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Activity 1

Calculus in Q?

Focus Questions

• What is Newton’s method? How can Newton’s method be used
to find roots of functions?

• Why are the rational numbers inadequate for the problem of find-
ing roots of polynomials?

Introduction

One of the most basic and yet important applications of calculus is that of finding roots of functions.
In this activity, we will see what happens when we try to use Newton’s method to find a root of a poly-
nomial function, all while restricting our universe of numbers to just the rationals. Our investigations
will give us one example of why the real numbers are essential to the study of calculus.

Our main objective in this activity is to find an important property of the real numbers that is not
shared by the rationals. To do so, we will assume throughout the activity that the only numbers
that exist are rational numbers (and subsets of rationals, such as the integers). Seeing how this
assumption restricts us will ultimately demonstrate our need for the real numbers and will also suggest
one way to formally define the reals. For those concerned about historical precedent, be assured that
this little experiment is nothing more than a journey back to about 300 B.C., a time when greek
mathematicians such as Euclid also denied the existence of any numbers beyond the rationals.

A Quick Review of Newton’s Method

You may remember Newton’s method from your first-semester calculus course. The idea behind it is
fairly simple: the method uses sequences of tangent line approximations of a function to approximate
the function’s roots. It is not too difficult to show that, given a function f and a point a in the domain
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of f , the x-intercept of the line tangent to f at the point a is exactly equal to

a− f(a)

f ′(a)
.

Thus, given an initial approximation x0 of a root of f , Newton’s method uses the x-intercept of the
line tangent to f at x0 to find a potentially better approximation, say x1, of the root. The process is
then repeated, but this time using x1 as the starting point. Continuing in this fashion produces the
sequence of approximations given by the following recurrence relation:

xn+1 = xn −
f(xn)

f ′(xn)

In most cases (but not all), this sequence of approximations, or iterates, gets closer and closer to
the exact value of the desired root. Figure 1 gives a graphical illustration of how Newton’s method
works, and Exercise 2 at the end of the activity provides examples of how the method can fail.

x
0

x
3

x
2

x
1

Figure 1.1: An illustration of Newton’s method

Newton’s Method in Q

Now let’s consider a specific example. We’ll begin with the following polynomial:

p(x) =
3

4
x2 − 3

2
.

Question 1.1.

(a) Apply one iteration of Newton’s method for p(x) with x0 = 3/2. What is the result of the first
iteration? (That is, what is x1?)

Copyright c©2007
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(b) Apply another iteration of Newton’s method for p(x). What the result of this iteration? (That
is, what is x2?)

(c) Show that applying two iterations of Newton’s method for p(x), starting with any non-zero
rational number x0 = a, yields (for the second iterate):

x2 =
a4 + 12a2 + 4

4a3 + 8a
.

Question 1.2. Prove that if you apply an iteration of Newton’s method for p(x) to a non-zero rational
number xn, then xn+1 will also be a non-zero rational number. Deduce that the sequence of iterates
starting with x0 = 3/2 are all non-zero.

Question 1.3. Prove that if you apply an iteration of Newton’s method for p(x) to a rational number
xn such that 1 < xn < 2, then 1 < xn+1 < 2. Deduce that the sequence of iterates starting with
x0 = 3/2 are all between 1 and 2.

Question 1.4. Prove that if you apply an iteration of Newton’s method for p(x) to any non-zero
rational number xn, then x2

n+1 > 2. What can you deduce about the sequence of iterates starting with
x0 = 3/2?

Question 1.5. Prove that if you apply an iteration of Newton’s method for p(x) to a positive rational
number xn with x2

n > 2, then xn+1 < xn. Deduce that in the sequence of iterates starting with
x0 = 3/2, every iterate is smaller than the previous one.

Question 1.6. Prove that if you apply an iteration of Newton’s method for p(x) to a rational number
xn > 1, then

∣

∣x2
n+1 − 2

∣

∣ <
1

2

∣

∣x2
n − 2

∣

∣ .

What can you deduce about the sequence of iterates starting with x0 = 3/2?

Question 1.7. Prove that if you apply two iterations of Newton’s method for p(x) to a positive rational
number xn with x2

n > 2, then

|xn+1 − xn+2| <
1

2
|xn − xn+1| .

What can you deduce about the sequence of iterates starting with x0 = 3/2?

Question 1.8. In light of your answers to Questions 1.2 through 1.7, what are the iterates of Newton’s
method for p(x) (starting with x0 = 3/2) approaching? In other words, what root of p(x) will
Newton’s method find? (Note: Remember that the only numbers that exist are the rationals!)

3 Copyright c©2007
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Exercises

(1) Prove that the x-intercept of the line tangent to f(x) at the point xn is exactly

xn −
f(xn)

f ′(xn)
.

(2) For each of the following functions, describe in a precise way what happens when you try to find
a root of the function by applying Newton’s method with the given initial point. Comment on any
interesting behavior you observe, and explain why this behavior occurs.

(a) f(x) = 7x4 − 57x2 + 108; x0 = 2

(b) f(x) = x3 − 6x2 + 7x + 2; x0 = 1

(c) f(x) = x2 + 1; x0 = 0.5

(d) f(x) = 3 cos(x)− 2; x0 = 0.01

(3) Consider the sequence x defined by

xn =
n
∑

k=0

(−1)k

k!

for all n ≥ 0.

(a) Prove that xn is a rational number for each n.

(b) Prove that x does not converge to a rational number. (Hint: Suppose that x does converge
to a rational number, say l = p/q, where p and q are integers and q 6= 0. Argue that
xn < l < xn+1 for all n, and use this fact to prove that, for all n > 0, q does not divide n!.)

(4) Assume for the purposes of this question that the only numbers that exist are the nonzero rational
numbers, and let f(x) = 2 + x2 − 2x. For which values of x can f ′(x) be calculated? Clearly
explain your answer.

Copyright c©2007
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Activity 2

How Close is “Close Enough?”

