a lattice. Results are proven for

the discrete fundamental group of a graph related to the order complex of the direct sum,

ordinal sum, or ordinal product of two �nite graded lattices. A construction is given of the

graph related to the order complex of the direct product of two �nite graded lattices. This

is explored further in the case of the Boolean lattice, which may be viewed as the direct

product of smaller lattices. The abelianization of the discrete fundamental group of the

order complex of the Boolean lattice is a free group on 2n�3(n2 � 5n + 8) � 1 generators,

which recovers a formula from Bj�orner and Welker in their work on the computational

complexity of the k-equal problem, a computer science application.
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CHAPTER 1

INTRODUCTION

A-theory is a recently developed area of algebraic combinatorics that takes concepts

from algebraic topology and transfers them to a combinatorial setting. A-theory contains

discrete analogues to continuity, homotopy, and fundamental group, de�ned on graphs and

simplicial complexes. This dissertation focusses on a discrete homotopy theory de�ned on

simple graphs. An early appearance of this concept of discrete homotopy can be found in

the work of Atkin [1, 2] in the early 1970s. A physicist modeling social networks using

simplicial complexes, Atkin developed Q-analysis, a discrete topological theory used to

measure the combinatorial connectivity of a complex and identify combinatorial \holes" in

the complexes. In 1972, Maurer [13] developed a similar concept of discrete deformation

of paths in graphs while working on his dissertation, developing a characterization of basis

graphs of matroids. In 1983, Malle [12] also de�ned a notion of equivalence of graph maps,

as well as discrete fundamental group. He was able to characterize graphs with a trivial

discrete fundamental group, and also showed that this group corresponds to the classical

fundamental group when the girth of a graph, the length of the shortest cycle in the graph,

is at least �ve. These authors were apparently unaware of each other's work, but in fact

the concepts they created are all equivalent. More recently, Laubenbacher and Kramer

[11] became aware of Atkin's work while conducting research in social and communications
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networks. With Barcelo and Weaver [3], they pursued Atkin's ideas in Q-analysis and

extended them to include graphs and discrete analogues to higher homotopy groups. They

also named their work A-theory in his honor.

In Chapter 2, we review Barcelo, Kramer, Laubenbacher, and Weaver's [3] de�nitions

of a discrete homotopy theory for graphs. For simple graphs � and �0, a graph map f : �!

�0 maps vertices to vertices and preserves adjacency, that is, the pair of vertices incident

to an edge in � are mapped to a single vertex, or to a pair of adjacent vertices in �0. In

classical topology, two continuous maps from one topological space to another are homotopic

to one another if one can be continuously deformed into the other. For graph maps that

send vertices to vertices, they de�ne two maps to be equivalent if one can be discretely

deformed into the other, while preserving adjacency. This relation, called G-homotopy, is

an equivalence relation on the set of graph maps from � to �0.

In particular, Barcelo et al. consider graph maps de�ned on I, a discrete analogue to

[0; 1]. Given a distinguished vertex v0 2 �, the image of a based graph map f : I ! � with

only �nitely many values not equal to v0 is a loop in � based at v0. The set of equivalence

classes of graph maps based at v0, with multiplication of equivalence classes corresponding

to the concatenation of loops in �, is their discrete fundamental group AG
1 (�; v0), which we

also refer to as the G-group of �. In classical topology, the fundamental group of a cycle is

isomorphic to Z. We give another proof of a theorem from Barcelo et al. [3], demonstrating

that the discrete fundamental group of a cycle of length three or four is trivial, and is

isomorphic to Z if the cycle is of length at least �ve.

In Chapter 3, we look for ways to make computing the discrete fundamental group of

a graph easier by exploring methods for decomposing a graph � into subgraphs, computing

the discrete fundamental groups of the smaller graphs, then using these groups to �nd
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the discrete fundamental group of �. We prove a discrete analogue of a theorem from

classical topology: the discrete fundamental group of �2�0, the box product of � and �0, is

isomorphic to the direct product of the G-groups of � and �0:

AG
1 (�2�

0; (v0; v
0
0)) ' AG

1 (�; v0)�AG
1 (�

0; v00):

We also use a Seifert-Van Kampen type theorem from Barcelo et al. [3] to prove results in

the case where � has a cut vertex or a minimal cut set of size two.

Barcelo et al. [3] have developed a discrete homotopy theory for simplicial complexes

as well. In this dissertation, we consider one type of simplicial complex, the order complex

of a �nite graded lattice. To compute the discrete fundamental group of the order complex

of a graded lattice L of rank k, denoted by Ak�3
1 (�(L)) or simply referred to as the A1 group

of the lattice, we �rst construct a graph �k�3
max(�(L)). The vertices of the graph correspond

to maximal chains in L = L� f0̂; 1̂g, the truncated lattice, and two vertices are adjacent if

the corresponding chains di�er in precisely one element. Barcelo et al. [3] showed that the

G-group of the graph is isomorphic to the discrete fundamental group of the order complex.

We may then build new lattices from smaller ones, and we look for relationships between

the discrete fundamental groups of the lattices by considering the structure of the related

graphs. In Chapter 4, we prove results for the direct sum, ordinal sum, and ordinal product

of two graded lattices. We also provide a construction for the graph associated to the direct

product of two graded lattices.

While there does not appear to be a simple relationship between the A1 groups of

lattices L1, L2, and the direct product L1 � L2; in Chapter 5 we use the structure of the

graph introduced in Chapter 4 and the fact that Bn, the Boolean lattice of rank n, may be

expressed as the product of smaller lattices, to obtain the main result of this dissertation.

This result, computing the number of generators of An�3
1 (�(Bn))

ab, the abelianization of
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the discrete fundamental group of the Boolean lattice, is related to the k-equal problem, a

computational complexity problem studied by Bj�orner, Lov�asz, and Welker [6, 7]: Given n

real numbers and an integer k � 2, how many comparisons are needed to determine if k of

the numbers are equal? We can reframe this as an equivalent geometric problem. Let Vn;k

be the set of points in Rn that have at least k equal coordinates. Given a point in Rn, what

is the complexity of determining if that point is in Vn;k? Bj�orner and Lov�asz [6] showed

that the Betti numbers ofMn;k, the complement of Vn;k in R
n, are essential for determining

a lower bound for the complexity of our geometric problem when using a linear decision

tree model.

Bj�orner andWelker [7] computed these Betti numbers using algebraic and topological

methods. Using A-theory and purely combinatorial methods, we compute the �rst Betti

number of Mn;3, using a relationship between Mn;3 and Bn. It is known that the graph

�n�3
max(�(Bn)) is the 1-skeleton of the permutahedron Pn�1 [17]. (For ease of notation, we

refer to this graph as �Bn .) Barcelo et al. [3] showed that if 2-cells are attached to the 3-

and 4-cycles of a graph �, the classical fundamental group of the resulting cell complex,

is isomorphic to the discrete fundamental group of �. Babson [4] observed that attaching

2-cells to the 4-cycles of �Bn yields a cell complex that is homotopy equivalent to Mn;3.

Furthermore, thanks to Bj�orner and Welker [7], we know that the �rst homology group of

Mn;3 is a free group, thus to �nd the �rst Betti numbers we only need to compute the rank

of An�3
1 (�(Bn))

ab. We see that if we attach 2-cells to the 4-cycles in �Bn , we are left with

6-cycles, so our goal is to �nd a way to de�ne equivalence classes of graph maps whose

images are 6-cycles in the graph.

The Boolean lattice Bn is isomorphic to Bn�1 � 2, where 2 is the poset on two

elements, x and y, with x < y. This isomorphism, combined with the construction of
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the graph associated to a direct product of lattices de�ned in Chapter 4, give us a better

understanding of the structure of �Bn . The vertices of �Bn correspond to permutations in

Sn, and two vertices are adjacent if the permutations di�er by right multiplication by a

simple transposition. That is, v � v0 () �v = �v0(i; i + 1) for some i, 1 � i � n � 1.

Thus �Bn is bipartite, with the set of vertices partitioned into even and odd permutations,

and each edge in the graph corresponds to a simple transposition in Sn. The edges in a

4-cycle in �Bn correspond to a pair of disjoint simple transpositions in Sn. A reduced 6-cycle

cannot be expressed as the concatenation of two 4-cycles, and its edges correspond to a pair

of transpositions of the form (i� 1; i) and (i; i+ 1) for some i, 1 � i � n� 1.

In Theorem 6.2, the main result of this dissertation, we prove that two reduced 6-

cycles in �Bn , C1 and C2, are G-homotopic to one another if and only if they correspond

to the same pair of transpositions and they di�er by a sequence of transpositions, that is

C2 = C1�1 : : : �k where the �j are simple transpositions in Sn that are disjoint from (i�1; i)

and (i; i+ 1). This theorem gives us the means to describe and enumerate the equivalence

classes of reduced 6-cycles in �Bn , yielding the result that the rank of An�3
1 (�(Bn))

ab, and

thus also the Betti number we wanted to compute, is 2n�3(n2 � 5n + 8) � 1, recovering a

formula from Bj�orner and Welker's work [7] on the k-equal problem.



CHAPTER 2

G-HOMOTOPY OF GRAPHS

2.1. G-homotopy of Graph Maps

In this section we review the basic concepts of a discrete homotopy theory for graphs,

originally developed by Laubenbacher and Kramer and then later extended with Barcelo and

Weaver. These concepts are discrete analogues of continuity, homotopy, and fundamental

group, and can be found in greater detail in [11]. For the sake of completeness, we present

many of the details here. Let � = (V;E) and �0 = (V 0; E0) be simple graphs, with no loops

or parallel edges. A graph map f : � ! �0 is a set map V ! V 0 that preserves adjacency,

that is, if vw 2 E, then either f(v) is adjacent to f(w) in �0, denoted by f(v) ��0 f(w),

or f(v) = f(w). Let v 2 V and v0 2 V 0 be distinguished vertices. A based graph map is a

graph map f : (�; v)! (�0; v0) such that f(v) = v0. The box product �2�0 of two graphs, �

and �0, is the graph with vertex set V �V 0 and an edge between (v; v0) and (w;w0) if either

1. v = w and v0 ��0 w
0, or

2. v0 = w0 and v �� w.

We note that if � is connected, then the image of f is a connected subgraph of �0.
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De�nition 2.1. (Kramer and Laubenbacher [11])

1. Let � = (V;E) and �0 = (V 0; E0) be simple graphs with distinguished vertices v0; v1 2 V

and v00; v
0
1 2 V 0. Let f; g be based graph maps � ! �0 such that f(v0) = g(v0) = v00

and f(v1) = g(v1) = v01. We say that f and g are G-homotopic relative to v00 and v01,

denoted by f 'G g rel(v00; v
0
1), if there is an integer n and a graph map F : �2In ! �0

such that

(a) F (v; 0) = f(v) 8 v 2 V

(b) F (v; n) = g(v) 8 v 2 V

(c) F (v0; j) = v00 0 � j � n

(d) F (v1; j) = v01 0 � j � n.

If v00 = v01, then we write f 'G g rel(v00), or simply f 'G g of the base vertex is

clear.

2. We call (�; v0) and (�0; v00) G-homotopy equivalent if there exist based graph maps

f : �! �0 and g : �0 ! � such that g � f 'G id� rel(v0) and f � g 'G id�0 rel(v00):

The maps f and g are called G-homotopy inverses of each other.

3. If �0 is a subgraph of � with base vertex v0 2 �0, then �0 is called a G-homotopy

retract of � if there exists a based G-homotopy inverse of the inclusion map. This

G-homotopy inverse is called a G-homotopy retraction.

Let Im be the path on m + 1 vertices labelled 0; 1; 2; :::;m with edges (i � 1)i for

1 � i � m. This \discrete interval" plays a similar role to that of the unit interval in

classical homotopy theory. Let f : Im ! � be a graph map such that f(0) = v0 and
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f(m) = v1. Then the image of Im under f is a string, a sequence of vertices, beginning

with v0 and ending with v1, in which a pair of consecutive vertices are adjacent or identical

in �. If v0 = v1, then the image is a string loop, or simply a loop, based at v0. For the

sake of simplicity, when referring to such a graph map, we often simply refer to its image in

�. In this dissertation, the domain of our graph maps is often the graph Im, and we work

speci�cally with graph maps Im ! � whose images have the same endpoints in �. The

graph map F de�ned above is called a G-homotopy from f to g, relative to (v0; v1); it is the

discrete deformation of f into g. When f and g are de�ned on Im, one can also visualize

the graph Im2In as an (m + 1) � (n + 1) grid, with vertex (i; j) in the grid labelled by

F (i; j). F is a graph map, so if there is an edge between two vertices in the grid then the

images of the vertices must be adjacent or identical in �. Furthermore, the image of row j

of the grid corresponds to fF (i; j) : i 2 Img, and is a string Fj from v0 to v1 in �.

A graph map f : Im ! � can be extended to a graph map f 0 : Ip ! � for all

p > m by sending all vertices j > m to f(m). Thus two graph maps de�ned on Im and Ip,

respectively, can be viewed as being de�ned on the larger discrete interval. The ability to

\stretch" a graph map enables us to discuss the set of graph maps whose images are strings

in � of �nite length, rather than limiting us to maps de�ned on a discrete interval of a �xed

length. Let I be the in�nite path with vertices corresponding to the set of non-negative

integers and edges corresponding to a pair of consecutive integers. We can de�ne a relation

on the set of graph maps f from I to �, where each map f satis�es the conditions that

f(0) = v0 and there is a positive integer mf such that f(j) = v1 for j � mf . The image of

each of these graph maps will be a string in � of �nite length, beginning at v0 and ending at

v1. We note that if one restricts f to the discrete interval Imf
, the image will be the same

string from v0 to v1 in �. In proofs involving graph maps from I to �, the notation is often



9

easier if we consider the restriction of the maps to a path of �nite length, thus, when we are

discussing a graph map f : I ! �, we will write f : Im ! �, indicating the restriction of f

to Imf
. Furthermore, if we have a G-homotopy between two graph maps f and g and we

describe the G-homotopy grid, we write f; g : Im ! �, and we assume that any necessary

stretching has been done so that both (restricted) maps are de�ned on intervals of the same

length.

Figure 1. A G-homotopy from f to g.

Examples. (1) G-homotopy. Figure 1 gives an example of a G-homotopy between two

based graph maps de�ned on intervals of di�erent lengths. The graph map g has been

stretched so that it is de�ned on the longer interval.

Figure 2. The retraction of a 4-cycle to a single vertex.

(2) G-homotopy retract. [11] Let � be a 4-cycle with vertices fv0; v1; v2; v3g, and

let �0 be the subgraph of � consisting of the single vertex v0. Figure 2 illustrates a graph

map f : �2I2 ! � that will contract the 4-cycle to a single vertex. On �2f0g, f is the

identity. On �2f1g, de�ne f by f(v0; 1) = f(v3; 1) = v0 and f(v1; 1) = f(v2; 1) = v1.

On �2f2g, all vertices are mapped to v0. It requires a minimum of two steps to perform

this contraction, because if one attempted to contract � to v0 with a map g : �2I1 ! �,

this would require mapping (v2; 0) to v2 and (v2; 1) to v0. However, (v2; 0) and (v2; 1) are

adjacent in �2I1, but v2 and v0 are not adjacent in �, so g would not be a valid graph map.
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A 3-cycle can be similarly contracted to a single vertex, although that may be done in a

single step.

(3) Gangster Problem. Malle [12] gives an interesting justi�cation of why it is not

possible to perform a similar contraction of a 5-cycle. In his Gangster Problem, he describes

an interpretation of the vertices of a graph as towns, and the edges as roads between the

towns. Suppose there is a gangster living in each town, and they would like to have a

meeting in a single town. For safety reasons they decide:

1. Each day, each gangster will move to an adjacent town or rest in the same town.

2. If two gangsters are in adjacent towns initially, they must be in adjacent towns or the

same town each day.

Figure 3. The Gangster Problem

For what graphs is it possible for them to meet? We can see that this is equivalent to

being able to discretely contract a graph to a single vertex. Moving (at most) once each day

corresponds to increments in our discrete interval Im. The second precaution corresponds

to preserving adjacency within a G-homotopy. In Figure 3, the �rst graph is a 5-cycle with

an additional edge, and it can be contracted to a single vertex. However, for the second

graph, a 5-cycle, if one tries to construct a G-homotopy f : �2Im ! � as in Example 2

previously, one �nds that in order to preserve adjacency at each level, f must map �2(i)

onto � for each i, 1 � i � m, and it is not possible to discretely contract the image to a

single vertex. The same is true for longer cycles as well, and thus any cycle of length � 5

cannot be contracted to a single vertex.
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Proposition 2.2. [11] G-homotopy relative to (v0; v1) is an equivalence relation on the set

of based graph maps f : I ! � satisfying the conditions that

1. f(0) = v0, and

2. there is a positive integer mf such that f(i) = v1 for i � mf .

Proof. To prove this, one views a G-homotopy F between graph maps as the Im2In grid

with vertex (i; j) labelled by F (i; j).

1. Clearly a graph map f : Im ! � is G-homotopic to itself rel(v0; v1). A G-homotopy

grid would only require a single row.

2. Suppose f 'G g rel(v0; v1). Then there exists a G-homotopy grid from f to g.

Flipping this grid upside down yields a G-homotopy grid from g to f which shows

g 'G f rel(v0; v1).

3. Let h be yet another graph map Im ! �, such that g 'G h rel(v0; v1), and consider

G-homotopy grids for f 'G g rel(v0; v1) and g 'G h rel(v0; v1). The last row of the

grid for f 'G g rel(v0; v1) and the �rst row of the grid for g 'G h rel(v0; v1) both

correspond to the the image of graph map g. Since all three graph maps are de�ned

on the interval Im, extending one or more of the maps if necessary, both grids have

the same width. Connect the grids by \pasting" them along the row corresponding

to g, and the result is a G-homotopy grid that shows f 'G h rel(v0; v1).

We now have G-homotopy classes [f ] of graph maps f : I ! � whose images are

strings of �nite length from v0 to v1, under the equivalence relation 'G rel(v0; v1). Next
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we recall the operation on these classes. If f : Im ! � is a graph map with f(0) = v0 and

f(m) = v1, and g : Ik ! � is a graph map with g(0) = v1 and g(k) = v2, the product of

these graph maps is a graph map fg : Im+k ! � given by

fg(i) =

8>>><
>>>:
f(i) 0 � i � m

g(i�m) m � i � m+ k:

The image of Im+k under fg is a string in � from v0 to v2 going through v1. So it is �rst

\string f" and then \string g". This operation is well-de�ned on equivalence classes:

Proposition 2.3. [11] Let f; g be graph maps as de�ned above. If f 'G f 0 rel(v0; v1) and

g 'G g0 rel(v1; v2), then fg 'G f 0g0 rel(v0; v2).

Proof. Suppose F : Im2In ! � is a G-homotopy from f to f 0, and G : Ik2Il ! � is a

G-homotopy from g to g0. Without loss of generality, suppose l � n, then de�ne a new

G-homotopy G0 : Ik2In ! � by

G0(i; j) =

8>>><
>>>:
G(i; j) 0 � j � l

G(i; l) l � j � n

This has the e�ect of increasing the length of the G-homotopy grid for G by adding copies

of the last row so that it will have the same number of rows as the grid for F . The two

grids can be pasted together along the last column of the grid for F and the �rst column of

the grid for G0. The resulting (m+ k + 1)� (n+ 1) grid corresponds to a new graph map

which is denoted by FG0 : Im+k2In ! � and de�ned by

FG0(i; j) =

8>>><
>>>:
F (i; j) 0 � i � m

G0(i�m; j) m � i � m+ k:
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It is easy to verify that FG0 is a G-homotopy from fg to f 0g0 rel(v0; v1). Thus multiplica-

tion of the equivalence class of f on the right by the equivalence class of g is well-de�ned:

[f ][g] = [fg].

Of particular interest to us is the collection of graph maps whose images are loops

in a graph � based at a �xed vertex, v0. The boundary @Im of Im is the vertex set f0;mg.

Let f : (Im; @Im)! (�; v0) be a based graph map such that f(@Im) = v0. Then the image

of Im under f is a loop in �. The image of the product of two such graph maps is also a

loop in � based at v0, so we can now view multiplication as a group operation on the set of

equivalence classes of graph maps whose images are loops based at v0.

Theorem 2.4. ([11]) Let AG
1 (�; v0) be the set of G-homotopy classes of based graph maps

ff : I ! �g satisfying the conditions that

1. f(0) = v0, and

2. there is a positive integer mf such that f(i) = v0 for i � mf .

If multiplication in AG
1 (�; v0) is de�ned as above, then AG

1 (�; v0) becomes a group.

Proof. The identity of AG
1 (�; v0) is the equivalence class of the constant map that sends all

vertices in Im to the base vertex v0. It is easy to see that for graph maps f; g; and h :

(Im; @Im) ! (�; v0), (fg)h and f(gh) will result in the same concatenation of loops in �,

and so multiplication of the corresponding equivalence classes is associative. The inverse of

a class [f ] is the class of f�1 de�ned by f�1(i) = f(m � i), 0 � i � m. The image of f�1

is the loop of f traversed in the opposite direction. To demonstrate that ff�1 'G e(�;v0),
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de�ne F : I2m2Im ! (�; v0) by

F (i; j) =

8>>>>>>>><
>>>>>>>>:

f(i) 0 � i � m� j

f�1(j) = f(m� j) m� j � i � m+ j

f�1(i�m) = f(2m� i) m+ j � i � 2m:

Figure 4 gives an example of the G-homotopy de�ned above. Similarly, the graph map G

de�ned by

G(i; j) =

8>>>>>>>><
>>>>>>>>:

f�1(i) 0 � i � m� j

f(j) = f�1(m� j) m� j � i � m+ j

f(i�m) = f�1(2m� i) m+ j � i � 2m:

is a G-homotopy from f�1f to the constant map e(�;v0).

Figure 4. A G-homotopy from ff�1 to the identity map e(�;v0).

Is there a relation between AG
1 (�; v0) and A

G
1 (�; v1)? Not if v0 and v1 lie in di�erent

components of �. However, the following proposition shows that if � is connected, the

group AG
1 (�; v0) is independent of the choice of v0, up to isomorphism. In that case, we

often write simply AG
1 (�) for A

G
1 (�; v0), and call it the discrete fundamental G-group of �.

Proposition 2.5. [11] Let v0; v1 be two vertices lying in the same component of �. Let [f ]

be an equivalence class of based graph maps in AG
1 (�; v0). Let g : Im ! � be a graph map

such that g(0) = v0 and g(m) = v1. (The image of g is a string from v0 to v1 in �.) The

mapping [f ]! [g�1fg] is an isomorphism g� of the group AG
1 (�; v0) onto A

G
1 (�; v1).
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Proof. Let [f ] and [h] be two equivalence classes in AG
1 (�; v0), and let g be de�ned as above.

It is easy to verify that

g�[fh] = [g�1fhg]

= [g�1fgg�1hg]

= [g�1fg][g�1hg]

= g�[f ]g�[h]

so g� is a homomorphism and (g�1)� is its inverse.

2.2. The Discrete Fundamental Group of a Cycle

Figure 5. A cycle Ck

Inspired by arguments from classical homotopy theory (for example, see Greenberg

[10]), we give another proof to show that the discrete fundamental group of a cycle of length

� 5 is isomorphic to Z. Let Ck be the graph on k vertices, k � 3, labelled 0; 1; 2; :::; k � 1

counterclockwise as shown in Figure 5, and with edges (k�1)0 and (i�1)i for 1 � i � k�1.

As we saw in the previous section, AG
1 (Ck; 0) is trivial for k = 3 and k = 4. For k � 5,

it is well known (see, for example, Malle [12], and Barcelo et al. [3]) that the homotopy

class of a based graph map f : (Im; @Im)! Ck can be determined by the number of times

the image of f \winds around" the cycle, with the number being negative if the \winding"

is clockwise on Ck. Thus two graph maps are G-homotopic to each other if their images

ultimately wind around Ck the same number of times in the same direction. To see this,

we �rst de�ne a map � : Z! AG
1 (Ck; 0) and then prove that it is an isomorphism.

Step 1. De�nition of �.
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Let � : Z! AG
1 (Ck; 0), where k � 5, be given by �(w) = [fw], where fw is the graph

map fw : Ijwkj ! Ck, fw(i) = sgn(w)i (mod k). For w � 0 the image of fw winds around

Ck w times in the counterclockwise direction. If w < 0, the winding is in the clockwise

direction.
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Step 2. Show � is a homomorphism.

Let w; x 2 Z. The image of fw+x is a loop that winds around Ck w + x times.

Clearly, this is equivalent to the concatenation of a loop that winds around w times and a

loop that winds around x times. Thus

�(w + x) = [fw+x]

= [fw][fx]

= �(w)�(x):

Step 3. Show � is surjective.

Let f : (Im; @Im) ! (Ck; 0) be a based graph map. We will show that there is

exists an integer wf such that �(wf ) = [f ]. To do this we will de�ne a new function

� : f0; 1; 2; :::mg ! Z recursively as follows:

�(i) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0 if i = 0

�(i� 1) + 1 if f(i) � f(i� 1) + 1 (mod k)

�(i� 1)� 1 if f(i) � f(i� 1)� 1 (mod k)

�(i� 1) if f(i) = f(i� 1):

For each i; 0 � i � m, we have �(i) � f(i) (mod k), and �(i) increases as the image of

f winds counterclockwise around Ck, and decreases as f winds in the clockwise direction.

If we divide �(m) by k, the length of the cycle, the result will be an integer yielding the

number of times (with direction) that f winds around Ck. Therefore we will de�ne wf

to be �(m)
k

. Recall that a graph map that winds once around Ck clockwise, then once

counterclockwise, is G-homotopic the the trivial map, so one winding around Ck in one

direction will \cancel out" one winding in the opposite direction when we count the total



18

number of times the image of a graph map winds around the cycle. To show that wf is well-

de�ned, let g : (Im; @Im)! Ck be another representative of [f ] and let F : Im2In ! Ck be

a G-homotopy from f to g. Let �j(i) = �(F (i; j)) be the function � evaluated on the image

of row j of the grid. Consider the �rst two rows of the G-homotopy grid for F . Recall that

from the de�nition of � we have �0(0) = �1(0) = 0, as well as �0(i) � F (i; 0) (mod k) and

�1(i) � F (i; 1) (mod k). Furthermore, for each i, 0 � i � m, F (i; 0) and F (i; 1) di�er by

at most 1 (mod k), and consequently �0(i) and �1(i) must di�er by at most 1 (mod k) as

well. Moreover, since k � 5, �0(i) and �1(i) must di�er by at most 1. Therefore, �0(m) and

�1(m) are not merely both congruent to 0 (mod k), they are in fact equal. Inductively we

have �0(m) = �j(m); 0 � j � n. Which leads to the following result:

wf =
�0(m)

k
=
�n(m)

k
= wg:

Thus wf is independent of our choice of representative of [f ].

Step 4. Show that � is injective.

Suppose �(w) = [e], the equivalence class of the trivial map. The image of the trivial

map is the single vertex 0, and it doesn't wind around Ck at all, so w must be 0.

This shows that � is an isomorphism, which completes this proof of the following

theorem.

Theorem 2.6. (Malle [12], Barcelo et al. [3]) AG
1 (Ck; 0) ' Z for k � 5.



CHAPTER 3

ISOMORPHISMS OF G-HOMOTOPY GROUPS

3.1. � is the Box Product of Graphs

In the previous chapter, we recalled the de�nition of AG
1 (�; v0), the discrete funda-

mental group of a graph �, and computed this group for cycles. Our next step is to examine

the structure of G-groups of more complicated graphs. When the G-homotopy relation on

graph maps was de�ned, we �rst needed �2�0, the box product of � and �0, and this seems

like a natural place for us to continue our exploration. If we start with graphs � and �0 for

which we know the groups AG
1 (�; v0) and A

G
1 (�

0; v00), and from these graphs we construct

�2�0 with base vertex (v0; v
0
0), is there a relationship between AG

1 (�2�
0; (v0; v

0
0)) and the

G-groups of � and �0?

Recall that each vertex in �2�0 is an ordered pair, (v; v0), where the �rst coordinate

is a vertex in � and the second is a vertex in �0. Given a loop in �2�0 based at (v0; v
0
0),

we can separate this sequence of ordered pairs into one sequence consisting of vertices in �,

and a second sequence of vertices in �0. By the de�nition of edges in �2�0, one sees that

these resulting sequences are loops in � and �0, respectively. Furthermore, we can show

that each equivalence class in AG
1 (�2�

0; (v0; v
0
0)) can be put in correspondence with a pair

of equivalence classes, one from AG
1 (�; v0) and the other from AG

1 (�
0; v00). This leads us to



20

the main result of this chapter, where we show that this correspondence is in fact a bijection

from AG
1 (�2�

0; (v0; v
0
0)) to A

G
1 (�; v0)�AG

1 (�
0; v00).

Theorem 3.1. Let � = (V;E), �0 = (V 0; E0) be simple graphs with distinguished vertices,

v0 and v00, respectively. Then A
G
1 (�2�

0; (v0; v
0
0)) ' AG

1 (�; v0)�AG
1 (�

0; v00).

Proof. To prove this, we de�ne a homomorphism (��;��0) from AG
1 (�2�

0; (v0; v
0
0)) to

AG
1 (�; v0)�AG

1 (�
0; v00), then show that the homomorphism is invertible.

The homomorphism (��;��0). First, let p� and p�0 be the usual projection maps:

Given a graph map f : (Im; @Im) ! (�2�0; (v0; v
0
0)), p� � f is a graph map

which projects the image of f into �. From p� � f , we induce the homomorphism

�� : AG
1 (�2�

0; (v0; v
0
0)) ! AG

1 (�; v0), de�ned by ��([f ]) = [p� � f ] [3]. Similarly, ��0 is

a homomorphism from AG
1 (�2�

0; (v0; v
0
0)) to A

G
1 (�

0; v00).

Since �� and ��0 are homomorphisms, then (��;��0) is a homomorphism from

AG
1 (�2�

0; (v0; v
0
0)) to A

G
1 (�; v0)�A

G
1 (�

0; v00). In fact, (��;��0) is an isomorphism. To show

this, we de�ne a map 	 and show that it is the inverse of (��;��0).

De�ning the homomorphism 	. Let [�] be the equivalence class of � :

(Im; @Im) ! (�; v0) in A
G
1 (�; v0), and let [�] be the equivalence class of � : (Im; @Im) !

(�0; v00) in AG
1 (�

0; v00). We want to de�ne a map 	 : AG
1 (�; v0) � AG

1 (�
0; v00) !

AG
1 (�2�

0; (v0; v
0
0)) that maps the pair ([�]; [�]) to an equivalence class in A

G
1 (�2�

0; (v0; v
0
0)).

Let 	([�]; [�]) be the equivalence class of the graph map  �;� : (I2m; @I2m) !

(�2�0; (v0; v
0
0)) given by
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 �;� =

8>>><
>>>:
(�(i); v00); 0 � i � m

(v0; �(i�m)); m � i � 2m:

We must show that 	 is well-de�ned. Let 
 : (Im; @Im) ! (�; v0) be another

representative of [�]; let � : (Im; @Im)! (�0; v00) be another representative of [�]. We must

show that  �;� is G-homotopic to  
;�. Let F be a G-homotopy from � to 
 and let F 0 be

a G-homotopy from � to �. If necessary, we may stretch one of the G-homotopies as we

did in the proof of Proposition 2.3 so that both F and F 0 are de�ned on Im2In. We now

de�ne a new map and show that it is the desired G-homotopy from  �;� to  
;�.

De�ne F 00 : I2m2In ! (�2�0; (v0; v
0
0)) by

F 00(i; j) =

8>>><
>>>:
(F (i; j); v00); 0 � i � m; 0 � j � n

(v0; F
0(i�m; j)); m � i � 2m; 0 � j � n

We can verify that F 00 is a graph map that satis�es:

1. F 00(i; 0) =

8>>><
>>>:
(F (i; 0); v00) = (�(i); v00); 0 � i � m

(v0; F
0(i�m; j)) = (v0; �(i�m)); m � i � 2m

2. F 00(i; n) =

8>>><
>>>:
(F (i; n); v00) = (
(i); v00); 0 � i � m

(v0; F
0(i�m; j)) = (v0; �(i�m)); m � i � 2m

3. F 00(0; j) = (F (0; j); v00) = (�(0); v00) = (v0; v
0
0); 0 � j � n

4. F 00(2m; j) = (v0; F
0(2m; j)) = (v0; �(m)) = (v0; v

0
0); 0 � j � n:

Consequently F 00 is a G-homotopy from  �;� to  
;�, and therefore 	 is well-de�ned.

We can describe the G-homotopy grid for F 00 in terms of the grids for F : Im2In !

(�; v0) and F
0 : Im2In ! (�0; v00). First, add v

0
0 to the image of each vertex in the grid for
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F as the second coordinate, so that each vertex in the grid is now labeled with a vertex in

�2�0; clearly this preserves adjacency. Similarly, add v0 so that is is now the �rst coordinate

in the image of each vertex in the grid for F 0; again, each vertex in the grid is now labeled

with a vertex in �2�0. In particular, each vertex in the last column of the grid for F , as

well as each vertex in the �rst column of the grid for F 0, is labeled with (v0; v
0
0), so we

may paste the grids together along these columns. The result is the G-homotopy grid for

F 00 : I2m2In ! (�2�0; (v0; v
0
0))

The homomorphism 	 is the inverse of (��;��0). The composition (��;��0)�

	 is straightforward:

((��;��0) �	)([�]; [�]) = ((�� �	)([�]; [�]); (��0 �	)([�]; [�]))

= ([p� �  �;�]; [p�0 �  �;�]):

When p� projects the image of  �;� into �, we get a new graph map (I2m; @I2m)! (�; v0)

given by

p� �  �;�(i) =

8>>><
>>>:
�(i) 0 � i � m

v0 m � i � 2m:

This is simply the map �, stretched so that it is de�ned on I2m. Similarly, p�0 �  �;� is

de�ned by

p�0 �  �;�(i) =

8>>><
>>>:
v00 0 � i � m

�(i�m) m � i � 2m:

Therefore, ((��;��0) �	)([�]; [�]) = ([�]; [�]) as desired.