Focus Questions

• Intuitively, what does it mean for a sequence of numbers to con-
verge?

• Intuitively, what does it mean for a sequence of numbers to accu-
mulate?

Introduction

In Activity 1, we investigated the long-term behavior of a sequence of rational numbers defined by
applying Newton’s method to a particular polynomial function. The elements of this sequence seemed
to be getting closer and closer to some number, but not one that existed in our universe of just the
rationals.

When dealing with sequences of numbers, we often use phrases like closer and closer, approach-
ing, eventually, converges to, and so on. We may have an intuitive sense of what these terms mean,
but in order to study the behavior of sequences in a mathematically precise and meaningful way, we
are going to need to move toward a more formal framework. We will begin to do so in this activity by
informally defining the notions of convergence and accumulation. In subsequent activities, we will
make these informal definitions much more precise.

Close to Something

Let’s begin by considering the following sequence of numbers:

1, 4,
5

2
,
13

4
,
23

8
,
49

16
, . . . . (2.1)
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Notice that after the first two numbers in the sequence, each subsequent number is the average of the
previous two (so, for example, 23

8
= 5/2+13/4

2
). As is often the case when studying sequences, we

would like to know the long-term behavior of this sequence of numbers.

Question 2.1. Calculate the next three numbers of the sequence given in Equation (2.1). Based on
these calculations, what do you think the long-term behavior of the sequence will be?

It can be quite cumbersome to repeatedly use phrases like “the third element of the sequence
that we wrote down in Equation (2.1)” to refer to the numbers in the particular sequences we are
investigating. To simplify the way we discuss such sequences, we will adopt some very simple and
natural notation. For instance, we will refer to the sequence that we wrote down in Equation (2.1) as
sequence a. We will then use subscript notation to refer to the individual elements of a, so that, for
example, a3 = 5

2
.

Question 2.2. It can be shown that for some rational numbers α and β,

an = α + β

(−1

2

)n

,

for all positive integers, n. Find α and β.

Question 2.3. In light of your answer to Question 2.2, what do you think the long-term behavior of
sequence a will be? Is there a number p such that, eventually, the numbers an are as close to p as you
could possibly want them to be?

Question 2.3 suggests the following informal definition of convergence:

Informal Definition 2.1. A sequence s is said to converge to a number l provided that eventually the
elements of s (that is, s1, s2, s3, . . .) become as close to l as we want them to be. When we say that
s converges (without specifying a value of l), we mean that there exists some number l such that s

converges to l.

The idea behind Informal Definition 2.1 is this: when we say that s converges to l, we mean that
no matter how close we want the elements of s (that is, the sn) to be to l, they will eventually be that
close. So, for instance, if a sequence s converges to 2, then eventually (once we reach a certain point
in the sequence) the elements of s will all be very close to 2, say in between 1.99 and 2.01. Not close
enough? Well, eventually (if we look far enough into the sequence), all of the elements of s will be in
between 1.999 and 2.001. Still not close enough? No worries – we can keep going for as long as you
would like. In fact, the central idea behind saying that s converges to 2 is that no matter how close
we say is “close enough,” we will be able to find some point in s such that beyond that point, all of
the elements of s are “close enough” to 2.

Question 2.4. Which of the following sequences converge, and which do not? For each sequence that
does converge, find the number l to which the sequence converges, and use Informal Definition 2.1 to
explain why the sequence does in fact converge to l. For each sequence that does not converge, use
Informal Definition 2.1 to explain why no such l exists.

Copyright c©2007
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(a) The sequence w defined by

wn =
1

n
cos
(nπ

2

)

for each positive integer n.

(b) The sequence x defined by

xn =

{

1/n if n is odd

7 + 1/n if n is even

for each positive integer n.

(c) The sequence y be the sequence defined by

yn =

{

3 if n is odd

3− 1/n if n is even

for each positive integer n.

(d) Let z be the sequence defined by,

zn =

{

3 + 1/n if n is not a power of 10
14
5
− 1/n if n is a power of 10

for each positive integer n.

Close To Something vs. Close Together

In the first part of this activity, we looked at what it meant for a sequence to converge. However, we
ignored the problem that showed up in the rational numbers: in order to converge, a sequence has to
get close to something. But what if there isn’t something to get close to?

Let’s look back at the sequence a from the beginning of the activity. Recall that we found rational
numbers α and β such that

an = α + β

(−1

2

)n

, (2.2)

for each positive integer n.
Using this definition of a, let’s again consider the long-term behavior of the sequence. This

time, however, let’s do so without referencing any numbers except those that occur as elements of a.
Informal Definition 2.2 suggests one way to do so.

Informal Definition 2.2. A sequence s is said to accumulate provided that eventually the elements
of s become as close to each other as we want them to be.
Question 2.5.

7 Copyright c©2007
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(a) How is Informal Definition 2.2 similar to Informal Definition 2.1? How are the two definitions
different?

(b) Does sequence a accumulate? Why or why not?

(c) Which (if any) of the other sequences from this activity accumulate? Justify each of your
answers using Informal Definition 2.2.

(d) Does the sequence of numbers arising from Newton’s method in Activity 1 (Calculus in Q?)
accumulate? Why or why not?

Exercises

(1) Characterize all of the values of α, β, x, and y for which the sequence s defined by

sn = αxn + βyn

converges.

(2) Let S be the sequence of partial sums defined by

Sn =
n
∑

k=1

1

k

for each positive integer n. Does S accumulate? Why or why not?

(3) Let S be the sequence of partial sums defined by

Sn =
n
∑

k=1

(−1)k 1

k

for each positive integer n. Does S accumulate? Why or why not?

(4) Let s be a sequence of rational numbers, and let Sn be the sequence of partial sums defined by

Sn =
n
∑

k=1

sk.

(a) If s converges, must S also converge? Give a proof or counterexample to justify your
answer.

(b) If S converges, must s also converge? Give a proof or counterexample to justify your
answer.