23

The composition 	 � (��;��0) is somewhat more complex:

(	 � (��;��0))([f ]) = 	(��([f ]);��0([f ]))

= 	([p� � f ]; [p�0 � f ]):

The image of f is a loop in �2�0 based at (v0; v
0
0). The map p� projects this loop into

�, thus the image of p� �f is a loop in � based at v0. Similarly, the image of p�0 �f is a loop

in �0 based at v00. Therefore, the image of  p� �f; p
�
0�f is the concatenation of two loops in

�2�0 based at (v0; v
0
0). In the �rst loop, the set of �rst coordinates of the vertices correspond

to the image of p� � f , and the second coordinate of each vertex is v00. In the second loop,

the �rst coordinate of each vertex is v0, and the set of second coordinates corresponds to

the image of p�0 � f . However, it is not immediately clear that this concatenation of loops

in �2�0 is G-homotopic to the original loop for f . To prove that this is in fact the case,

we de�ne a map G : I2m2Im ! �2�0 and show that G is a G-homotopy from  p
�
�f; p

�
0�f

to f .

Let G : I2m2Im ! �2�0 be de�ned as follows:

The bottom row in theG-homotopy grid forG corresponds to  p
�
�f; p

�
0�f , the concatenation

of the two loops in �2�0. For ease of notation, we refer to this as row 0, to coincide with

the second coordinate of the vertices in the bottom row of I2m2Im.

G(i; 0) =

8>>><
>>>:
(p�(f(i)); v

0
0); 0 � i � m

(v0; p�0(f(i�m))); m � i � 2m:

In row 1, we replace v00 with p�0(f(1)) for 1 � i � m. In this and all subsequent rows, we

leave the �rst coordinate of each vertex unchanged.
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G(i; 1) =

8>>>>>>>><
>>>>>>>>:

(p�(f(i)); p�0(f(i))); i = 0

(p�(f(i)); p�0(f(1))); 1 � i � m

(v0; p�0(f(i�m))); m+ 1 � i � 2m:

In row 2, we replace p�0(f(1)) with p�0(f(2)) for 2 � i � m+ 1.

G(i; 2) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(p�(f(i)); p�0(f(i))); 0 � i � 1

(p�(f(i)); p�0(f(2))); 2 � i � m

(v0; p�0(f(2))); i = m+ 1

(v0; p�0(f(i�m))); m+ 2 � i � 2m:

For each remaining row of G, for 3 � j � m, we continue to replace p�0(f(j � 1)) with

p�0(f(j)) for j � i � m+ j � 1.

G(i; j) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(p�(f(i)); p�0(f(i))); 0 � i � j � 1

(p�(f(i)); p�0(f(j))); j � i � m

(v0; p�0(f(j))); m+ 1 � i � m+ j � 1

(v0; p�0(f(i�m))); m+ j � i � 2m:
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Note that in the last row of the grid, with j = m, this results in

G(i;m) =

8>>><
>>>:
(p�(f(i)); p�0(f(i))); 0 � i � m

(v0; p�0(f(m))); m+ 1 � i � 2m

=

8>>><
>>>:
(p�(f(i)); p�0(f(i))); 0 � i � m

(v0; v
0
0); m+ 1 � i � 2m:

=

8>>><
>>>:
f(i); 0 � i � m

(v0; v
0
0); m < i � 2m:

Thus we have

1. G(i; 0) =  p
�
�f; p

�
0�f (i) for 0 � i � 2m.

2. G(i;m) = f(i) for 0 � i � 2m.

3. G(0; j) = G(2m; j) = (v0; v
0
0) for 0 � j � n:

We still need to show that G preserves adjacency to conclude that it is a G-homotopy from

 p
�
�f; p

�
0�f to f , but �rst we will illustrate the construction of G with an example.

Example. We use C52C5 as an example. To avoid the confusion of referring to two

copies of the same graph with the same vertex labels, we refer to the �rst copy of C5 simply

as C, with vertices f0; 1; 2; 3; 4g, and to the second copy as C 0, with vertices f00; 10; 20; 30; 40g.

De�ne f : (I10; @I10)! (C2C 0; (0; 00)) as shown in Figure 6.

One veri�es easily that f is a graph map and its image is a loop in C2C 0 based at

(0; 00). The image of pC � f is the loop 0 � 0 � 0 � 0 � 1 � 2 � 3 � 3 � 4 � 0 � 0 in C and

the image of pC0 � f is the loop 00 � 10 � 20 � 30 � 30 � 30 � 30 � 40 � 40 � 40 � 00 in C 0. The
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Figure 6. f : (I10; @I10)! (C2C 0; (0; 00))

image of  p
C
�f; p

C0
�f is the loop of 21 vertices in C2C 0: (0; 00)� (0; 00)� (0; 00)� (0; 00)�

(1; 00)� (2; 00)� (3; 00)� (3; 00)� (4; 00)� (0; 00)� (0; 00)� (0; 10)� (0; 20)� (0; 30)� (0; 30)�

(0; 30)� (0; 30)� (0; 40)� (0; 40)� (0; 40)� (0; 00).

baselineskip

The grid in Figure 7 illustrates the G-homotopy G : (I202I10) ! (C2C 0; (0; 00))

from  p
C
�f; p

C0
�f to f . The bottom row of the grid, row 0, is labeled with the image just

described, and the top row is labeled with the image of f , extended by adding additional

copies of the base vertex (0; 00). The central section of the grid, where portions of the rows

have been underlined, is where changes are made from row to row. In row 1, when we

replace the second coordinate, 00, with pc0(f(1)) = 10 for 1 � i � 10, we refer to this as

sliding the label 10 to the left across the row, to all but the last vertex in the row. In the

next row, we slide the label 20 to the left, changing the second coordinate in all but the

last two vertices. We continue this sliding process for each of the following rows in the

grid, sliding the appropriate label to the left across m = 10 vertices in the row. In each

consecutive row, we are reconstructing the image of our original graph map f one vertex at

a time, which is then followed by m copies of the base vertex (0; 00) in the last row.

The sliding process preserves adjacency. All that remains is to show that G is

a graph map by verifying that it preserves adjacency. First, we can consider the horizontal

edges in the grid connecting vertices (i; j) and (i+ 1; j) according to three possible cases.

Case 1. i � j� 1. This corresponds to the horizontal edges in the upper left section of the

grid. These are the vertices where we have reconstructed the image of f , so adjacency is
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preserved because we assumed f is a graph map.

Case 2. j � i � m+ j� 1. These are the horizontal edges in the central section of the grid

where the sliding occurs. In a single row, the �rst coordinates have remained unchanged

from the �rst row, so they correspond to vertices that are adjacent or identical in C. The

second coordinates are identical as a result of the sliding, so adjacency is preserved in C2C 0

as well.

Case 3. i � m+ j. This is the lower right portion of the grid, where no changes have been

made from the �rst row.

Second, for a �xed column in the grid, we left the �rst coordinate of each vertex

unchanged, so we only need to consider the second coordinates of G(i; j) and G(i; j+1). If

the second coordinates are not identical, then in row j the second coordinate is pC0(f(j))

and in row j + 1 the second coordinate is pC0(f(j + 1)), because this is the only change

made from row to row. These coordinates are adjacent or identical in C 0, so G(i; j) and

G(i; j + 1) are adjacent or identical in C2C 0. Therefore all edges in the A-homotopy grid

are preserved by G so indeed G is a G-homotopy from  p
C
�f; p

C0
�f to f .

This sliding technique does not necessarily result in the shortestG-homotopy possible

between two maps: notice that the technique made no changes in rows 4, 5, and 6 in Figure

7 because there are repeated vertices in the image of pC0 �f . However, it always results in a

valid G-homotopy. This demonstrates that 	� (��;��0)([f ]) = [f ] and that 	 is indeed the

inverse of (��;��0). Therefore (��;��0) is the desired isomorphism from AG
1 (�2�

0; (v0; v
0
0))

to AG
1 (�; v0)�AG

1 (�
0; v00).

In addition, the map f : �2�0 ! �02� that sends (v; v0) to (v0; v) is a bijection

that preserves adjacency, so the operation of constructing the box product of two graphs is

commutative, which gives us the following isomorphism.
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Proposition 3.2. Let � = (V;E), �0 = (V 0; E0) be simple graphs without loops and with dis-

tinguished vertices, v0 and v00, respectively. Then A
G
1 (�2�

0; (v0; v
0
0)) ' AG

1 (�
0
2�; (v00; v0)).

3.2. � Has a Cut Set of Size 1 or 2

If a graph � is not the box product of two or more smaller graphs, we can look for

other ways to express � as being constructed from smaller graphs, and then try to use the

G-groups of the smaller graphs to help us describe the G-group of the larger graph. We

consider the cases where � is a connected graph and has a cut set of size 1 or 2, and to

do so we make use of the following Seifert-Van Kampen type theorem from Barcelo et al.

Note that in general we now refer to loops or cycles in a graph �, the images of based graph

maps from I to �, rather than the graph maps themselves.

Theorem 3.3. [3] Let � be a connected, simple graph and let v be a vertex in �. Let �1

and �2 be two connected subgraphs of � such that � = �1[�2, and �1\�2 is connected and

contains v. Suppose further that any 3-cycles or 4-cycles in � that contain v are completely

contained in either �1 or �2; that is, we do not \break" any 3-cycles or 4-cycles when we

separate � into �1 and �2. Then

AG
1 (�; v) ' (AG

1 (�1; v) �A
G
1 (�2; v))=V

where V is the normal subgroup of the free product generated by all elements of the form

[l] � [l]�1 for a loop l in �1 \ �2 based at v.

If we have a connected graph � with a cut vertex, v, we �rst remove v to break �

into components ��1;�
�
2; : : : ;�

�
k. For each of these components, we then replace v and all

edges incident to it, resulting in a collection of connected subgraphs, �1;�2; : : : ;�k, such

that � is the union of these subgraphs, and the pairwise intersection of the subgraphs is
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the single vertex v. Consequently, any loop l contained in the intersection must be the

trivial loop consisting solely of v, so it is easy to see that the normal subgroup V de�ned in

Theorem 3.3 is trivial. We may therefore use Theorem 3.3 and apply induction on k to see

that the discrete fundamental group of � is isomorphic to the free product of the discrete

fundamental groups of each of the subgraphs, resulting in the following corollary.

Corollary 3.4. Let � be a connected, simple graph with a cut vertex, v. Let ��1;�
�
2; : : : ;�

�
k

be the components of � � v. Let �i = �[��i [ v], 1 � i � k, be the induced subgraph on v

and the vertices of ��i . Then A
G
1 (�; v) ' AG

1 (�1; v) �A
G
1 (�2; v) � � � � �A

G
1 (�k; v).

A minimal cut set of a connected graph � is a subset S � V of smallest cardinality

such �� S is disconnected. Suppose that � has a minimal cut set of size two, fv; wg. The

distance beween v and w, d(v; w), is the length of the shortest path from v to w in �. We

consider the cases where d(v; w) � 2 and d(v; w) � 3 separately.

If d(v; w) � 2, then we can use a similar approach to that in the proof of Corollary

3.4. We de�ne ��1;�
�
2; : : : ;�

�
k to be the components of ��fv; wg, and rather than replacing

a single vertex in each of these components, we want to create a connected subgraph of �

that we can add to each component and that is the pairwise intersection of the resulting

subgraphs. Here, we use N(v; w), the common neighborhood of v and w; that is, v, w, and

all vertices adjacent to both v and w. The induced subgraph on these vertices, �[N(v; w)],

is connected. Let �i = �[��i [N(v; w)], 1 � i � k, be the induced subgraph on the vertices

of ��i and N(v; w). The set fv; wg is a minimal cut set, so v and w must each have at

least one neighbor in ��i , otherwise we could disconnect the vertices in ��i from the rest of

the graph by removing only one vertex in fv; wg. Therefore each of the �i is connected.

Furthermore, �i \ �j for i 6= j is precisely �[N(v; w)]. Without loss of generality, we may

let v be the base vertex of � and each of the �i.
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Theorem 3.5. Let � be a connected, simple graph with a minimal cut set fv; wg such that

d(v; w) � 2. Let ��1;�
�
2; : : : ;�

�
k be the components of �� fv; wg. Let �i = �[��i [N(v; w)],

1 � i � k, be the induced subgraph on the vertices of ��i and N(v; w). Then AG
1 (�; v) '

AG
1 (�1; v) �A

G
1 (�2; v) � � � � �A

G
1 (�k; v).

Proof. We must �rst show that any 3-cycles or 4-cycles based at v are completely contained

in one of the �i. Suppose C = vv1v2v3 is a 4-cycle based at v.
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Case 1. w = v1 or v3. Without loss of generality let w = v1. If both v2 and v3 are in

N(v; w), then C is completely contained in the intersection of the �i. If only one vertex in

fv2; v3g is in N(v; w), and the other is in one of the ��i , then C is contained in �i. If neither

v2 nor v3 are in N(v; w), then they must both be in the same ��i because they are adjacent,

so again C is contained in �i.

Case 2. w = v2. Then both v1 and v3 are in N(v; w), and C is contained in the intersection

of the subgraphs.

Case 3. w =2 C. Could we have two vertices in the cycle that lie in di�erent components

of �� fv; wg? Any path in � with end vertices in di�erent components of �� fv; wg must

contain an interior vertex from fv; wg so that the endpoints are disconnected when the cut

set is removed. However, v1v2v3 is a path in � that is not be a�ected by the removal of v

and w, so all three vertices in the path must be in the same component ��i , and consequently

C is contained in �i.

If C is a 3-cycle based at v and w 2 C, then the third vertex is in N(v; w), and C is

contained in the intersection of the subgraphs. If w =2 C, then the remaining two vertices

are adjacent and therefore must be in the same component ��i of � � fv; wg, and C must

be contained in �i. Consequently, no 3-cycles or 4-cycles are broken when we remove v and

w from �.

Now let C be a cycle of length � 5 in �[N(v; w)] =
Tk
i=1 �i. Figure 10 illustrates

the possible cases depending on whether C contains one or more vertices of fv; wg. It is

easy to see that since both v and w are adjacent to all of the other vertices in N(v; w), the

cycle C is the concatenation of 3-cycles, and possibly one 4-cycle if both v and w are in C.

Clearly any loop in �[N(v; w)] based at v is G-homotopic to the trivial loop, so the normal

subgroup V de�ned in Theorem 3.3 is trivial. We may therefore apply Theorem 3.3 and
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induction on the number of subgraphs to complete the proof of Theorem 3.5.

The last class of graphs that we examine also have a minimal cut set fv; wg, but

with d(v; w) � 3. In this case we de�ne a collection of connected subgraphs of �, each

containing the base vertex v, and show that each loop in � based at v can be expressed as

the concatenation of loops from the subgraphs, and consequently the discrete fundamental

group of � is isomorphic to the free product of the discrete fundamental groups of the

individual subgraphs.

Theorem 3.6. Let � be a connected, simple graph with a minimal cut set fv; wg such that

d(v; w) � 3. Let ��1;�
�
2; : : : ;�

�
k be the components of � � fv; wg. Let �i = �[��i [ fv; wg].

Let Pi be a path from v to w in �i. Let �
0 be the graph consisting of the set of Pi, 1 � i � k.

Then AG
1 (�; v) = AG

1 (�1; v) �A
G
1 (�2; v) � � � � �A

G
1 (�k; v) �A

G
1 (�

0; v).

Proof. We note that �0, the union of the k v�w paths, is connected. Clearly, a concatenation

of loops in the collection of subgraphs
�Sk

i=1 �i

�
[�0, each based at v, is a loop in � based

at v. Thus the product of the equivalence classes of the loops corresponds to the equivalence

class of the loop in �. We must also show that a loop in � based at v is G-homotopic to

the concatenation of a collection of loops from the subgraphs of � de�ned in the statement

of the theorem. Let L be a loop in � based at v. If L is contained in one of the �i or �
0,

then we are done. If L is not completely contained in one of the subgraphs, then we can

break L into the concatenation of strings such that each string has endpoints in fv; wg and

is contained in one of the �i. The intermediate endpoints of L are the endpoints of the

strings, except for the �rst endpoint of the �rst string and last endpoint of the last string,

which are both v.
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L = v � � � � � �| {z }
�i1

w � � � � � �| {z }
�i2

w � � � � � �| {z }
�i3

v � � � � � �| {z }
�i4

w � � � � � �| {z }
�i5

v

Consider the intermediate endpoints of L. If an intermediate endpoint is a w, and it

connects a string in �ij to a string in �ij+1 , replace w with P�1
ij
PijP

�1
ij+1

Pij+1 . If the strings

connected by w are in the same subgraph of �, or if the endpoint is v, no replacement

is necessary. Inserting P�1
ij

extends the string before the endpoint w by adding a string

ending at v, turning it into a loop in �ij based at v. The two paths PijP
�1
ij+1

form a loop

in �0. Inserting Pij+1 adds a path to the beginning of the string after the w so that it now

begins at v; the string also ends at v after all changes are made, yielding a loop in �ij+1

based at v. The resulting loop, L0, is the concatenation of loops in the collection of �i,

combined with loops from �0. Each replacement of four paths, P�1
ij
PijP

�1
ij+1

Pij+1 , that we

made is G-homotopic to the trivial loop, so L 'G L0 as desired, and the equivalence class

in AG
1 (�; v) containing L is the product of the equivalence classes of the smaller loops.