(5) Does every convergent sequence of rational numbers accumulate? Why or why not?

Copyright c©2007
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(6) Under what circumstances does a sequence of integers converge? Be specific and precise.

(7) Suppose a sequence s satisfies the property that

|sn+1 − sn| <
1

n

for each positive integer n. Does s necessarily accumulate? Give a proof or counterexample to
justify your answer.

(8) Consider all sequences s that satisfy the following property:

For each positive integer N , there exists m, n > N such that sm < 0 and sn > 0.

Do such sequences always, sometimes, or never converge? Give a proof and/or counterexample
to justify your answer.

9 Copyright c©2007
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Activity 3

Close Enough: The Game

Introduction

In Activity 2, we discussed informally what it means for a sequence to converge to a particular number.
In this activity, we will continue to explore the notion of convergence by playing a game that is based
on the idea of being “close enough” to a desired limit. The complete rules of the game are stated
below.

Game Rules

• There are two players. In the first round, Player 1 is the chooser and Player 2 is the guesser.
After each round, the players change roles.

• To begin a round, the chooser selects a sequence (which, for clarity, we will refer to as s).

• After the chooser has selected a sequence, the guesser then determines a target. This target is
the number that the guesser must try to make the elements of s get close to.

• The chooser picks a positive distance that determines exactly how close to the target is close
enough (that is, how close to the target the guesser must make the elements of s). Elements of
s that are less than this distance from the target are said to be in the goal.

• The guesser must determine how far to go in s so that all the subsequent elements of s will be
in the goal.

• If the guesser is able to find a place in s past which all the elements of s are in the goal, then
the guesser wins the round. Otherwise, the chooser wins the round.

11
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Analysis

With a partner, play several rounds of the game just described. Play the game enough times and with
enough different sequences to be able to give clear and precise answers to each of the questions stated
below.

Question 3.1. Are there optimal strategies for each player? If so, describe these optimal strategies in
detail.

Question 3.2. Are there sequences for which either player could win depending on how they play?
Either give an example of such a sequence, or explain why no such sequences exist.

Question 3.3. Are there sequences for which one of the players would be guaranteed to win, provided
that they played correctly? Either give an example of such a sequence, or explain why no such
sequences exist.

Question 3.4. Does the game favor the chooser, the guesser, or neither? In other words, if both
players played optimal strategies, who would be more likely to win?

Copyright c©2007
J. Hodge & C. Wells
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Activity 4

Defining Convergence

Focus Questions

• What is the precise definition of convergence for a sequence of
numbers?

• What are some strategies for proving or disproving the conver-
gence of a given sequence?

Introduction

In Activity 2 (How Close is “Close Enough?”), we said that a sequence s converges to a number l
exactly when the terms of s (which we called sn) can eventually be made as close as we would like
them to be to l. In this activity, we will use the the ideas from Activity 3 (Close Enough: The Game)
to make our definition of convergence more mathematically precise.

A Recap of Close Enough: The Game

In Close Enough: The Game, you probably observed that the chooser can always guarantee a win by
simply choosing a sequence in the first step of the game that does not converge. On the other hand, if
the chooser picks a convergent sequence, then the guesser should always be able to win, provided that
he or she selects the correct target (which we’ll call l) for the sequence. But what is the correct target?
What strategy should the guesser employ when the chooser picks s to be a convergent sequence?

To answer this question, recall that the guesser wins if and only if he or she is able to eventually
get all of the terms of the sequence to be close enough to the target, where close enough is determined
by the chooser. Thus, in order to guarantee a win, no matter what positive distance from the target the
chooser decides is close enough (let’s call this distance ε), the guesser must be able to find a term in
the sequence (call it sN ) such that all of the subsequent terms are within ε of l. The fact that this can

13
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be done for every convergent sequence turns out to be the defining property of convergence, which
we state formally in Definition 1.

Definition 4.1. A sequence s is said to converge to a real number l provided that for every rational
number ε > 0, there exists some integer N such that |sn − l| < ε for all n > N .

In the case that a sequence s converges to a real number l, we often say that l is the limit of s,
sometimes written as

lim
n→∞

sn = l.

Proving Convergence

Consider the sequence s defined by sn = 1/n.

Question 4.1. Does s converge to a real number? If so, to which real number does s converge?

Question 4.2. Let l be the limit of s that you found in Question 1, and let ε = 1/2. Find an integer
N such that |sn − l| < ε for all n > N , or explain why no such N exists.

Question 4.3. Repeat Question 2 for each of the following values of ε:

(a) ε = 1/7

(b) ε = .05410728392

(c) ε = π/100

Question 4.4. Generalize your work from Questions 2 and 3 by writing down a formula for N in
terms of ε. In other words, given an arbitrary ε > 0, find a formula for a corresponding Nε such that
|sn − l| < ε for all n > Nε.

Disproving Convergence

Now consider the sequence t defined by tn = 1
4
(−1)n.

Question 4.5. Does t converge to a real number? If so, to which real number does t converge?

Question 4.6. Consider the following “proof” that t converges to 0:

Let ε = 1/2, and let N = 0. Since tn = −1/4 for all odd n and tn = 1/4 for all even n,
it follows that |tn − 0| = 1/4 < ε for all n > N . Thus, tn converges to 0.

Is this proof correct? Why or why not? Give a specific, precise, and thorough answer.

Question 4.7. Let ε = 1/8. Is there an integer N such that |tn − 0| < ε for all n > N? Why or why
not?

Copyright c©2007
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Question 4.8. Again, let ε = 1/8. Is there a real number l for which there would exist an integer N
such that |tn − l| < ε for all n > N . Clearly explain your answer.

Question 4.9. Suppose that we had defined t so that tn = 1
n
(−1)n. Would t have converged to a real

number in this case? Use Definition 4.1 to thoroughly justify your answer.

Exercises

(1) The definition of convergence of a sequence s is sometimes written in symbolic form as follows:

(∃l ∈ R)(∀ε > 0)(∃N ∈ Z)(∀n > N)(|sn − l| < ε)

(a) Use this symbolic form to write a negation of the definition of convergence. In other words,
state, both symbolically and in words, what it means for a sequence s not to converge.

(b) Describe how your negation from part (a) suggests a strategy for proving that a sequence
does not converge. Be specific and precise.

(2) Reconsider the sequence from Questions 2.1 through 2.3 in Activity 2. Use Definition 4.1 to prove
or disprove that the sequence converges.

(3) Reconsider each of the sequences from Question 2.4 in Activity 2, using Definition 4.1 to prove
or disprove the convergence of each sequence.

(4) Revisit Exercise 1 from Activity 2, this time using Definition 4.1 to formally prove your answer.

(5) Revisit Exercise 4 from Activity 2, this time using Definition 4.1 to formally prove your answer.

(6) Revisit Exercise 8 from Activity 2, this time using Definition 4.1 to formally prove your answer.

(7) Let s be a sequence that converges to l. Is the following statement always, sometimes, or never
true?

There exists an integer N such that for every rational number ε > 0, |sn − l| < ε for
all n > N .

Give a proof and/or counterexample to justify your answer.

(8) Using the same format as Definition 4.1, define in a precise way what it should mean for a se-
quence s to have an infinite limit. In other words, define

lim
n→∞

sn =∞,

and give an example (with proof) of a sequence that satisfies your definition.

15 Copyright c©2007
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(9) Prove or disprove: If both s and t converge, then the sequence z defined by

zn = sn + tn

must also converge.

(10) Let s and t be sequences, and let z be the sequence defined by

zn = sn + tn.

Prove or disprove each of the following statements:

(a) If z converges, then both s and t must converge.

(b) If z converges, then at least one of s and t must converge.

(c) If z converges and s does not converge, then t must not converge.

(11) Prove or disprove: If a sequence converges, then its limit is unique.

(12) Prove the aptly named Squeeze Theorem (or, alternately, the Sandwich Theorem):

Theorem 4.1 (Squeeze Theorem). Let a, b, and c be sequences, and suppose that both a and c

converge to the same number, l. Suppose also that there exists an integer N such that an ≤ bn ≤ cn

for all n > N . Then b converges to l also.

(13) Determine the value of each of the following limits, using the Squeeze Theorem to prove each of
your answers.

(a) lim
n→∞

sin(n)

n

Copyright c©2007
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Activity 5

Cauchy Sequences and Convergence

Focus Questions

• What is a Cauchy sequence?

• What is the relationship between Cauchy sequences and conver-
gence?

Introduction

In previous activities, we have discussed the difference between sequences that accumulate and se-
quences that converge. In this activity, we will define accumulation in a more formal manner. Doing
so will allow us to show that in the real numbers, accumulation and convergence are actually equiva-
lent.

Cauchy Sequences

In our prior investigations, we have been particularly interested in sequences whose terms can even-
tually be made as close to each other as we want them to be. We have called such sequences accumu-
lating sequences, a term that seems to intuitively describe the behavior of sequences whose elements
“bunch up” by getting closer and closer to each other.

17
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Historically, however, the notion of accumu-
lation is often attributed to Augustin Cauchy,
a 19th century French mathematician who is
known for his contributions to many areas of
mathematics, including real and complex anal-
ysis. Thus, from this point forward, we will
follow tradition and refer to accumulating se-
quences as Cauchy sequences. Our formal def-
inition of a Cauchy sequence, which is stated
below, is similar in style to our definition of
convergence from the previous activity.

Definition 5.1. A sequence s is said to be a Cauchy sequence provided that for every rational number
ε > 0, there exists an integer N such that |sn − sm| < ε for all m, n > N .

Question 5.1. Clearly explain how Definition 5.1 captures the same intuitive idea as our earlier,
informal definition of an accumulating sequence.

Question 5.2. Critique the following “proof” that the sequence s defined by

sn =
n
∑

i=1

1

i
is Cauchy:

Let ε > 0 be given, and choose any positive integer N such that 1/N < ε. Then for all
n > N ,

|sn+1 − sn| =
∣

∣

∣

∣

∣

n+1
∑

i=1

1

i
−

n
∑

i=1

1

i

∣

∣

∣

∣

∣

=
1

n + 1
<

1

N
< ε.

Thus, the elements of s are getting closer to each other, and so s is a Cauchy sequence.

The Equivalence of Cauchy and Convergent

One of the most important properties of the real numbers is the fact that every Cauchy sequence of real
numbers converges to a real number. Recall that this property, often referred to as the completeness
(or, more precisely, Cauchy completeness) of the real numbers, does not hold in the rationals, where
we have already studied examples of sequences that accumulate but do not converge (to a rational
number). In light of these observations, it is significant that in the reals, every Cauchy sequence does
converge to a real number. As it turns out, the converse of this property also holds, which leads us to
the following theorem:

Theorem 5.1 (Cauchy Completeness Theorem). Let s be a sequence of real numbers. Then s

converges to a real number l if and only if s is a Cauchy sequence.

Copyright c©2007
J. Hodge & C. Wells

18



D
R

A
FT

As is the case with most biconditional (“if and only if”) statements, our proof of Theorem 1 will
have two parts – one to establish the “if” direction of the theorem and one to establish the “only if”
direction. Not surprisingly, one of these directions ends up being easier than the other. So, that is
where we will begin – with the easier, “only if” direction of the proof. In other words, we’ll show that
if a sequence s converges to a real number l, then s must be a Cauchy sequence.

It’s important to keep in mind that, throughout this proof, we’ll have to rely on our intuitive
understanding of what a real number is, since we haven’t yet formally defined the real numbers. Later
on, we’ll come back and try to fill in some of the gaps that are left as a consequence of our currently
informal approach to the real numbers.

Now let’s begin our proof. In order to proceed, we will first establish a very important (and perhaps
familiar) property of the real numbers. This property will be useful to use throughout the rest of our
investigations, both here and in subsequent activities.