Example. Let � be the graph shown in Figure 11, with minimal cut set fv; wg.

There are three components in ��fv; wg, so �0 is the union of one v�w path from each of

the three subgraphs, �1, �2, and �3. Let L be the loop shown in Figure 11. We can break

L into �ve strings with endpoints in fv; wg and express it as

L = S1S2S3S4S5:

The �rst intermediate endpoint, w, connects S1 in �1 and S2 in �3, so we replace w with

P�1
1 P1P

�1
3 P3. We then replace the second w endpoint with P�1

3 P3P
�1
2 P2. The third

intermediate endpoint, connecting S3 and S4, is a v, so we do not make any replacement.
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Finally, we replace the last w endpoint with P�1
3 P3P

�1
1 P1. The resulting loop is

L0 = S1P
�1
1| {z }

loop in �1

P1P
�1
3| {z }

�0

P3S2P
�1
3| {z }

�3

P3P
�1
2| {z }

�0

P2S3| {z }
�2

S4P
�1
3| {z }

�3

P3P
�1
1| {z }

�0

P1S5| {z }
�1

which is the concatenation of loops in �0 and the collection of subgraphs �i, 1 � i � 3.

Currently, it does not seem that we may easily generalize the techniques used in the

proofs of Theorems 3.5 and 3.6 if a minimal cut set in � contains three or more vertices. For

the present, therefore, we set aside graphs with larger minimal cut sets for possible future

consideration, and in the remaining chapters we explore the G-groups of graphs related to

�nite graded lattices.
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Figure 7. A G-homotopy diagram showing the sliding technique.

Figure 8. � has a cut vertex, v.

Figure 9. Subgraphs of � where d(v; w) � 2.

Figure 10. Cycles in �[N(v; w)] are G-homotopic to a single vertex.

Figure 11. Three v � w paths that comprise �0, and a loop in � based at v.



CHAPTER 4

NEW LATTICES FROM OLD

4.1. Graphs Arising from the Order Complex of a Lattice

In the previous chapter, we proved results related to the G-groups of graphs that

have minimal cut sets of size one or two, or can be viewed as the box product of two

graphs. In this and the following chapters, we consider graphs arising from a particular

simplicial complex, the order complex of a lattice. We use these graphs to obtain results for

the discrete fundamental groups of the order complexes. In the development of A-theory,

Barcelo et al. �rst de�ned a discrete homotopy theory for simplicial complexes. Let � be

a simplicial complex of dimension d, let 0 � q � d be �xed, and let �0 be a given maximal

simplex of dimension at least q.

De�nition 4.1. (Barcelo et al. [3])

1. Two simplices � and � in � are q-connected if there is a sequence of simplices

�; �1; �2; : : : ; �n; � such that any two consecutive simplices share a q-face, that is, they

have at least q + 1 vertices in common. Such a sequence is called a q-chain, and its

length is n.

2. A q-loop in � based at �0 is a q-chain beginning and ending at �0. Denote a q-loop

�0; �1; �2; : : : ; �n; �0 by (�0; �1; �2; : : : ; �n; �0) = (�).



37

This de�nition of a q-loop reminds us of the de�nition of a graph map, and the

equivalence relation on these loops, A-homotopy, is equally familiar.

De�nition 4.2. [3] Let 'A be the equivalence on the collection of q-loops in �, based at

�0, generated by the following two conditions.

1. The q-loop

(�) = (�0; : : : ; �i; �i+1; : : : ; �n; �0)

is equivalent to the q-loop

(�0) = (�0; : : : ; �i; �i; �i+1; : : : ; �n; �0):

As with graph maps, we can stretch a q-loop by repeating simplices.

2. Suppose that (�) and (�) have the same length. They are equivalent if there is a grid,

analogous to a G-homotopy grid, where the vertices in the �rst row of the grid corre-

spond to the simplices of (�), the vertices in the last row correspond to the simplices

of (�), and each horizontal or vertical edge between simplices in the grid indicates that

they share a q-face.

The discrete fundamental group of �, denoted by Aq
1(�; �0), is the set of A-homotopy

equivalence classes of q-loops based at �0, with a product operation de�ned by concate-

nation of loops. This is also referred to as the A1-group of �. Kramer and Lauben-

bacher [11] showed that to compute this group, one needed to build a graph �q(�) with

vertices corresponding to simplices of � of dimension � q and each edge correspond-

ing to a pair of simplices that share a q-face. Later on, Barcelo et al. [3] showed that

Aq
1(�; �0) ' AG

1 (�
q(�); v0), where v0 is the vertex corresponding to maximal simplex �0.

In addition, they showed that we can use the potentially much smaller subgraph �qmax(�),
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where the vertices correspond to maximal simplices of dimension � q, and they also proved

that Aq
1(�; �0) ' AG

1 (�
q
max(�); v0).

In this chapter, we consider one particular type of simplicial complex, the order

complex of a truncated �nite graded lattice, denoted by �(L). One of the �rst simplicial

complexes for which the A1-group was computed was the barycentric subdivision of the

boundary of the (n � 1)-simplex, which corresponds to �(Bn), the order complex of the

Boolean lattice of rank n with the minimal and maximal elements removed. Even though

the computer program A1 [9] that we have for computing the abelianization of A1-groups

is quite e�cient, the trouble lies in the complexity of the order complex associated to a

lattice, and values for n � 8 were impossible to compute. On the other hand, Bn is easily

seen to be isomorphic to 2n, the direct product of n copies of the poset 2 on two elements,

x and y, where x < y. Therefore, driven by these considerations and by our theorem on

the product of graphs, we set out to look for a way to compute An�3
1 (�(Bn)) for any n. To

begin, we look at the order complex of a lattice. In this chapter, we adopt Stanley's [14]

conventions and de�nitions for lattices.

Let L be a �nite graded lattice of rank k, a lattice in which every maximal chain is

of length k [14]. Recall that the simplicial complex �(L), called the order complex of L, is

de�ned in [5] as follows: the ground set of �(L) is the set of elements of L = L � f0̂; 1̂g,

and the i-faces of �(L) are the i-chains, x0 < x1 < x2 < � � � < xi, of L. Thus �(L)

is a pure simplicial complex of dimension k � 2. The vertices of the graph �k�3
max(�(L))

correspond to the maximal simplices of �(L), and consequently to the maximal chains in

L, or for that matter in L as well. Two simplices in �k�3
max(�(L)) are adjacent if they share

a (k � 3)-face, or, equivalently, if the corresponding maximal chains, C and C 0, di�er in
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precisely one element at rank i for some 1 � i � k � 1. In this case, we say that C and C 0

are adjacent chains, denoted by C � C 0.

The resulting graph �k�3
max(�(L)) is then used to compute A

k�3
1 (�(L); C), the discrete

fundamental group of �(L) based at the vertex corresponding to a maximal chain C in

L. Recall that if a graph is connected, then the G-group of the graph is independent

of the choice of base vertex. However, we note that the graph �k�3
max(�(L)) need not be

connected, and therefore we need to identify the base vertex when referring to the G-group.

Furthermore, we note that in a lattice L of rank � 2, there is a one-to-one correspondence

between maximal chains in L and in L. For the sake of consistency, if L is a lattice of rank

1, we de�ne ��2
max(�(L)) to be a single vertex corresponding to the empty chain. Therefore,

�k�1
max(�(L)) ' �k�3

max(�(L)).

4.2. Sums of Lattices

Given two graded lattices, L1 and L2, of ranks k and l, respectively, we can use

these lattices to construct new lattices in a variety of ways, see for example [14]. We

assume that the elements of L1 and L2 are disjoint sets. We consider the structure of these

new lattices and their associated graphs, in the hope of �nding a relationship between the

discrete fundamental groups of the order complexes of the individual lattices and of the new

lattices.

The elements of our �rst new poset, L1 + L2, the direct sum of L1 and L2, are the

elements in L1 [L2 with the partial order given by x � y in L1+L2 if either x; y 2 L1 and

x � y in L1, or x; y 2 L2 and x � y in L2. The direct sum is a poset but not a lattice,

because it contains neither maximal nor minimal element. We can add elements 0̂ and 1̂ to

the poset to obtain a lattice that is denoted as \L1 + L2. For our purposes, we also assume
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that L1 and L2 are both of rank k, ensuring that \L1 + L2 is a graded lattice, of rank k+2.

A maximal chain in \L1 + L2 corresponds to a maximal chain in either L1 or L2 (with the 0̂

and 1̂ added). Two maximal chains C1 and C2 in L1 + L2 (note that this is the truncation

of \L1 + L2), which correspond to maximal chains in L1 and L2, respectively, can di�er in

precisely one element if and only if L1 and L2 each consist of a single element. Therefore

�k�1
max(�(L1+L2)), the graph associated to the order complex of L1+L2, is connected if and

only if L1 and L2 are both single elements. If k > 0, then �k�1
max(�(L1 + L2)) is simply the

disjoint union of �k�3
max(�(L1)) and �k�3

max(�(L2)). Consequently, the discrete fundamental

group depends solely on our selection of the base vertex in �k�1
max(�(L1 + L2)), resulting in

the following theorem.

Theorem 4.3. Let L1 and L2 be two �nite graded lattices, both of rank k > 0. Let C be a

maximal chain in L1 + L2. Let C be the corresponding maximal chain in either L1 or L2.

Then

Ak�1
1 (�(L1 + L2); C) '

8>>><
>>>:
Ak�3
1 (�(L1); C) if C 2 L1

Ak�3
1 (�(L2); C) if C 2 L2:

Figure 12. The direct sum of two graded lattices of the same rank.

The elements of L1�L2, the ordinal sum of L1 and L2, are the elements in L1 [L2,

with x � y in L1 � L2 if

1. x; y 2 L1 and x � y in L1,

2. x; y 2 L2 and x � y in L2, or
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3. x 2 L1 and y 2 L2.

Figure 13. The ordinal sum of two graded lattices.

It is straightforward to show that the ordinal sum of graded lattices is again a graded

lattice, of rank k+l+1, and a maximal chain C = x0 < x1 < � � � < xk < xk+1 < � � � < xk+l+1

in L1 � L2 is the concatenation of maximal chains C1 = x0 < x1 < � � � < xk in L1 and

C2 = xk+1 < xk+2 < � � � < xk+l+1 in L2. A pair of maximal chains in L1 � L2, C and C 0,

di�er in precisely one element if and only if either

1. C1 = C 0
1 in L1, and C2 and C

0
2 di�er in precisely one element in L2, or

2. C2 = C 0
2 in L2, and C1 and C

0
1 di�er in precisely one element in L1.

When we consider the graphs associated to the order complexes of L1 and L2, the

requirements described above are reminiscent of the de�nition of adjacency in the box

product of two graphs seen in Chapter 2, and in fact we �nd this to be the case:

�k+l�2
max (�(L1 � L2)) ' �k�3

max(�(L1))2�
l�3
max(�(L2)):

As we saw in the direct sum of lattices, the correspondence between maximal chains,

and thus the isomorphism of graphs, is preserved when we consider lattices and their trun-

cations, so we also have

�k+l�2
max (�(L1 � L2)) ' �k�3

max(�(L1))2�
l�3
max(�(L2)):
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We can therefore combine this relationship with Theorem 3.1 to obtain the following

theorem.

Theorem 4.4. Let L1 and L2 be two �nite graded lattices of rank k and l, respectively. Let

C be the concatenation of maximal chains C1 and C2 from L1 and L2, respectively. Then

Ak+l�2
1 (�(L1 � L2); C) ' Ak�3

1 (�(L1); C1)�Al�3
1 (�(L2); C2).

4.3. The Ordinal Product of Two Lattices

The ordinal product of L1 and L2, L1 
 L2, is determined by the partial ordering

on f(x; y) : x 2 L1; y and 2 L2g where (x; y) � (x0; y0) if (i) x = x0 and y � y0, or (ii)

x < x0. As described in [14], we can construct the Hasse diagram of L1 
 L2, by replacing

each element x of L1 with a copy L2(x) of L2, and then connecting the maximal element

in L2(x) to the minimal element in L2(y) if y covers x in L1. The result is a graded lattice

of rank (k + 1)(l + 1) � 1 = kl + k + l. We note that in general, L1 
 L2 6' L2 
 L1. If

a maximal chain in L1 has length k, then a maximal chain in L1 
 L2 consists of the k

edges e1; e2; : : : ; ek of a maximal chain C1 2 L1, alternating with k + 1 (possibly di�erent)

maximal chains, C1
2 ; C

2
2 ; C

3
2 ; � � � ; C

k+1
2 , from L2:

C = C1
2 e1 C

2
2 e2 C

3
2 � � � ek C

k+1
2 :

Figure 14. The ordinal product of two graded lattices.



43

We associate each maximal chain in L1 
 L2, and each vertex in

�kl+k+l�3
max (�(L1 
 L2)) with the (k + 2)-tuple (C1; C

1
2 ; C

2
2 ; C

3
2 ; � � � ; C

k+1
2 ). Two maximal

chains in L1 
 L2 correspond to adjacent vertices in �kl+k+l�3
max (�(L1 
 L2)) if and only if

they di�er in precisely one element. If we assume that L2 is not the lattice on a single ele-

ment, then two maximal chains in L1
L2, C and C 0, di�er in one element only if they di�er

in precisely one of the chains from L2. If two (k + 2)-tuples di�er in the �rst coordinate,

then the corresponding maximal chains are not adjacent in L1 
 L2. Thus if C � C 0, then

C1 = C 0
1 and one pair of chains, Ci

2 and C
i
2
0 for some i, 1 � i � k+1, di�er in one element.

If we �x a single chain C1 as the �rst coordinate of C and C 0, then k of the remaining

coordinates are the same in both chains from L1
L2, and in the one coordinate where they

di�er, the entries are adjacent chains in L2.

For example, suppose C1 = C 0
1, and Ci

2 = Ci
2
0 for 1 � i � k. Then Ck+1

2 and

Ck+1
2

0 must be maximal chains in L2 that di�er in precisely one element. When we consider

the conditions required of the last k + 1 coordinates of the k + 2-tuples, we see that this

is precisely the de�nition of the box product of k + 1 copies of �l�1
max(�(L2)), which we

denote as �l�1
max(�(L2))

k+1. That is, Ci
2 � Ci

2
0 for precisely one pair of chains from L2,

and Cj
2 = Cj

2
0 for the remaining k pairs. Assume l > 0 and let n be the number of

maximal chains in L1, then �kl+k+l�3
max (�(L1 
 L2)) is isomorphic to n disjoint copies of

�l�1
max(�(L2))

k+1, and all vertices in a single copy have the same chain from L1 for the

�rst coordinate. Furthermore, since �l�1
max(�(L2)) ' �l�3

max(�(L2)), �
kl+k+l�3
max (�(L1 
 L2))

is isomorphic to n disjoint copies of �l�3
max(�(L2))

k+1. Again, we use Theorem 3.1 to obtain

the following result.

Theorem 4.5. Let L1 and L2 be two �nite graded lattices of rank k and l, respectively,

with l > 0. Let C = (C1; C
1
2 ; C

2
2 ; C

3
2 ; � � � ; C

k+1
2 ) be a maximal chain in L1 
 L2 as de�ned



44

above. Then

Akl+k+l�3
1 (�(L1 
 L2); C) ' Al�3

1 (�(L2); C1
2 )�A

l�3
1 (�(L2); C2

2 )�� � ��A
l�3
1 (�(L2); C

k+1
2 ):

We note that the �rst coordinate of C determines which copy of the box product the

base vertex of Akl+k+l�3
1 (�(L1 
 L2); C) is in, and the other k + 1 coordinates determine

the base vertices for the A1 groups in the direct product of groups on the right side of the

isomorphism in the theorem.

4.4. The Direct Product of Two Lattices

Finally, we consider L1 � L2, the direct product of L1 and L2, in order to use the

isomorphism Bn ' 2n, to help us understand the structure of �n�3
max(�(Bn)). The elements

of L1 � L2 are the ordered pairs (x; y) where x 2 L1 and y 2 L2, with the partial order

given by (x; y) � (x0; y0) in L1 �L2 if x � x0 in L1 and y � y0 in L2. As Stanley [14] points

out, one way to construct the Hasse diagram of L1 � L2 is to replace each element x of L1

with a copy L2(x) of L2 and connect corresponding elements in L2(x) and L2(x
0) if x and

x0 are connected in the diagram for L1. If we view the Hasse diagram as a graph, one easily

sees that this is equivalent to constructing the box product of the diagrams for L1 and L2,

and that the result is a graded lattice of rank k + l.

Figure 15 shows an example of the direct product of two lattices, and it also illustrates

the complexity of �k+l�3
max (�(L1 � L2)) in comparison to �k�3

max(�(L1)) and �l�3
max(�(L2)).

There are two maximal chains of length 1 in L1, so �0
max(�(L1)) consists of a single edge,

while L2 has a unique chain of length 1, and the corresponding graph �0
max(�(L2)) is a

single vertex. Thus the box product �0
max(�(L1))2�

0
max(�(L2)) is simply a single edge.

On the other hand, L1 � L2 clearly has more than two chains of length 4, in fact, it has
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Figure 15. The direct product of two lattices.

20 maximal chains. With 20 vertices, the graph �3
max(�(L1 � L2)) cannot be isomorphic

to �0
max(�(L1))2�

0
max(�(L2)), and even for this small example it is clear that it is a much

more complex graph.

To resolve this di�culty in constructing �k+l�3
max (�(L1 � L2)) for arbitrary lattices L1

and L2, we consider maximal chains in L1, L2, and L1�L2 before the minimal and maximal

elements of each lattice are removed, and show that each maximal chain C in L1 � L2 is a

shu�e of a pair of maximal chains, C1 2 L1 and C2 2 L2. Let u = u1u2u3 � � �um 2 S[m]

and v = v1v2v3 � � � vn 2 S[m+1;m+n]. A shu�e of u and v is a permutation w1w2w3 � � �wm+n

of [m + n] such that u1u2u3 � � �um and v1v2v3 � � � vl are subsequences of w1w2w3 � � �wm+n

(see [15]). There are
�
m+n
m

�
possible shu�es of u and v. When we shu�e two chains, we

shu�e the edges of the chains rather than the elements. Each edge in a maximal chain is

associated with a pair of elements where one of the elements covers the other. To avoid

adding more notation, we identify each edge by the associated element of greater rank.

For example, if we consider C1 = x0 < x1 < x2 < x4 in L1 and C2 = y0 < y1 <

y2 < y3 in L2 from Figure 15, then we refer to the three edges in C1 as x1; x2, and x4,

and the three edges in C2 as y1; y2, and y3. One possible shu�e of the edges of C1 and

C2 is x1y1x2x4y2y3. We can associate this shu�e of C1 and C2 with a maximal chain

C in L1 � L2 as follows: We start with the minimal element (x0; y0) in L1 � L2, and

then make a sequence of 6 changes to the coordinates of the element, where the order

of the changes is determined by the shu�e. First, we change the �rst coordinate to x1,

resulting in (x1; y0), which is the second element in C. Next, change the second coordinate
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Figure 16. One shu�e of C1 and C2, associated with 5-sequence f1; 1; 3; 3; 3g and 4-sequence
f0; 2; 2; 5g.

to y1, resulting in (x1; y1). The resulting sequence of elements after the six changes is

C = (x0; y0) < (x1; y0) < (x1; y1) < (x2; y1) < (x4; y1) < (x4; y2) < (x4; y3), which is a

maximal chain in L1 � L2.

When combining chains C1 and C2 from lattices L1 and L2 of rank k and l, respec-

tively, we shu�e the k edges of C1 with the l edges of C2 to determine the order of the

changes in the coordinates of the resulting chain C in L1�L2, thus there are
�
k+l
k

�
possible

combinations of the two chains. We refer to the resulting chain C as a shu�e of C1 and

C2. We can associate a k-sequence and an l-sequence with a �xed shu�e, C, of C1 and C2

as follows: Color the k edges from C1 red; these are the edges where the �rst coordinate

of the element in C changes. Color the l edges from C2 blue, where the second coordinate

changes. Next, label each red edge with the number of blue edges below it in the chain.

The ordered, weakly increasing collection of labels is the k-sequence associated with that

shu�e. Similarly, label each blue edge with the number of red edges below it in the chain

and the ordered collection of labels is an l-sequence. Clearly, the shu�e can be uniquely

reconstructed using either the k-sequence or the l-sequence, but the information from both

sets is be useful in the next section when we construct �k+l�3
max (�(L1 � L2)).

If we consider the example in Figure 16, the 5-sequence f1; 1; 3; 3; 3g indicates that

in the shu�e we \inserted" two edges from C1 into C2 at rank 1 and three edges at rank 3.

Similarly the 4-sequence f0; 2; 2; 4g indicates that 1 edge from C2 was inserted into C1 at

rank 0, two at rank 2, and one at rank 4.
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Figure 17. �3;2
shuffle labelled with 3-sequences and 2-sequences.

4.5. Constructing �k+l�3
max (�(L1 � L2))

In the process of computing the discrete fundamental group of L1 � L2, the next

step is to construct the associated graph �k+l�3
max (�(L1 � L2)). In order to do this, we �rst

de�ne three graphs: �L1 , �L2 , and �k;lshuffle. Next, we show that the vertices of the box

product of these three graphs, e�L1�L2 = �L12�L22�
k;l
shuffle, correspond to maximal chains

in L1 � L2, but e�L1�L2 has too many edges. Finally, we de�ne a particular set of edges to

remove from e�L1�L2 and show that the resulting graph is the desired �k+l�3
max (�(L1 � L2)).

Step 1 De�ne �L1 , �L2 , and �k;lshuffle.

The vertices of �Li for i 2 f1; 2g correspond to maximal chains in Li, and two

vertices are adjacent if and only if the two corresponding chains are adjacent in Li. Recall

that for a lattice L of rank k, �k�1
max(�(L)) ' �k�3

max(�(L)). Lattices L1 and L2 have rank

k and l, respectively, and for a pair of chains, C1 from L1 and C2 from L2, there are
�
k+l
k

�
ways to shu�e C1 with C2 to get a maximal chain in L1 � L2. The vertices of the shu�e

graph for k and l, �k;lshuffle, correspond to the
�
k+l
k

�
shu�es. Label each vertex with the pair

(k-sequence, l-sequence) that corresponds to each shu�e.

Two vertices in �k;lshuffle are adjacent if and only if we can reverse the order of a

pair of consecutive edges in the shu�e corresponding to one vertex, one edge from C1 and

the other from C2, to obtain the chain corresponding to the other shu�e. In this case, we

say that the two corresponding k-sequences di�er by a single change, that is, one pair of

corresponding elements in the sequences di�ers by 1, and all other elements in the two k-
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sequences are the same. We say that two shu�es are adjacent if they correspond to adjacent

vertices in �k;lshuffle. For example, the two 5-sequences f1; 1; 3; 3; 3g and f1; 2; 3; 3; 3g di�er

by a single change and correspond to adjacent shu�es. Note that if two k-sequences di�er

by a single change, then the associated l-sequences also di�er by a single change, so we only

need to refer to one of the sequences when determining if two shu�es are adjacent.

Step 2 e�L1�L2 = �L12�L22�
k;l
shuffle.

We now de�ne e�L1�L2 = �L12�L22�
k;l
shuffle as an intermediate graph in our process

of constructing �k+l�3
max (�(L1 � L2)). Label each vertex of e�L1�L2 with the ordered triple

(C1; C2; (k-sequence; l-sequence)). The set of vertices of e�L1�L2 corresponds to all possible
shu�es of pairs of maximal chains from L1 and L2, thus there is a one-to-one correspondence

between the vertices of e�L1�L2 and the maximal chains of L1 � L2. From the de�nition

of a box product of graphs, two vertices in e�L1�L2 , (C1; C2; (k-sequence; l-sequence)) and

(C 0
1; C

0
2; (k-sequence

0; l-sequence0)), are adjacent if they satisfy precisely one of the following

conditions:
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1. C1 = C 0
1, C2 = C 0

2, and the two k-sequences di�er by a single change.

2. C1 = C 0
1, C2 � C 0

2 in L2, and k-sequence = k-sequence0.

3. C1 � C 0
1 in L1, C2 = C 0

2, and k-sequence = k-sequence0.

Let j�j denote the number of vertices in �, and let k�k denote the number of edges

in the graph. Each vertex in e�L1�L2 corresponds to a vertex from each of the three graphs

in the box product and each edge in e�L1�L2 corresponds to a vertex from each of two of the

three graphs and an edge from the remaining graph, therefore je�L1�L2 j = j�L1 j � j�L2 j �
�
k+l
k

�
and ke�L1�L2k = j�L1 j � j�L2 j � k�

k;l
shufflek+ j�L1 j � k�L2k �

�
k+l
k

�
+ k�L1k � j�L2 j �

�
k+l
k

�
.

Step 3 Removing edges from e�L1�L2 .
Each edge in e�L1�L2 can be classi�ed as type 1, 2, or 3, according to

which of the above conditions is satis�ed by (C1; C2; (k-sequence; l-sequence)) and

(C 0
1; C

0
2; (k-sequence

0; l-sequence0)). We examine each type of edge to determine which ones

correspond to edges between a pair of adjacent chains in L1 �L2 and which do not. Edges

corresponding to a pair of non-adjacent chains must be removed from the graph.

Type 1 edges. C1 = C 0
1, C2 = C 0

2, and the two k-sequences di�er by a single

change. The two vertices incident to an edge of type 1 correspond to maximal chains C and

C 0 in L1 � L2 constructed from the same pair, C1 and C2, of maximal chains from L1 and

L2, where the chains are combined using adjacent shu�es. This is equivalent to reversing

the order of a pair of consecutive edges in a chain in L1�L2, where one edge is from C1 and

the other is from C2. Reversing the order of the two edges forms a diamond in the diagram

of C and C 0 in L1�L2. Figure 18 shows chains C1 and C2 from Figure 16 combined in this

way with adjacent shu�es associated to 5-sequences f1; 1; 3; 3; 3g and f1; 1; 2; 3; 3g. The red

edges are from C1, and the blue edges are from C2, and we see a diamond in the graph
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Figure 18. Chains C1 with C2 combined using adjacent shu�es associated to 5-sequences
f1; 1; 3; 3; 3g and f1; 1; 2; 3; 3g.

Figure 19. Combining C1 with C2 and C
0
2 using two di�erent shu�es.

where the order of a pair of consecutive edges, one red and one blue, has been reversed.

These two resulting chains are adjacent in L1 � L2, so we do not remove any edges of type

1 from e�L1�L2 .
Type 2 edges. C1 = C 0

1, C2 � C 0
2 in L2, and k-sequence = k-sequence0. The

diagram of C2 and C 0
2 in L2 contains a diamond at rank i where the two chains di�er.

When we shu�e C2 and C
0
2 with C1, this diamond may be \stretched" by the insertion of

edges from C1, depending on which shu�e is used. Consider the k-sequence corresponding

to the shu�e used. If the k-sequence does not contain an element i, then when C2 and C
0
2

are shu�ed with C1, no edges from C1 are inserted into C2 and C
0
2 inside the diamond. The

resulting chains are adjacent in L1�L2, so this edge is not removed from e�L1�L2 . However,
if the k-sequence contains one or more elements i, then the shu�e inserts one or more edges

into C2 and C
0
2 at rank i, stretching the diamond. The resulting chains in L1�L2 di�er by

at least two elements, thus they are not adjacent and so this edge must be removed from

e�L1�L2 . Figure 19 shows the result of combining C1 with both C2 and C
0
2 using the shu�es

associated with 5-sequences f1; 1; 3; 3; 3; g and f1; 2; 2; 3; 3g. The result of the �rst shu�e

is a pair of chains that are adjacent in L1 � L2, but the chains resulting from the second

shu�e are not adjacent.

Type 3 edges. C1 � C 0
1 in L1, C2 = C 0

2, and k-sequence = k-sequence0. As in the
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analysis of type 2 edges, we must �rst identify the rank i where C1 and C
0
1 di�er, and then

the l-sequence is used to determine if the shu�e of C1 and C
0
1 with C2 results in adjacent

chains in L1 � L2. If the l-sequence does not contain an element i, then the resulting

chains are adjacent and the edge in e�L1�L2 is retained. If the l-sequence contains one or

more elements i, then the chains are not adjacent in L1 �L2 and the edge is removed from

e�L1�L2 . This completes our determination of which edges to remove from e�L1�L2 .
To calculate the total number of edges removed from e�L1�L2 , �rst consider an edge

of type 2 and its incident vertices. There are j�L1 j choices for the �rst coordinate, C1,

in the pair of vertices, and k�L2k choices for the adjacent pair C2 and C 0
2 for the second

coordinate. We can then choose a (k� 1)-combination of f0; 1; 2; :::; lg with repetition, and

add the element i to it, guaranteeing that the resulting k-set has at least one element i. Thus

there are
��

l+1
k�1

��
=
�
k+l
k�1

�
choices of k-sets for the third coordinate such that the two vertices

correspond to non-adjacent chains in L1 � L2. Consequently a total of j�L1 j � k�L2k �
�
k+l
k�1

�
edges of type 2 are removed from e�L1�L2 . By a similar argument, k�L1k � j�L2 j � �k+ll�1

�
edges

of type 3 are also removed.

Let � be the resulting graph after any edges in e�L1�L2 corresponding to non-adjacent
pairs of maximal chains in L1 � L2 have been removed. We now show that this is, in

fact, �k+l�3
max (�(L1 � L2)). Before we began removing edges from e�L1�L2 , we noted that

the vertices of e�L1�L2 , and therefore of �, correspond to the maximal chains in L1 � L2.

Except in the case where one lattice has a single element and the other has one or two

elements, and thus L1�L2 has only one or two elements, there is a one-to-one correspondence

between maximal chains in L1 �L2 and maximal chains in L1 � L2: a maximal chain C in

L1 � L2 corresponds to C = C � f(0̂1; 0̂2); (1̂1; 1̂2)g in L1 � L2. Therefore the vertices of �

also correspond to maximal chains in L1 � L2, furthermore, adjacency is preserved by this
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Figure 20. Diamonds illustrating the three possible types of pairs of adjacent chains in
L1 � L2.

correspondence.

To show that � is the desired graph �k+l�3
max (�(L1 � L2)), we must also show that

two vertices in � are adjacent if and only if the two corresponding chains in L1 � L2 are

adjacent. We have shown that each edge in e�L1�L2 that we kept corresponds to a pair,

C and C 0, of adjacent maximal chains in L1 � L2, which in turn corresponds to a pair of

adjacent maximal chains C and C 0 in L1 � L2. Now suppose C and C 0 are a pair of adjacent

maximal chains in L1 � L2; it is su�cient to show that the corresponding adjacent chains

C and C 0 in L1�L2 correspond to an edge in �. Chains C and C 0, and consequently C and

C 0, di�er in precisely one element; suppose they di�er at rank i for some 1 � i � k + l� 1;

note that they have the same elements at rank i� 1 and i+1. This can occur in one of the

following three ways.

Case 1. From rank i� 1 to rank i+ 1, there is one change made in the �rst coordinate of

each chain, and one change made to the second coordinate, but the changes are made in

the opposite order in the two chains. Without loss of generality, assume that in C, the �rst

coordinate changes from rank i� 1 to rank i, and the second coordinate changes from rank

i to i+1; in C 0, the second coordinate changes from rank i�1 to i, and the �rst coordinate

changes from rank i to i + 1. If we look at just these three ranks in C and C 0 we get a

diamond as shown in case 1 in Figure 20. This means that when we shu�ed C1 with C2

we used adjacent shu�es to form C and C 0. This corresponds to a type 1 edge in e�L1�L2 ,
none of which were removed when constructing �.
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Case 2. The only changes made were to the second coordinates at ranks i and i+1. Element

yn+1 6= y0n+1, but they both cover yn and both are covered by yn+2 in L2. Considering ranks

i � 1 to i + 1, we get the second diamond shown in Figure 20. The changes in the �rst

and second coordinates were made in the same order in C and C 0, therefore they result in

part from two adjacent chains C2 and C
0
2. These chains were combined with a single chain

C1 from L1 and the same shu�e, otherwise the resulting C and C 0 would di�er in other

elements as well. Furthermore, the shu�e used to combine C1 with C2 and C 0
2 did not

insert any edges from C1 into C2 and C 0
2 at rank j, where C2 and C 0

2 di�er in L2, so the

corresponding k-sequence that records these ranks does not contain any elements j. This

situation corresponds to an edge of type 2 that was not removed from e�L1�L2 .
Case 3. This is analogous to case 2, but the only changes from rank i�1 to rank i+1 were

made to the �rst coordinate of elements in C and C 0. Similarly, xm+1 6= x0m+1, but both

cover xm and are covered by xm+2 in L1. Then C and C 0 were constructed by combining

adjacent chains C1 and C 0
1 with a single chain C2 using a shu�e whose corresponding l-

sequence doesn't contain any elements corresponding to the rank where C1 and C 0
1 di�er

in L1. This corresponds to an edge of type 3 that was not removed from �0. These are the

only ways in which two adjacent chains C and C 0 in L1 � L2 can di�er, so if C � C 0, then

there is an edge between the corresponding vertices in �. Therefore, the graph resulting

from the construction described in this section in precisely �k+l�3
max (�(L1 � L2)).