Lemma 5.2 (The Triangle Inequality). For all real numbers a and b,

|a + b| ≤ |a| + |b|.

Question 5.3. Draw a picture to illustrate how the Triangle Inequality gets its name.

Question 5.4. Prove the Triangle Inequality. (Hint: Use a proof by contradiction that involves squar-
ing both sides of an inequality, remembering that |x|2 = x2 for every real number x. Or, if you prefer
a more direct approach, begin with the fact that −|x| ≤ x ≤ |x| for every real number x, including a
and b.)

Now back to our main proof. Recall that we are trying to show that if a sequence s converges to a
real number l, then s must be a Cauchy sequence.

Question 5.5. Assume that a sequence s does converge to a real number l. Is the following statement
true or false? Give a convincing argument to justify your answer.

For every rational number ε > 0, there exists an integer N such that
|sn − l| < ε/2 for all n > N .

Question 5.6. Suppose you know that for some integers m and n, |sn − l| < ε/2 and |sm − l| < ε/2.
What can you then conclude about |sn − sm|?

Question 5.7. Use your answers to Questions 5.5 and 5.6 to prove that if s converges to a real number
l, then s must be a Cauchy sequence.

Question 5.8. Looking back at your answers to Questions 5.4 through 5.7, identify all of the prop-
erties of the real numbers that you used in your proof of the “only if” direction of Theorem 1. Be
precise and thorough, including even those properties that seem obvious to you or that you have taken
for granted in the past.
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So now we are half done with our proof that the notions of accumulation and convergence are
equivalent for sequences of real numbers. But what exactly is a real number? Stay tuned, because
that is exactly the question that we will answer in our next activity. Once we have done so, we will
revisit the properties you identified in Question 5.8 and use our new definition of the real numbers to
see why these properties hold. Then, finally, we will finish the proof of Theorem 1 by establishing
the ever important “if” direction – that is, that every Cauchy sequence of real numbers converges to a
real number.

Exercises

(1) Consider the following proposition suggested by an undergraduate analysis student:

Let a be a sequence of rational numbers and let b be the sequence defined by

bn = an+1 − an

for each positive integer n. If b converges to zero, then a is a Cauchy sequence.

(a) Critique the following “proof” of this proposition:

Let ε > 0 be given. Then since b converges to zero, there exists an integer N
such that |bn−0| < ε for all n > N . Substituting, we then obtain |an+1−an| < ε
for all n > N . Now let m = n + 1. Then m,n > N , and so it follows that

|an − am| = |am − an| = |an+1 − an| < ε.

By definition, however, this means that a is Cauchy.

(b) Is the proposition true? Give a proof or counterexample to justify your answer.

(2) Prove that every Cauchy sequence of rational numbers is bounded. That is, prove that if s is a
Cauchy sequence of rational numbers, then there exists a rational number M such that |sn| < M
for all n.

(3) Suppose a sequence s satisfies the property that

|sn+1 − sn| <
1

2n

for each positive integer n. Is s necessarily a Cauchy sequence? Give a proof or counterexample
to justify your answer.

(4) A sequence s is said to be contractive provided that there exists a rational number c ∈ (0, 1) such
that

|sn+2 − sn+1| < c|sn+1 − sn|
for all sn.
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(a) Prove or disprove: Every contractive sequence is Cauchy.

(b) Prove or disprove: Every Cauchy sequence is contractive.

(c) A sequence s is said to be eventually contractive provided that there exists a rational
number c ∈ (0, 1) and an integer N such that

|sn+2 − sn+1| < c|sn+1 − sn|

for all n > N . Would either of your answers to parts (a) and (b) have been different if the
phrase eventually contractive had been used? If so, how? Prove your answers.

(5) Let s be the sequence of partial sums defined by

sn =
n
∑

k=0

1

k!

where 0! is defined to be 1. Is s Cauchy? Prove your answer.

(6) Let s be a Cauchy sequence whose elements are all nonzero. Are the following sequences always,
sometimes, or never Cauchy sequences? Give a proof and/or counterexample to justify each of
your answers.

(a) The sequence t defined by tn = s2
n.

(b) The sequence w defined by wn = 1/sn.

(c) The sequence z defined by zn =
sn+1

sn

.
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Activity 6

Definitions of the Real Numbers

Introduction

In Activity 5, we investigated Cauchy sequences of real numbers, using the Triangle Inequality to
prove one direction of the Cauchy Completeness Theorem. Our work, however, was plagued by a
rather serious flaw – we had not yet defined the real numbers, and we certainly had not proved the
properties of the real numbers that we relied on to make our arguments work.

As it turns out, defining the real numbers is not as straightforward of a task as one might expect it
to be. In this activity, we will explore several possible ways to define a “real number,” with the goal
of eventually finding the best, most precise, and most convenient definition.

Informal Definitions of “Real Number”

Consider each of the following informal definitions:

Informal Definition 6.1. A real number is a number that has a finite or infinite decimal expansion.

Informal Definition 6.2. A real number is a point on the number line.

Informal Definition 6.3. A real number is a number that is either rational or the limit of a sequence
of rational numbers.

Informal Definition 6.4. A real number is either a rational number or an irrational number, where an
irrational number is defined to be one that has an infinite, non-repeating decimal expansion.

Question 6.1. For each of Informal Definitions 6.1 – 6.4, explain how you could use that definition
to argue that

√
2 is a real number.

Question 6.2. For which of Informal Definitions 6.1 – 6.4 was it easiest to justify that
√

2 is a real
number? For which was it hardest? For which do you think that your justification was most convinc-
ing?
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Question 6.3. Discuss in general the strengths and weaknesses of each of Informal Definitions 6.1 –
6.4. Are there situations in which one definition would be easier or more convenient to use than the
others? Explain your answers in detail.
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Activity 7

What is a Real Number?

Focus Questions

• What is the formal definition of a real number?