CHAPTER 5

THE BOOLEAN LATTICE

5.1. Building �Bn from Smaller Graphs

While it is not immediately clear from the construction of �k+l�3
max (�(L1 � L2)) if

there is an easily de�ned relationship between the groups Ak�3
1 (�(L1)), A

l�3
1 (�(L2)), and

Ak+l�3
1 (�(L1 � L2)), the construction de�ned in the previous chapter proves to be instru-

mental in understanding the structure of the discrete fundamental group for the Boolean

lattice. The elements of Bn, the Boolean lattice of rank n for n � 1, are the 2n sub-

sets of [n], ordered by inclusion. A maximal chain C in Bn is a sequence of elements

x0 < x1 < x2 < � � � < xn where each element xi in the chain is a subset of [n] of size i. The

lattice Bn has n! maximal chains, which can be put into one-to-one correspondence with

the permutations in Sn, the symmetric group on n elements, by de�ning �C(i) = xi � xi�1

for i 2 [n]. In general, when referring to permutations, we use single line notation unless

otherwise indicated; for example, the chain C = �; f2g; f2; 4g; f1; 2; 4g; f1; 2; 3; 4g in B4 is

identi�ed with the permutation 2413 in S4.

Building e�Bn
= �Bn�1

2�22�
n�1;1
shu�e

. We now use the construction of

�k+l�3
max (�(L1 � L2)) described in the previous chapter to give us a better understanding

of �n�3
max(�(Bn)) and make it possible to compute An�3

1 (�(Bn))
ab. For ease of notation, we
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simply refer to �n�3
max(�(Bn)) as �Bn . Recall that Bn ' 2n where 2 is the poset on two

elements, x and y, with x < y. It is useful to express this isomorphism as Bn ' Bn�1 � 2,

because when we construct e�Bn = �Bn�12�22�
n�1;1
shuffle the graph �2 consists of a single

vertex corresponding to C, where C denotes the unique maximal chain of length 1 in 2.

This does not increase the total number of vertices in �Bn�12�22�
n�1;1
shuffle in comparison

to �Bn�12�
n�1;1
shuffle, and the ordered triple for every vertex in e�Bn has C as its second coor-

dinate. Additionally, the graph �n�1;1
shuffle is a single path of length n� 1; when we shu�e a

maximal chain C1 of length n� 1 from Bn�1 with chain C from 2 to form a chain of length

n in Bn�1 � 2, we can insert the single edge from C into C1 anywhere from rank 0 to rank

n� 1. The 1-sequence associated to each of the shu�es indicates at which rank this occurs,

and two shu�es are adjacent if the insertion of the edge from C occurs at consecutive ranks.

Thus we see that e�Bn is isomorphic to the box product of �Bn�1 and a path of length n�1.

When constructing and describing e�Bn , we use the language of permutations rather

than chains, so we need to make some adjustments to the labeling of the vertices of e�Bn .

Each vertex is initially labeled with the triple (C1; C; ((n � 1)-sequence; 1-sequence)). We

replace C1 with the corresponding permutation �C1 , or simply �, in Sn�1, and we replace

C with the single element n. Furthermore, we see that we only need to consider the 1-

sequence, an element i 2 f0; 1; 2; : : : ; n� 1g, when determining which edges to remove from

e�Bn . Consequently, the new labeling for each vertex is simpli�ed to (�; n; i). We may now

associate each vertex in e�Bn with a shu�e of � with n, which is a permutation in Sn in

single line notation. Figure 21 shows e�B4
with the vertices labeled using permutations in

single line notation. The 1-sequence determines where we insert n into the permutation �

by indicating how many entries of � come before n in the shu�e.
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Figure 21. The intermediate graph e�B4
.

We view e�Bn as having n levels, where each level is one of the n copies of �Bn�1 used

in constructing e�Bn . Each level corresponds to a distinct shu�e, so we number the levels

from 1 to n according to the position of the element n in all permutations at that level.

Consecutive levels correspond to adjacent shu�es, so each vertex in level i is connected to

the corresponding vertex in level i+ 1 by an edge for 1 � i � n� 1. We classify each edge

in e�Bn as either horizontal if it is incident to two vertices within a single level of e�Bn , or

vertical if it is incident to one vertex in level i and the corresponding vertex in level i + 1

for some 1 � i � n� 1.

Removing edges from e�Bn
. We must remove edges in e�Bn that do not correspond

to adjacent permutations in Sn. We show that the edges we remove are precisely the

horizontal edges in level i, for 2 � i � n� 1, where the corresponding permutations � and

�0 �rst di�er in position i� 1.

Type 1 edges. The edges of type 1 correspond to a pair of vertices where the

associated shu�es are adjacent. Here we are using the 1-sequence corresponding to each

shu�e, an element in f0; 1; 2; : : : ; n�1g, and two shu�es are adjacent if the 1-sequences are

consecutive integers i and i+1 for some 0 � i � n�2. The vertices incident to a horizontal

edge are within a single level and are therefore associated to the same shu�e, whereas the

vertices incident to a vertical edge are in consecutive levels and are associated to adjacent

shu�es. Thus the edges of type 1 are precisely the set of vertical edges in e�Bn . None of

these vertical edges are removed from e�Bn .

Type 2 edges. In general, type 2 edges correspond to a pair of vertices where
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the second coordinates are adjacent chains (permutations). However, in the case of Bn, all

vertices in e�Bn are labeled (�; n; i), so we have no edges of type 2 in e�Bn .

Type 3 edges. Each of the remaining edges, of type 3, corresponds to a pair of

vertices where � � �0. In particular, both vertices are associated with the same shu�e

and thus are in the same level of e�Bn . To determine which of these edges to remove, we

identify the position, i, where � and �0 �rst di�er. If the 1-sequence is the same element i,

then we remove that edge. There is no position 0 in a permutation, so we do not remove

any edges associated to the shu�e identi�ed by i = 0, which are the horizontal edges in

level 1. Furthermore, two permutations cannot di�er only in the last position, so we do

not remove any edges at level n, either. Thus we remove the horizontal edges in level i, for

2 � i � n� 1, where the corresponding permutations � and �0 �rst di�er in position i� 1,

because when we insert n into � and �0 the corresponding chains are not adjacent in Bn.

In the previous chapter, we observed that we removed k�L1k � j�L2 j �
�
k+l
l�1

�
edges of

type 3 from e�L1�L2 . In the case of e�Bn , the rank of Bn�1 is n � 1, and the rank of 2

is 1. In the next section, we will see that �Bn has n! vertices and is (n � 1)-regular, so

k�Bn�1k =
(n�1)!(n�2)

2 . Thus the total number of edges removed from e�Bn is

k�Bn�1k � j�2j �

�
n� 1 + 1

1� 1

�
=

(n� 1)!(n� 2)

2
� 1 �

�
n

0

�
=

(n� 1)!(n� 2)

2
:

5.2. The Structure of �Bn

Now that we have removed all appropriate edges from e�Bn , the resulting graph is

�n�3
max(�(Bn)), which we simply refer to as �Bn . The vertices correspond to maximal chains

in Bn and in Bn as well, or equivalently, permutations in Sn. The pair of permutations
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incident to an edge, �1 and �2, di�er by a switch of elements in consecutive positions,

thus �Bn is the 1-skeleton of the permutahedron �n�1 [17]. This di�erence corresponds to

multiplication on the right by a simple transposition (i; i+1) for some i, 1 � i � n� 1. For

example, in �B4
, �1 = 2413 is adjacent to �2 = 2143, (respectively (1243) and (12)(34) in

cycle notation), and we note that (1243)=(12)(34)(23) and similarly (12)(34)=(1243)(23).

We therefore say that �1 and �2 are adjacent permutations, denoted by �1 � �2, and that

they di�er by the simple transposition (23).

Furthermore, we associate each edge in �Bn with a simple transposition in Sn. Each

vertex in �Bn is incident to precisely one edge for each of the n� 1 simple transpositions in

Sn, so �Bn is (n�1)-regular. Figure 22 shows �B4
with vertices labeled with the associated

permutations and edges colored according to the associated transpositions. Note that this

di�ers from the coloring of edges of chains that we used in Chapter 4. We see that in �B4

(and in �Bn in general), the vertical edges between levels i and i+ 1 are associated to the

transposition (i; i+ 1).

Figure 22. The �nal graph �B4
.

If �1 = �2(i; i+1) and �1 is odd, then �2 is even. Therefore, �Bn is a bipartite graph

with the vertices partitioned into even and odd permutations in Sn, and consequently all

cycles in �Bn are even, something well known. The graph �Bn is simple, so it contains no

cycles of length 2. A cycle of length 4 may be associated with a pair of disjoint simple

transpositions, which are of the form (i; i+1) and (j; j + i) where ji� jj � 2. For example,

the cycle 1234-2134-2143-1243 in �B4
is associated with the transpositions (12) and (34).

Disjoint transpositions commute, so the sequence of transpositions associated to the edges
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of this cycle corresponds to expressing the identity element in S4 as (12)(34)(12)(34). Two

transpositions that share one element do not commute, so (12)(23)(12)(23)(12)(23) is an

irreducible representation of the identity element. This representation corresponds to a

6-cycle in �Bn , such as 1234-2134-2314-3214-3124-1324, which we call a reduced 6-cycle

because it corresponds to a reduced representation of the identity element and it is not the

product of two or more 4-cycles. In general, when we refer to 6-cycles, we mean reduced

6-cycles.

It is known that the set of simple transpositions (i; i+ 1) for 1 � i � n� 1 and the

relations (i; i+1)2 = 1, ((i; i+1)(i+1; i+2))3 = 1, and (i; i+1)(j; j+1) = (j; j+1)(i; i+1)

if ji � jj � 2, form a presentation for Sn [8]. Thus all other cycles in �Bn of length � 8,

which also correspond to representations of the identity in Sn, can be expressed as the

concatenation of cycles of length 4 or 6. A 4-cycle is G-homotopic to a single vertex, so

we turn our attention to the equivalence classes of 6-cycles in �Bn in order to compute the

number of generators of An�3
1 (�(Bn))

ab.



CHAPTER 6

EQUIVALENCE CLASSES OF 6-CYCLES IN �Bn

In this chapter, we demonstrate how to distinguish between di�erent G-homotopy

equivalence classes so that we may count them. First, we show that two 6-cycles in the same

equivalence class are associated with the same pair of adjacent transpositions (i� 1; i) and

(i; i+ 1) for some i, 2 � i � n� 1. We then prove a stronger theorem: two 6-cycles C1 and

C2 are in the same equivalence class if and only if they di�er by a sequence of transpositions

disjoint from (i � 1; i) and (i; i + 1), that is, if we multiply all six permutations in C1 by

the same sequence of transpositions, the result is precisely the six permutations in C2.

This theorem, when combined with our new understanding of the structure of �Bn , gives

us the means to describe the equivalence classes, and to �nd a formula for the rank of

An�3
1 (�(Bn))

ab. Recall that this is also the �rst Betti number of Mn;3, which Bj�orner and

Lov�asz showed will give us a lower bound for the complexity of the k-equal problem.

6.1. Each Equivalence Class is Associated with a Pair of Transpositions

In the previous chapter, we noted that each (reduced) 6-cycle is associated to a pair

of adjacent transpositions (i�1; i) and (i; i+1) for some i, 2 � i � n�1. We also described

edges in �Bn as horizontal if they are incident to permutations in the same level, or vertical
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if they are incident to permutations in consecutive levels of the graph. We may similarly

classify 6-cycles in �Bn as horizontal if all six permutations in the cycle are in the same

level of �Bn . These horizontal 6-cycles originated in one of the n copies of �Bn�1 used when

we constructed e�Bn . However, not all of these 6-cycles exist in �Bn , because some of them

were \broken" when we removed edges from e�Bn to create �Bn . The graph �B3
is a single

6-cycle, but the copies of that cycle at levels 2 and 3 of e�B4
were broken as a result of the

removal of edges.

At the same time, removing edges created new 6-cycles, such as 1234-1324-1342-

1432-1423-1243, that contain two permutations from each of three consecutive levels in

�B4
. We call a cycle of this type, containing two vertices from each of three levels, i � 1,

i, and i + 1, and created by the removal of an edge at level i, a vertical cycle at level i.

There are no 6-cycles that span four levels of �Bn , because this would require at least one

permutation to be adjacent to two permutations in a single neighboring level, which is not

possible in �Bn . Nor are there any 6-cycles comprised of permutations in precisely two levels

of the graph. We can't have a 6-cycle with permutations in only two neighboring levels.

No vertical edges were removed from e�Bn , so we would have three vertical edges, and the

6-cycle would be the concatenation of two 4-cycles. Nor can we have a 6-cycle with two

permutations in one level and four vertices in a neighboring level. Suppose the two vertical

edges between pairs of permutations in the two levels are of type (i� 1; i). The cycle must

contain a third edge of type (i� 1; i), which must be a horizontal edge in level i, but level

i contains no horizontal edges of type (i � 1; i) or (i; i + 1). Therefore, all 6-cycles in �Bn

may be classi�ed as either horizontal or vertical.

Suppose we have two reduced 6-cycles, C1 and C2. How can we tell if they are

G-homotopic to one another? We know that each cycle is associated with a pair of simple
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Figure 23. Vertical 6-cycles in �Bn .

transpositions of the form (i � 1; i) and (i; i + 1) for some i, 2 � i � n � 1, but can C1

and C2 be associated to di�erent pairs of transpositions, or must they be associated to the

same pair? To answer these questions, we assume that we have a G-homotopy from C1 to

C2 and we consider the acceptable types of changes that we can make from row to row in

a G-homotopy grid, as well as the impact of these changes on the images of consecutive

rows of the grid. We �nd that all of these acceptable changes preserve the parity of the

number of edges in each row that are associated to a given transposition. For example, if

the �rst row of the grid contains an odd number of edges associated with the transposition

(12), then every row contains an odd number of edges associated with (12). This leads to

the conclusion that if C1 'G C2, then C1 and C2 must in fact be associated to the same

pair of simple transpositions. A further consequence of this lemma is that a reduced 6-cycle

cannot be contracted to a single vertex. A valid G-homotopy grid cannot contain an odd

number of edges associated with each of (i�1; i) and (i; i+1) in the �rst row, and no edges

associated with either transposition in the last row, or any row, for that matter.

Lemma 6.1. Let C1 and C2 be two distinct reduced 6-cycles in �Bn. If C1 'G C2, then

they are associated with the same pair of transpositions, (i� 1; i) and (i; i+ 1), for some i,

2 � i � n� 1.

Proof. Let C1 = �0��1��2��3��4��5��0 and C2 = 
0�
1�
2�
3�
4�
5�
0 be

two distinct reduced 6-cycles in �Bn and suppose C1 'G C2. The graph �Bn is connected,

so AG
1 (�Bn) is independent of the choice of the base vertex, thus we may choose �0 as the

base vertex (base permutation). We must be able to construct a G-homotopy from C1 to
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C2; the �rst row of the G-homotopy grid corresponds to C1 and the last row corresponds to

PC2P
�1, where P is a path from �0 to 
0 in �Bn . Each vertex in the G-homotopy grid is

labeled with its image, a permutation in Sn, and an edge in the grid may be incident to two

copies of the same permutation or incident to adjacent permutations. In the latter case, we

can label the edge with the associated transposition, and we leave the other edges unlabeled.

(In the �gures in this chapter, we label vertices and color edges to avoid confusion about

what the labels refer to. Black edges are incident to two copies of the same permutation.)

Recall that the image of each row in the G-homotopy grid is a loop in �Bn based at

�0, our base permutation. Therefore the sequence of transpositions labeling the edges in a

single row is a representation of the identity in Sn. In this proof we consider the changes

that we can make to a sequence of transpositions so that it is still a representation of the

identity, and so that the changes are consistent with the de�nition of a G-homotopy. The

possible changes are limited to shifting labeled edges in the grid, inserting or deleting a

pair of transpositions of the form (j; j+1)(j; j+1), commuting disjoint transpositions, or a

combination of these changes. We examine the results of each of the possible changes with

respect to two consecutive rows in the grid: the e�ect on the sequence of labeled edges, and

the images of the two rows in �Bn .

Suppose that C2 is associated with transpositions (i � 1; i) and (i; i + 1) for some

i, 2 � i � n � 1. Without loss of generality, we assume that the �rst edge in C2, incident

to 
0 and 
1, is associated with (i � 1; i). The last row of the G-homotopy grid, the one

corresponding to PC2P
�1, has a series of transpositions labeling the edges of P , then the

alternating subsequence (i � 1; i)(i; i + 1)(i � 1; i)(i; i + 1)(i � 1; i)(i; i + 1) corresponding

to the six edges in C2, followed by the transpositions from P in reverse order. The path P

may contain copies of transpositions (i� 1; i) or (i; i+ 1), but we note that there are three
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copies of (i�1; i) from C2 and an even number of copies, if any, from P and P�1 combined.

Therefore, the last row of the grid contains an odd number of transpositions (i� 1; i), and

similarly, an odd number of transpositions (i; i+ 1).

We show that all of the changes that we can make from row to row in a G-homotopy

grid preserve the parity of number of edges in each row that are associated with each simple

transposition. Consequently, each row of the grid, and in particular the �rst row, which

corresponds to C1, also contains an odd number of each of these two transpositions. We

know that C1 is a 6-cycle corresponding to a pair of adjacent transpositions, and therefore

if the row corresponding to C1, which contains precisely six labeled edges, contains at least

one edge of each type, (i� 1; i) and (i; i+ 1), then C1 must be associated with that pair of

transpositions.