• What does it mean for two real numbers to be equal?

• What does it mean for a real number to be positive, or to be neg-
ative?

• How can one define addition, subtraction, multiplication, and di-
vision of real numbers? What algebraic properties do these oper-
ations satisfy?

• What does it mean for one real number to be less than (or greater
than) another?

• What does it mean to say that the real numbers are complete,
and how can the formal definition of the reals be used to prove
completeness?

Introduction

In Activity 6, we considered several possible definitions of a real number. For instance, we said that
we could define a real number to be any number that has either a finite or infinite decimal expansion.
Or, we could define a real number to be a number that is either rational or the limit of a sequence of
rational numbers. In this activity, we’ll see that each of these definitions has shortcomings that can
only be resolved by adopting a more formal definition of the real numbers. We will then use Cauchy
sequences to formally define what a real number is, and we will use this formal definition to prove
many of the familiar properties of the real numbers that we have taken for granted in the past.

25



D
R

A
FT

Cauchy Sequences and the Reals

In our very first activity (Calculus in Q?), we saw that Newton’s method could generate a sequence
of rational numbers whose elements got closer and closer to each other (in other words, an accumu-
lating, or Cauchy, sequence) but that did not converge to another rational number. From our previous
experiences, we thought that there should be some number that this sequence converged to. In fact,
we thought that the limit of the sequence should be exactly the number that we commonly call

√
2.

But what is
√

2? This is actually a surprisingly difficult question to answer, but let’s consider a few
possibilities:

• We could say that
√

2 = 1.414213562 · · · , but what exactly does “· · · ” signify? These three
little dots would make more sense if the first 9 digits after the decimal point just repeated
themselves over and over again, but we know from previous courses that the number we call√

2 is an irrational number, meaning that its decimal expansion is infinite and non-repeating.

• We could say that
√

2 is the positive solution to the equation x2 − 2 = 0, but how do we know
that such a solution exists? If it does, it must live in some set other than the rational numbers,
which raises another question: how can we square some unknown quantity, x, that lives in a set
we haven’t defined yet? While we’re at it, what would positive mean within the context of this
undefined set of numbers?

• Finally, we could say that
√

2 is the limit of the sequence obtained by Newton’s method in
Activity 1. But then again, how do we know that this limit actually exists? And how can we
even talk about the limit of a sequence of numbers that we know cannot converge to a rational
number, especially when we haven’t yet defined any numbers outside of the rational numbers?

Each of these seemingly intuitive definitions of
√

2 presents difficulties that cannot be resolved
unless we adopt a more formal definition of the real numbers. And so that is what we will do here.
Be forewarned, however, that the definition we will adopt is not by any means obvious. In fact,
this abstract definition might not seem at all like the picture you have in your mind of what a real
number is. But it is equivalent in some sense to the more intuitive definitions that you may be used
to. Furthermore, the formality of the definition we will adopt will enable us to place our study of
the real numbers on a mathematically rigorous foundation, and it will even help us to give good,
mathematically precise definitions of familiar numbers like

√
2.

So now, without further ado, our formal definition of a real number:

Definition 7.1. A real number is a Cauchy sequence of rational numbers.

There are several aspects of this definition that we will need to explore in more detail, but let’s
begin with the most basic of these: how does this definition of a real number mesh with the other,
more intuitive notions that we have considered in the past?

Question 7.1. Each of the following sequences are Cauchy sequences of rational numbers and are
thus real numbers according to Definition 7.1. For each sequence, state the common numerical name
(for instance,

√
5 or π or 15) of the real number defined by the sequence.
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(a) 1, 1, 1, . . .

(b) sn =
1− 2n

3n + 4

(c) x0 = 7/4; xn+1 = xn − 1
2
(xn − 3

xn

)

(d) tn =
n
∑

k=0

1

k!

Question 7.2. For each of the following real numbers, find a Cauchy sequence of rational numbers
that defines the number. State your sequences precisely, as in Question 7.1.

(a) 0

(b) −
√

5 (Hint: Use Newton’s Method)

(c)
π

4
(Hint: The Taylor series for f(x) = arctan(x) centered at x = 0 is

∞
∑

k=0

(−1)k x2k+1

2k + 1
.)

Now that we have defined what a real number is, there are several natural questions that we will
need to answer, such as:

• When are two real numbers equal?

• What does it mean for a real number to be positive or negative?

• How can we add, subtract, multiply, and divide real numbers?

• What does it mean for one real number to be larger or smaller than another?

In the next few sections, we’ll consider each of these questions in detail.

Equality of Real Numbers

Question 7.3. Divide the following rational numbers into groups of numbers that are equal to each
other:

5
3

7.9 40
5

14
6

8.0 1.6

As we were reminded in Question 7.3, any given rational number can be expressed in a variety
of ways. Though these various representations are technically different, we consider them to be
equivalent because they all correspond to the exact same numerical quantity. In the same way, we will
consider different sequence representations of real numbers to be equivalent if they correspond to the
same numerical quantity. We’ll define this equivalence more precisely in just a moment, but let’s first
explore the intuition behind when two real numbers should be considered the same.
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Question 7.4. Divide the following real numbers into groups of numbers that are equal to each other:

• 1, 3
2
, 1, 4

3
, 1, 5

4
, 1, . . .

• s0 = −2.9; sn+1 = sn −
s2

n − 6sn + 4

2sn − 6

• s0 = 2.9; sn+1 = sn −
s2

n − 6sn + 4

2sn − 6

• s0 = 3.1; sn+1 = sn −
s2

n − 6sn + 4

2sn − 6

• sn =
n
∑

k=1

1

k2

• sn =
n
∑

k=1

(−1)k 1

k

• sn =
8

3

(

n
∑

k=0

(−1)k

2k + 1

)2

• sn = 0.4 +
(−1)n + 3n

5n

In Question 7.4, you probably said that two real numbers x and y should be considered equal if
the elements of the Cauchy sequences that define x and y seem to be approaching the same limit. One
way to make this definition more precise is the following:

Definition 7.2. Let x and y be the real numbers defined by the Cauchy sequences x and y, respec-
tively. Then x and y are said to be equal if the sequence d defined by dn = xn − yn converges to
zero.1

x = y ←→ lim
n→∞

(xn − yn) = 0.

1As we have seen, it is possible for two different Cauchy sequences to define the same real number. Thus, when we
say that two real numbers x and y are equal, we mean that x and y are equal when viewed as real numbers, even though
the Cauchy sequences that define them may not be equal as sequences. The notion of equality, like many other concepts
in mathematics, is dependent on the lens through which the mathematical objects in question are viewed. As an example,
recall that the rational numbers can be defined as the set of all ordered pairs of integers (with the restriction that the second
coordinate is nonzero). Under this definition, the ordered pairs (1, 2) and (3, 6) would be considered equal as rational
numbers (since 1/2 = 3/6), but would not be considered equal when viewed simply as ordered pairs of integers (since
1 6= 3 and 2 6= 6). We could avoid some of this confusion by defining the rational numbers to be equivalence classes
of ordered pairs of integers, with equivalence defined in a natural way. Similarly, we could define the real numbers to
be equivalence classes of Cauchy sequences of rational numbers; in fact, several other analysis texts do exactly this. We
believe, however, that the level of rigor gained from this more formal approach is not sufficient to justify the additional
layer of complexity (from both a conceptual and a notational standpoint) required by it. For this reason, we have chosen
to avoid the language of equivalence classes and instead discuss equality in more intuitive terms.
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Question 7.5. Use Definition 7.2 along with the ε-N definition of covergence to prove that the real
numbers defined by the sequences in the first and last bullet points of Question 7.4 are equal.

Positive and Negative Real Numbers

Question 7.6. For each of the following sequences, decide whether the real number defined by the
sequence is positive, negative, or zero. Give a convincing argument to justify each of your answers.

(a) sn =
1

n

(b) tn =
(−1)n

n

(c) xn =
10− n

2n− 5

(d) yn =
1

5
− 2

3n

Question 7.6 brings to light several nuances of our definition of a real number, each of which
must be taken into consideration before we precisely define what it means for a real number to be
positive or negative. Perhaps the most obvious definition of a positive real number would be one for
which the elements of the defining Cauchy sequence are all positive. But we have already observed
two difficulties with this definition. First, it is possible for the elements of a sequence to start out
negative and eventually end up positive. Thus, any definition we adopt will somehow need to allow
for sequences that are eventually positive or negative. Also, as we’ve seen, it is possible for sequences
whose elements are all positive (or all negative) to still converge to zero. So, for a sequence to be
considered positive, what we really need is for the terms of the sequence to be eventually positive and
eventually separated from zero by some nonzero distance. Definition 7.3 incorporates both of these
necessary features.

Definition 7.3. Let x be the real number defined by the sequence x. Then:

• x is said to be positive if there exists a rational number α > 0 and an integer N such that xn > α
for all n > N .

• x is said to be negative if there exists a rational number α < 0 and an integer N such that
xn < α for all n > N .

Question 7.7. Use Definition 7.3 to prove your answers to Question 7.6.

You may have noticed that we left out what it means for a number to be zero in Definition 7.3, but
that’s only because Definition 7.2 already covers this case. So we’ve taken care of everything, right
– positive, negative, and zero? Well, as it turns out, things are not quite as simple as we might want
them to be.
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Since you first learned about real numbers, you have probably taken for granted the fact that every
real number is either positive, negative, or zero. But this fact, although it seems so obvious and
although it is in fact true, is not automatic or even a simple consequence of our definitions of positive,
negative, and zero. In fact, it takes a bit of effort to prove, and you will do just that as an exercise at
the end of this activity.

Operations on Real Numbers

Now that we’ve defined what a real number is, we need to learn how to perform operations, such as
addition and multiplication, on real numbers. Because of the way we have defined the real numbers,
all of this boils down to defining how to add, subtract, multiply, and divide Cauchy sequences. In the
next few questions, we’ll define these operations in the most natural and obvious way possible. We’ll
then investigate some of the conditions that must hold in order for our operations to work the way we
want them to.

Question 7.8. Let s and t be the sequences defined by

sn = 2 +

(

−1

2

)n

and tn =
1

n
,

respectively. Defining addition, subtraction, multiplication, and division of sequences in the way that
seems most natural to you, find a formula for the elements of the sequences s + t, s − t, s · t, and
s÷ t. Will all of these resulting sequences define real numbers? Why or why not?

Question 7.9. Let s and t be Cauchy sequences of rational numbers. Define s+t, s−t, s·t, and s÷t

in the most natural way you can think of. Under these definitions, are there any conditions on s and
t (other than both s and t being Cauchy) that must hold in order for these operations to make sense?
Are there any conditions that must hold in order for these operations to be guaranteed to always result
in another Cauchy sequence?

By defining how to add, subtract, multiply, and divide Cauchy sequences of rational numbers in
Question 7.9, we have actually defined how to add, subtract, multiply, and divide real numbers. Under
the most natural way of defining these operations (which you likely came up with in Question 7.9),
the real numbers turn out to be a field, which means that they satisfy all of the following familiar
properties:

• Closure under addition and multiplication: For all x, y ∈ R, x + y ∈ R and x · y ∈ R.

• Associativity of addition: For all x, y, z ∈ R, (x + y) + z = x + (y + z).

• Commutativity of addition: For all x, y ∈ R, x + y = y + x.

• Existence of an additive identity: There exists a real number e+ such that for all x ∈ R,
x + e+ = e+ + x = x.
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• Existence of additive inverses: For all x ∈ R, there exists y ∈ R such that x+y = y+x = e+.

• Associativity of multiplication: For all x, y, z ∈ R, (x · y) · z = x · (y · z).