Case 1 Recall that unlabeled edges in a G-homotopy grid are incident to two copies

of the same vertex (permutation) in �Bn . If there are unlabeled edges in a row of the grid,

we may shift one or more labeled edges one position to the right or left in the following

row. This does not change the image from one row to the next, or the representation of the

identity, it simply changes where the repetition of one or more vertices occurs in the row.

This change may be necessary in order to have the labeled or unlabeled edges in appropriate

positions in the row so that we may then perform the changes described in the following

cases.

Figure 24. Case 1, shifting transpositions.

Case 2 Since (j; j + 1)(j; j + 1) = 1 in Sn, we can insert (j; j + 1)(j; j + 1) into
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our sequence of transpositions, and the resulting sequence is still be a representation of the

identity. We note that this requires unlabeled edges in the row in order to perform this

change in a single step, and the resulting row has two additional labeled edges. We see

in Figure 25 that it is possible to preserve adjacency when making this change, so this is

consistent with the de�nition of a G-homotopy. In the image of the new row, there is one

new edge, traversed twice in opposite directions.

Figure 25. Case 2 and Case 3, inserting or removing pairs of transpositions.

Case 3 Similarly, we can remove (j; j + 1)(j; j + 1) from the sequence of transpo-

sitions. This has the reverse e�ect of the change in case 2, so it also preserves adjacency

in the G-homotopy grid. The e�ect is to remove a single edge, traversed twice, in opposite

directions, from the image of one row to the next.

Case 4 Since (j; j+1)(k; k+1) = (k; k+1)(j; j+1) if jj� kj � 2, we can commute

two disjoint transpositions in the sequence of edge labels. Again, this requires at least one

unlabeled edge in an appropriate location in the row so that we may preserve adjacency

in the grid while making the change. In �Bn , the image of one row includes two adjacent

edges of a 4-cycle, and the image of the next row contains the other two edges of the cycle.

The images of the two rows di�er by a 4-cycle, which is contractible to a single vertex, so

this change is also consistent with the de�nition of a G-homotopy.

Figure 26. Case 4, commuting disjoint transpositions.

Case 5 A transposition in Sn is its own inverse, so we can express the relation in case
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4 as (j; j+1) = (k; k+1)(j; j+1)(k; k+1) if jj�kj � 2. Thus we can replace one transposition

(j; j+1) with a sequence of three transpositions (k; k+1)(j; j+1)(k; k+1), where (j; j+1)

and (k; k + 1) are disjoint, assuming we have unlabeled edges where necessary to preserve

adjacency when the change is made. In �Bn , the image of one row contains one edge of a

4-cycle, and the image of the next row contains the other three edges. Again, the images of

the two rows di�er by a 4-cycle. This is equivalent to �rst inserting (k; k + 1)(k; k + 1) on

one side of (j; j + 1), then commuting one copy of (k; k + 1) with (j; j + 1), although this

may be done simultaneously from one row to the next in the grid. We may also reverse this,

and replace (k; k+ 1)(j; j + 1)(k; k+ 1) with (j; j + 1) when the transpositions are disjoint,

or equivalently, commute and then remove transpositions.

Figure 27. Case 5, replacing one transposition with three transpositions.

Case 6We may extend the previous type of change, and replace a sequence of trans-

positions (j1; j1+1)(j2; j2+1) � � � (jm; jm+1) with (k; k+1)(j1; j1+1)(j2; j2+1) � � � (jm; jm+

1)(k; k + 1) where (k; k + 1) is disjoint from each of the other transpositions in the sub-

sequence. Similarly, this is equivalent to inserting (k; k + 1)(k; k + 1) then commuting

repeatedly, and the images of the two consecutive rows in the grid di�er by m 4-cycles, one

for each of the transpositions that we commuted with (k; k + 1).

Figure 28. Case 6, inserting a pair of transpositions and commuting with a sequence of
disjoint transpostions.

We used the relations (j; j+1)(j; j+1) = 1 and (j; j+1)(k; k+1) = (k; k+1)(j; j+1)

if jj � kj � 2 in the changes described above in cases 2 through 6, but we have not yet



67

used the third relation in our representation for Sn, ((j; j + 1)(j + 1; kj + 2))3 = 1. If we

attempt to use this relation in order to make a change in the grid, for example, replacing a

sequence of the form (j; j +1)(j +1; j +2)(j; j +1) with (j +1; j +2)(j; j +1)(j +1; j +2),

we see that the image of the �rst row includes three consecutive edges of a reduced 6-cycle

associated with (j; j+1) and (j+1; j+2), and the image of the next row contains the other

three edges. Consequently, the images of the two rows di�er by a 6-cycle, which we have

seen is not contractible to a single vertex. Therefore this type of change cannot occur in a

G-homotopy, where the images of two consecutive rows may only di�er by 3- and 4-cycles

or by one or more edges traversed twice in opposite directions. It is easy to see that any

change to the sequence of transpositions that we make using the third relation results in

two rows whose images in �Bn di�er by a 6-cycle. Consequently, the changes that we are

allowed to make from row to row in a G-homotopy grid may only rely on the �rst two

relations.

Possible changes are therefore limited to shifting labeled edges, inserting or deleting a

pair of transpositons (j; j+1)(j; j+1), commuting disjoint transpositions, or a combination

of these changes. Inserting or deleting pairs of transpositions does not a�ect the parity of

the total number of transpositions of each type contained in consecutive rows of the grid,

and shifting labeled edges or commuting transpositions does not a�ect the number of each

type of transposition from row to row. Thus the �rst row of the G-homotopy grid from C1

to C2 must contain an odd number of edges labeled with each of (i � 1; i) and (i; i + 1),

and consequently the 6-cycle C1 must also be associated with (i� 1; i) and (i; i+1), which

completes the proof of the lemma.
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6.2. G-homotopic 6-cycles Di�er by a Sequence of Transpositions

Association with the same pair of transpositions is a necessary condition for G-

homotopy of 6-cycles, but it turns out not to be su�cient. In order to guarantee that

two 6-cycles, C1 and C2, are G-homotopic, they must also di�er by a sequence of sim-

ple transpositions, �1�2:::�k, where each �j is disjoint from (i � 1; i) and (i; i + 1). That

is, if we multiply each of the six permutations in C1 by the same sequence �1�2 � � � �k,

the result is precisely the six permutations in C2. To indicate this relationship, we write

C2 = C1�1�2 � � � �k.

Theorem 6.2. Let C1 and C2 be two distinct reduced 6-cycles in �Bn. Then C1 'G C2 i�

there exists an integer k � 1 such that C2 = C1�1 : : : �k where C1 and C2 are both associated

to (i� 1; i) and (i; i+ 1) for some i, 2 � i � n� 1, and the �j are simple transpositions in

Sn that are disjoint from (i� 1; i) and (i; i+ 1).

Proof. The �rst part of the proof is constructive: assuming C2 = C1�1 : : : �k, we construct

a G-homotopy from C1 to C2 whose image is a sequence of 6-cycles connected by 4-cycles.

In the second part of the proof we assume C1 'G C2, which means there is a path P such

that C1PC
�1
2 P�1 'G �0, where the base permutation �0 is a permutation in C1. The edges

of P correspond to simple transpositions in Sn, and the product of these transpositions is a

permutation in Sn. We show that this permutation can be written using only transpositions

that are disjoint from the pair (i� 1; i) and (i; i+ 1) associated to C1 and C2.

Figure 29. A G-homotopy from C1 to C2 = C1�1�2�3.

Constructing a G-homotopy from C1 to C2 = C1�1�2�3. First, suppose C2 =
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C1�1 : : : �k as de�ned in the statement of the theorem, and suppose C1 = �0 � �1 � �2 �

�3 � �4 � �5 � �0. We can construct a G-homotopy from C1 to PC2P
�1 where P =

�0 � �0�1 � �0�1�2 � � � � � �0�1 : : : �k. The G-homotopy grid has k + 1 rows and 2k + 7

columns, and Figure 29 is an example of such a grid in the case where k = 3. The �rst

row of the grid corresponds to C1, with k + 1 copies of the base permutation �0, then

�1 � �2 � �3 � �4 � �5, followed by k + 1 copies of �0. We note that only the six edges in

the row corresponding to C1 are labeled (colored) with an alternating sequence of (i� 1; i)

and (i; i+ 1), and all other edges in the row are unlabeled. In row 2, we leave the �rst and

last copies of �0 unchanged, and we multiply each of the other permutations in the row by

�1. This is equivalent to inserting two copies of the transposition �1 at the beginning the

sequence of transpositions associated to C1, then commuting one of the copies of �1 with

the six copies of (i� 1; i) and (i; i+ 1) as described in case 6 in the previous section. The

image of this new row is the loop �0 � �0�1 � �1�1 � �2�1 � �3�1 � �4�1 � �5�1 � �0�1 � �0,

which is also the 6-cycle C1�1 connected to �0 by an edge associated with �1.

In each of the remaining rows, row j + 1 for 2 � j � k, we obtain the new row by

leaving the �rst j permutations and the last j permutations unchanged, and multiplying

the other permutations in the previous row by �j . Again, this is a change like that in case

6, so the result of these changes is a valid G-homotopy. Thus the images of the rows is the

sequence of 6-cycles C1�1; C1�1�2; : : : ; C1�1 : : : �k, connected to the base permutation �0 by

a subpath of P . In particular, the permutations in the last row are

�0��0�1��0�1�2�� � ���0�1 : : : �k��1�1 : : : �k�� � ���5�1 : : : �k��0�1 : : : �k�� � ���0�1��0

which corresponds to the loop PC2P
�1.

If P is a shortest path from �0 in C1 to C2, then k + 1 is the least number of
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rows that a G-homotopy from C1 to C2 could have. The image of the G-homotopy that

we have constructed is a sequence of k + 1 6-cycles, C1; C1�1; C1�1�2; : : : ; C1�1 : : : �k, each

corresponding to (i � 1; i); (i; i + 1) for the same i. Each pair of consecutive 6-cycles is

connected by six edges corresponding to the same transposition, as shown in Figure 30.

Therefore, if � is a permutation in C1, then ��1�2 : : : �k is a permutation in C2.

Figure 30. The image of a G-homotopy from C1 to C2.

Assume C1 'G C2. For the second part of the proof, we now assume C1 'G C2 and

C2 = 
0�
1�
2�
3�
4�
5�
0. Then by Lemma 6.1, C1 and C2 are both associated with

the same pair of transpositions (i�1; i) and (i; i+1). Clearly, 
0�
1�
2�
3�
4�
5�
0

is G-homotopic to 
1 � 
2 � 
3 � 
4 � 
5 � 
0 � 
1, so as with C1, we may choose to label

the permutations in C2 so that the edge incident to 
0 and 
1 is associated with (i� 1; i).

For this part of the proof, it is useful to express this relationship as C1PC
�1
2 P�1 'G �0,

where P is a shortest path from �0 in C1 to C2, satisfying the condition that the �rst edge

traversed in C2 is associated with (i� 1; i).

The �rst row in a G-homotopy grid corresponds to C1PC
�1
2 P�1 and the last row

is repeated copies of the base permutation �0. Recall that we label an edge in the grid

if it corresponds to a simple transposition, otherwise it is left unlabeled. Therefore the

last row has no labeled edges. This means we must use our permissible operations of

commuting disjoint permutations, inserting or deleting a pair of consecutive copies of the

same transposition, or shifting labeled edges, as we move from one row to the next in the

grid. Our ultimate goal is to eventually be able to remove all of the transpositions in

C1PC
�1
2 P�1 by the last row of the grid.
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Suppose we insert a pair of transpositions, (j; j + 1)(j; j + 1), at some step in our

process. By the end of our process, each of these transpositions has been removed as a

part of a pair of transpositions. If they were removed together as a single pair, then they

did not assist us in removing other pairs of transpositions, so it was not necessary to insert

them at all. If they were removed separately, each paired with another transposition of the

same type, then whatever commuting that was done to put them into position next to their

new partners could have been done in the opposite direction by the partner transpositions.

This would make a single consecutive pair out of these new partners, which we could then

remove. In this case as well, we could have constructed a G-homotopy between C1PC
�1
2 P�1

and the trivial loop �0 without inserting the new pair of transpositions. Thus we must be

able to achieve our goal solely by shifting labeled edges and commuting and removing

transpositions.

A shortest path P from C1 to C2. Now we consider the types of transpositions

that may be associated with the edges of a shortest path from C1 to C2. The path P from

�0 in C1 to C2 consists of edges corresponding to simple transpositions �1; �2; : : : ; �k in Sn,

therefore the sequence of labels on the edges in the �rst row of the grid is

(i� 1; i)(i; i+ 1) : : : (i; i+ 1)�1�2 : : : �k(i; i+ 1)(i� 1; i) : : : (i� 1; i)�k�k�1 : : : �1:

We refer to P as a sequence of transpositions, the transpositions associated with

the edges in P , although we recognize that by commuting disjoint permutations in the

sequence we are changing the edges traversed and creating a new path, albeit a path that

begins and ends at the same vertices (permutations) as P , and the product of the new

sequence of transpositions still represents the same permutation in Sn. If we can show that

P consists of transpositions disjoint from (i � 1; i) and (i; i + 1), then we could commute
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the transpositions in P with the transpositions in C�1
2 , resulting in the sequence

(i� 1; i)(i; i+ 1) : : : (i; i+ 1)(i; i+ 1)(i� 1; i) : : : (i� 1; i)�1�2 : : : �k�k�k�1 : : : �1:

We can then remove pairs of the same transposition, one pair at a time, until all transpo-

sitions have been removed.

P doesn't contain (i� 2; i� 1) or (i+ 1; i+ 2). We show that P cannot contain

any copies of either (i�2; i�1) or (i+1; i+2). Suppose we have a transposition (i�2; i�1)

in P , and if P contains more than one copy of this transposition, then we consider the last

copy in P . There are an odd number of copies of (i�1; i) between the last copy of (i�2; i�1)

in P and the �rst copy in P�1; three from C�1
2 and an even number, if any, from P and

P�1 between the two copies of (i� 2; i� 1). We can't commute (i� 2; i� 1) with (i� 1; i),

so we won't be able to remove all of the odd number of copies of (i � 1; i) to allow us to

pair the copies of (i � 2; i � 1) from P and P�1 for cancellation. Therefore we must be

able to pair the copy of (i � 2; i � 1) from P with a second copy that is also in P . But

if we can commute and remove these transpositions within P as part of the G-homotopy,

then we could have commuted and removed these transpositions within P to get a shorter

path from C1 to C2 with the same endpoints, which contradicts our assumption that P is

a shortest path. Therefore P cannot contain any copies of (i � 2; i � 1), and by a similar

argument, any copies of (i+ 1; i+ 2).

Suppose now that P contains copies of (i � 1; i) or (i; i + 1). We show that this

contradicts the assumption that P is a shortest path from �0 in C1 to C2, satisfying the

condition that the �rst edge traversed in C2 is associated with (i � 1; i). We consider the

subsequence of transpositions (i�1; i) and (i; i+1) in P and show that each of the possible

types of subsequences results in a contradiction of our assumption about P . When we have

eliminated all possibilities, then we may conclude that all transpositions in P are disjoint
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from (i�1; i) and (i; i+1). First, we show that a subsequence can't have consecutive copies

of either (i� 1; i) or (i; i+ 1). Next, we show that a subsequence must be shorter than six

transpositions. We then show a G-homotopy is not possible if the alternating subsequence

is of odd length. Finally, for subsequences of length two or four, we demonstrate a shorter

path satisfying the conditions for P .

Subsequence of (i� 1; i), (i; i+ 1) alternates. Suppose that the subsequence in

P consisting of all transpositions (i�1; i) and (i; i+1) contains a consecutive pair the same

transposition. Transpositions (i� 1; i) and (i; i+ 1) commute with all other transpositions

in P (except, of course, with each other), so if there are consecutive repetitions of one of the

transpositions in the subsequence, we can commute the transpositions within P so they are

next to one another and then remove the pair to obtain a shorter path from C1 to C2 with

the same endpoints, contradicting our assumption that P is a shortest path. Therefore any

subsequence must alternate between (i� 1; i) and (i; i+ 1).

Length of subsequence < 6. Next we consider what types of alternating subse-

quences of (i� 1; i) and (i; i+1) are possible in our G-homotopy. If we have an alternating

subsequence of length six or longer, then we can commute transpositions from P until we

have six of these transpositions in consecutive order. This sequence of six transpositions is

a representation of the identity in Sn, so we now have a path from C1 to C2 that contains

a 6-cycle. The same path without the 6-cycle yields a shorter path from C1 to C2 with the

same endpoints, contradicting our assumption that P is a shortest path. Therefore we only

need to consider subsequences of length less than six.

Odd subsequences. For subsequences of odd length, Figure 31 illustrates the

possible subsequences of transpositions (i � 1; i) and (i; i + 1) in the �rst row of the grid,

using (12) and (23) as a speci�c example. This includes the six transpositions from each of
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C1 and C2, as well as those from P and P�1. Even though (12) doesn't commute with (23),

(12) and (23) commute with any other transposition in P , thus we only need to consider the

subsequence when deciding which pairs of (12) or (23) may be removed. In each case, we see

that we can remove a number of pairs of transpositions, equal to the number of transpostions

in the subsequence in P . However, we are not able to remove all transpositions in the entire

subsequence, contradicting our assumption that C1 'G C2.

Figure 31. Cancelling transpositions in C1PC
�1
2 P�1 when subsequences in P are of odd

length.

Even subsequences. Now suppose that the alternating subsequence in P is of

length two or four. To illustrate this we consider the case where the subsequence is (i �

1; i); (i; i+ 1). We can commute these transpositions with the other transpositions from P

to obtain a new sequence

(i� 1; i); (i; i+ 1); �j1 ; �j2 ; : : : ; �jk�2

with (i� 1; i); (i; i+1) and the rest of the transpositions in the same relative order as they

were in P . The �rst vertex in P is associated with the permutation is �0, and without loss

of generality we can identify the last permutation in the path, which is a permutation in

C2, to be 
0. Our reordered sequence of transpositions also corresponds to a path from �0

to 
0 in �Bn , thus we may write


0 = �0(i� 1; i)(i; i+ 1)�j1�j2 : : : �jk�2

= �2�j1�j2 : : : �jk�2 :

Consequently, we also have
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1 = 
0(i� 1; i)

= �2�j1�j2 : : : �jk�2(i� 1; i)

= �2(i� 1; i)�j1�j2 : : : �jk�2

= �3�j1�j2 : : : �jk�2

and similarly


2 = �4�j1�j2 : : : �jk�2


3 = �5�j1�j2 : : : �jk�2


4 = �0�j1�j2 : : : �jk�2


5 = �1�j1�j2 : : : �jk�2 :

Therefore C2 = C1�j1�j2 : : : �jk�2 and we could use the sequence of edges starting at

�0 and corresponding to �j1 ; �j2 ; : : : ; �jk�2 to create a shorter path from �0 to C2 in �Bn .

This new path does not meet C2 at the same permutation as does P , but it still satis�es

our condition that the �rst edge traversed in C2 is associated with (i� 1; i) (we can simply

reindex the 
j so that the new path ends at 
0). This contradicts our assumption that P

is a shortest path from �0 to C2. It is easy to show that in the other three cases, where

the subsequence is of length four and beginning with (i � 1; i), or of length two or four

and beginning with (i; i + 1), the 6-cycles C1 and C2 di�er by the sequence of remaining

transpositions from P not in the subsequence, and we can use those transpositions to

create a shorter path from �0 to C2, ending at a new permutation but still satisfying our

condition that the �rst edge traversed in C2 is associated with (i�1; i), for a contradiction.

Consequently, P cannot contain any edges corresponding to (i� 1; i) or (i; i+ 1).

We have shown that if C1 'G C2 and P is a shortest path from �0 in C1 to C2, then

the edges of P must correspond to a sequence of simple transpositions �1; �2; : : : ; �k in Sn

that are disjoint from (i� 1; i) and (i; i+ 1), and without loss of generality, if we let 
0 be
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the last permutation in P , then


0 = �0�1�2 : : : �k


i = 
i�1(i� 1; i)

= �i�1(i� 1; i)�1�2 : : : �k

= �i�1�2 : : : �k for 1 � i � 5:

Therefore C2 = C1�1�2 : : : �k as desired.

6.3. Characterization of Equivalence Classes

The previous theorem stems from the de�nition of a G-homotopy from C1 to C2 and

the limitations on the types of changes we are able to make from row to row in a G-homotopy

grid. We can combine this theorem with our new understanding of the structure of �Bn to

make the following observations about equivalence classes of 6-cycles in the graph: We show

that the horizontal and vertical 6-cycles are not G-homotopic to one another, so we may

discuss horizontal and vertical equivalence classes. Next, we see that the vertical 6-cycles

at di�erent levels are in di�erent equivalence classes. Then we demonstrate a method for

counting the vertical equivalence classes at each level i of �Bn , for 2 � i � n�1. Finally we

show that the number of horizontal equivalence classes in �Bn is equal to the total number

of equivalence classes in �Bn�1 , and show that the set of horizontal and vertical equivalence

classes that we have identi�ed constitute a minimal set of generators for An�3
1 (�(Bn))

ab.

Horizontal and vertical 6-cycles are in di�erent equivalence classes. In the

construction of �Bn , we saw that �(j) = n for each permutation � at level j of the graph.

Therefore, given a vertical 6-cycle C2 that spans levels i�1, i, and i+1, we have �(i�1) = n
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for the two permutations in C2 at level i � 1, �(i) = n for the two permutations at level

i, and �(i+ 1) = n for the remaining two permutations at level i+ 1. On the other hand,

�(j) = n for all six permutations in a horizontal 6-cycle C1 at level j in �Bn . Furthermore,

��1(n) = �k�k�1 � � � �2�1(j) for each permutation ��1�2 � � � �k in C1�1�2 � � � �k, so C1�1�2 � � � �k

is also a horizontal 6-cycle. As a result, it is not possible to have C2 = C1�1�2 : : : �k where

C1 is a horizontal 6-cycle and C2 is a vertical 6-cycle, and so we may consider equivalence

classes of horizontal and vertical equivalence classes separately.

Vertical 6-cycles at di�erent levels of �Bn are in di�erent equivalence

classes. This is a direct consequence of Lemma 6.1 and the observation we made in Section

6.1 of this chapter that a vertical 6-cycle at level i, 2 � i � n � 1 is associated with

transpositions (i� 1; i) and (i; i+ 1).

There are
�
n�1
i

��
i

2

�
equivalence classes at level i of �Bn

, 2 � i � n� 1. Let

C1 be a vertical 6-cycle at level i of �Bn and let � be a permutation in C1 at level i.

While every vertical 6-cycle at level i is associated to (i� 1; i) and (i; i+ 1), this does not

mean they are all in the same equivalence class. We know that if C2 is another vertical

6-cycle at level i and it is G-homotopic to C1, then there is an integer k � 1 and simple

tranpositions �j ; 1 � j � k, such that C2 = C1�1�2 : : : �k. The �j need not be distinct, so we

may consider any permutation generated by the set of �j . Therefore, the number of 6-cycles

in the equivalence class containing C1 is (i � 2)!(n � i � 1)!, the order of the subgroup of

Sn generated by all simple transpositions in Sn except (i� 2; i� 1); (i� 1; i); (i; i+ 1), and

(i + 1; i + 2). Recall that �Bn�1 is (n � 2)-regular. When we use �Bn�1 to construct ~�Bn ,

the vertices in each level i, 2 � i � n� 1, are incident to two new vertical edges, thus each

vertex in these levels has degree n. The graph �Bn is n-regular, so we removed precisely

one horizontal edge incident to each vetex in these levels. Removing a horizontal edge
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resulted in the creation of a vertical 6-cycle, therefore each vertex in level i, 2 � i � n� 1,

is in precisely one vertical 6-cycle at level i. Furthermore, each of the 6-cycles in a single

equivalence class contains two vertices at level i and there is a total of (n�1)! permutations

at level i. Thus there are (n�1)!
2(i�2)!(n�i�1)! =

�
n�1
i

��
i
2

�
equivalence classes at level i, and the

total number of vertical equivalence classes in �Bn is

Pn�1
i=2

�
n�1
i

��
i
2

�
=
Pn�1

i=2
(n�1)!

2(i�2)!(n�i�1)!

=
Pn�3

i=0
(n�1)!

2(i)!(n�i�3)!

= (n�1)(n�2)
2

Pn�3
i=0

�
n�3
i

�
= 2n�3

�
n�1
2

�
:

The number of horizontal equivalence classes in �Bn
is equal to the total

number of equivalence classes in �Bn�1
. Recall that when we constructed �Bn using

n copies of �Bn�1 , no edges were removed from the top level, level n, of e�Bn in order to

obtain �Bn . Furthermore, each permutation in level n, written in single line notation, has

the number n in the last position, position n. Let C be a horizontal or vertical 6-cycle in

�Bn�1 . If we map each permutation � in C to a permutation �0 in Sn by putting the element

n at the end of the permutation, we obtain a horizontal 6-cycle, C 0, in level n of �Bn . For

example, we see in Figures 21 and 22 that the single 6-cycle 123�213�231�321�312�132

in �B3
corresponds in this way to the 6-cycle 1234�2134�2314�3214�3124�1324 in �B4

.

We also note that these two 6-cycles are associated with the same pair of transpositions, (12)

and (23). Thus there is a bijection between 6-cycles in �Bn�1 and horizontal 6-cycles in level

n of �Bn , and the corresponding pairs of 6-cycles in the two graphs are each associated with

the same pair of transpositions. We show that there is also a bijection between equivalence

classes in �Bn�1 and equivalence classes in �Bn that contain horizontal 6-cycles in level n.



79

Lemma 6.3. Let C1 and C2 be two distinct 6-cycles in �Bn�1, then C1 'G C2 in �Bn�1 if

and only if C 0
1 'G C 0

2 in �Bn.

Proof. Suppose C1 'G C2 in �Bn�1 . Then C2 = C1�1�2 � � � �k as de�ned in Theorem 6.2.

Each of the �j is a simple transposition in Sn�1, so in particular the set of �j cannot include

(n � 1; n). Therefore, if we multiply each of the permutations in C 0
1 by the sequence of

�j , the entry n is always in the last position. In fact, if we have a G-homotopy from C1

to C2 in �Bn�1 , we may simply put the number n at the end of each of the permutations

in the grid and the result is a G homotopy from C 0
1 to C 0

2 in �Bn that demonstrates that

C 0
2 = C 0

1�1�2 � � � �k.

Now suppose that C 0
1 'G C 0

2 in �Bn . Then C
0
2 = C 0

1�1�2 � � � �k. Recall that C
0
1 and

C 0
2 are both horizontal 6-cycles in level n of �Bn , so all permutations in both cycles have the

entry n in position n. Therefore we do not need the transposition (n�1; n) in our sequence

of �j because the transpositions do not need to move the entry in the last position. This

means that each of the �j are also simple transpositions in Sn�1, so we can use the same

collection of transpositions to show that C2 = C1�1�2 � � � �k, and therefore C1 'G C2 in

�Bn�1 as desired.

The bijection between 6-cycles in �Bn�1 and horizontal 6-cycles in level n of �Bn ,

together with the above lemma, induce a bijection between the equivalence classes of 6-

cycles in �Bn�1 and equivalence classes in �Bn that contain horizontal 6-cycles in level n.

Now we show that those are in fact the only horizontal equivalence classes that we need to

consider. Let C1 be a horizontal 6-cycle in level i of �Bn for some i, 1 � i � n � 1. No

vertical edges were removed from e�Bn in the construction of �Bn , and each permutation
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in level i is connected to a corresponding permutation in level i+ 1 by an edge associated

with (i; i+ 1). These two permutations originated from a single permutation from Sn�1 in

�Bn�1 , with the element n inserted into the permutation at position i or i+1, respectively,

to obtain two permutations in Sn. Thus we can �nd a 6-cycle, C2 in level n of �Bn such that

the permutations in C1 and C2 originated from a single 6-cycle in �Bn�1 , with the element

n inserted into the permutations at position i or n, respectively.

If � in C1 and �0 in C2 originated from the same permutation in Sn�1, then

�0 = �(i; i+ 1)(i+ 1; i+ 2) � � � (n� 1; n), and the permutations are connected by a path of

vertical edges corresponding to these transpositions. Similarly

C2 = C1(i; i+ 1)(i+ 1; i+ 2) � � � (n� 1; n);

and the two 6-cycles are connected by six such paths. In e�Bn , each pair of consecutive

vertical paths around the 6-cycles were connected at each level by horizontal edges. For an

illustration of this, we may consider the unique 6-cycles in each of levels 1 and 4 in e�B4
in

Figure 21, which we see are connected by a \net" of vertical 4-cycles. In Figure 22, this

net has been modi�ed somewhat due to removing edges to obtain �B4
, and the net now

consists of vertical 4-cycles and 6-cycles. If, in �Bn , the net consists of only 4-cycles, as in

the subgraph of �B5
shown in Figure 32, then C1 'G C2, and C1 is contained in one of the

equivalence classes we have already considered.

Figure 32. A subgraph of �B5
showing two G-homotopic 6-cycles connected by a net of

vertical 4-cycles.

On the other hand, if the net consists of both 4-cycles and 6-cycles, then C1 6'G C2,

but C1 is G-homotopic to the concatenation of C2 with the vertical cycles in the net. The
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4-cycles are all in the equivalence class of a single vertex, and we have already counted the

equivalence classes containing the vertical 6-cycles as well. Therefore C1 is contained in the

product of other equivalence classes that have already been counted. Consequently, when

counting equivalence classes of horizontal 6-cycles, it is su�cient to consider equivalence

classes containing horizontal 6-cycles in level n of �Bn , which we have shown is equal to the

total number of equivalence classes in �Bn�1 .

There are 2n�3(n2 � 5n+ 8)� 1 equivalence classes of 6-cycles in �Bn
.

When we tally the total number of equivalence classes of 6-cycles in �Bn , we add the num-

ber of \new" equivalence classes of vertical 6-cycles, 2n�3
�
n�1
2

�
, to the \old" equivalence

classes containing horizontal 6-cycles which we have shown were counted in �Bn�1 . Thus

by induction, there are
Pn

k=1 2
k�3

�
k�1
2

�
equivalence classes of 6-cycles in �Bn . Any other

cycle in �Bn of length � 8 can be expressed as the concatenation of 4-cycles and 6-cycles,

so these equivalence classes generate our free group An�3
1 (�(Bn))

ab. Therefore our goal is

to �nd a generating function for

f(n) =
nX

k=1

2k�3

�
k � 1

2

�
:

To accomplish this, we begin by rewriting this sum so that the binomial also depends

on n, which reverses the order of the terms if we expand the sum. Furthermore, for values

k = 0 and k � n, the terms vanish, so we can sum over all values k � 0. Our new function

is

f(n) =
X
k�0

2n�k�3

�
n� k � 1

2

�
:

Using the Snake Oil Method [16], we multiply the above sum by xn, and sum over

values of n. This is our generating function, F (x), and we would like to �nd a closed formula
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for the coe�cients of F (x).

F (x) =
X
n

xn
X
k�0

2n�k�3

�
n� k � 1

2

�
:

Next we reverse the order of summation, and then we adjust the exponent for x and

for 2 to match the form in the binomial. We then replace n� k� 1 with a dummy variable

r, and sum over r.

F (x) =
P

k�0

P
n 2

n�k�3
�
n�k�1

2

�
xn

=
P

k�0 2
�2xk+1

P
n 2

n�k�1
�
n�k�1

2

�
xn�k�1

=
P

k�0
1
4x

k+1
P

r

�
r
2

�
(2x)r

=
P

k�0
1
4x

k+1 (2x)2

(1�2x)3

=
P

k�0
xk+3

(1�2x)3

= x3

(1�2x)3
P

k�0 x
k

= x3

(1�2x)3(1�x)
:

Using standard partial fraction decomposition techniques, we obtain the result that

the coe�cient of xn in F (x) is 2n�3(n2�5n+8)�1. This is the total number of equivalence

classes of 6-cycles in �Bn , and the number of a minimal set of generators of A
n�3
1 (�(Bn))

ab.

We have also recovered a formula for the �rst Betti number of Mn;3, which Bj�orner and

Lov�asz [6] showed give us a lower bound for the complexity of the k-equal problem described

in the introduction of this dissertation.

6.4. Future Directions

The results in Chapters 5 and 6, related to the Boolean lattice, were possible in large

part due to the construction of the graph related to a direct product of lattices that was
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developed in Chapter 4. Our new understanding of the structure of �Bn = �n�3
max(�(Bn)),

gained from viewing Bn as the direct product Bn�1 � 2, was indispensable in proving our

results. However, the arguments also relied heavily on the properties of Sn, speci�cally our

ability to limit our investigation to the equivalence classes of reduced 6-cycles in the graph

and to determine that types of changes that are possible from row to row in a G-homotopy

grid. One path for future work beyond this dissertation is to investigate direct products of

other lattices to see if the structure of the associated graph can aid in obtaining results for

lattices other than Bn.

Recall that in the introduction to this dissertation, we brie
y described Maurer

and Malle's early work in discrete homotopy theory. Maurer [13] investigated matroid basis

graphs, where each vertex corresponds to a basis of a matroid, and two vertices are adjacent

if the corresponding bases di�er by a single exchange. He de�ned a homotopy relation on

paths that is equivalent to our G-homotopy of graph maps. He proved that � is a matroid

basis graph if and only if

1. it is connected,

2. each common neighborhood subgraph is a square, a pyramid, or an octohedron,

3. in every leveling each common neighbor subgraph meets the Positioning Condition

(which we do not de�ne here), and

4. for some v0 the neighborhood subgraph N(v0) is the line graph of a bipartite graph.

He then conjectured that conditions 3 and 4 can be replaced by a new condition,

which is that AG
1 (�) is trivial. Since Maurer published his conjecture, Malle [12] character-

ized graphs with a trivial string fundamental group (which corresponds to our AG
1 (�; v)) as
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the collection of graphs where each cycle has a pseudoplanar net. Malle's characterization

might give us new insight into graphs with a trivial G-homotopy group, and it has the

potential to be valuable tool in proving Maurer's conjecture.
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