• Commutativity of multiplication: For all x, y ∈ R, x · y = y · x.

• Existence of a multiplicative identity: There exists a real number e× such that for all x ∈ R,
x · e× = e× · x = x.

• Existence of multiplicative inverses: For all nonzero x ∈ R, there exists y ∈ R such that
x · y = y · x = e×.

• Distribution of multiplication over addition: For all x, y, z ∈ R,
x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z.

You will prove many of these properties in the exercises at the end of the activity. For now,
however, we’ll proceed with our investigations of the real numbers by using the operations we just
defined, together with our notions of positive and negative, to define what it means for one real number
to be larger or smaller than another.

Ordering the Real Numbers

Fill in the blanks to complete the following definition in a way that is consistent with your previous
understanding of the “less than” and “greater than” relations.

Definition 7.4. Let x and y be real numbers. Then:

• x is said to be less than y, denoted x < y, provided that x− y is .

• x is said to be greater than y, denoted x > y, provided that x− y is .

Question 7.10. Use your answer to Question 7.2, part (c), along with the definitions of positive,
subtraction, and less than, to prove that π/4 < 1.

Question 7.11. Use Definition 7.4 and the other properties we have developed in this activity to write
a rigorous proof of the Triangle Inequality. Thoroughly justify each step of your proof using only the
properties of the real numbers that we have stated or proved in this activity.2

2Note that absolute value is defined for real numbers in the exact same way that it is defined for rational numbers; that
is, |x| = x if x is positive or zero, and |x| = −x if x is negative.
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Completeness of the Real Numbers

In this section, we will finally arrive at the final destination of our formal study of the definition of the
real numbers. Recall that in Activity 5 (Cauchy Sequences and Convergence), we showed that every
convergent sequence of real numbers is also a Cauchy sequence. Here, we will show that the converse
of this statement is also true. That is, we will show that every Cauchy sequence of real numbers must
converge to a real number.

In order to do so, we will need to following lemma:

Lemma 7.1. For every real number x and every rational number ε > 0, there exists a rational number
q such that |x− q| < ε.

Question 7.12. Prove Lemma 7.1. (Hint: Argue that if x is a Cauchy sequence of rational numbers,
then for every rational ε > 0, there exists an integer k such that |xk − xn| < ε/2 for all n ≥ k. Let
q = xk, and argue that |x− q| < ε.)

Now that we have established Lemma 7.1, we can move on to our proof that every Cauchy se-
quence of real numbers converges to a real number. Question 7.13 suggests one possible strategy for
this proof.

Question 7.13. Let x be a Cauchy sequence of real numbers.

(a) For every positive integer n, choose a rational number qn such that
|xn − qn| < 1/n. Use Lemma 7.1 to explain why such a number exists.

(b) Show that the sequence q defined by the qn from part (a) is a Cauchy sequence of rational
numbers. Deduce then that q defines a real number, say L. (Hint: Note that

|qm − qn| = |qm − xm + xm − xn + xn − qn|.
Use this identity, along with part (a), the Triangle Inequality, and the fact that x is a Cauchy
sequence.)

(c) Show that the sequence x converges to L. (Hint: The fact that L is defined by the sequence q

implies that |qn − L| → 0 as n→∞. Use this fact, along with part (a), the identity

|xn − L| = |xn − qn + qn − L|,
and the Triangle Inequality.)

Revisiting
√

2

Recall that, at the beginning of this activity, we considered three possible ways of defining
√

2, each
of which revealed inadequacies in our informal definitions of the real numbers. To conclude our inves-
tigations here, let’s revisit the problem of defining

√
2, this time using our formal, Cauchy sequence

definition of a real number. Doing so will demonstrate the necessity of using such a formal definition,
for it will allow us to conclusively argue that

√
2 is in fact a real number, something that we could not

have done with our less formal definitions.
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Question 7.14. Use your work from this activity to prove that there is a positive real number x such
that x2 − 2 = 0. (Hint: Use Newton’s method to define an appropriate Cauchy sequence of rational
numbers. It might be helpful to look back at Activity 1.)

One Final Note

In Definitions 4.1 and 5.1, we let ε denote an arbitrary rational rational number. In other texts, how-
ever, these definitions are usually stated using real values of ε. As it turns out, Lemma 7.1 implies
that the two different formulations are completely equivalent. Now that we have formally defined
and studied the real numbers, we will from this point forward use the more traditional definitions of
convergence and Cauchy (i.e., those that allow both rational and irrational values of ε).

Exercises

Many of the exercises that follow establish properties that we stated, but did not prove, throughout
this activity. The proof of the Cauchy Completeness Theorem relies on several of these properties.
Thus, to avoid circular reasoning, it would be best to complete the exercises below without appealing
to the Cauchy Completeness Theorem.

(1) Prove that the equals relation on the real numbers is an equivalence relation. In other words, prove
that:

• = is reflexive: For every x ∈ R, x = x.

• = is symmetric: For all x, y ∈ R, if x = y, then y = x.

• = is transitive: For all x, y, z ∈ R, if x = y and y = z, then x = z.

(2) Prove that every real number is either positive, negative, or zero. (Hint: Prove that if x is a real
number and x 6= 0, then x is either positive or negative.)

(3) Prove that a real number cannot be. . .

(a) . . . both positive and negative.

(b) . . . both positive and zero.

(c) . . . both negative and zero.

(4) Prove that for all x, y ∈ R, either x < y, x = y, or x > y. (Hint: Use Exercise 2.)

(5) Prove that, for all x, y ∈ R, it cannot be the case that. . .

(a) . . . x < y and x > y.
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(b) . . . x = y and x > y.

(c) . . . x = y and x < y.

(6) Let x ∈ R. Prove that x is negative if and only if the additive inverse of x is positive.

(7) Let x, y ∈ R. Prove that if x and y are both positive, then x + y and x · y are both positive.

(8) Prove that the real numbers are closed under addition. That is, prove that if x and y are real
numbers, then x + y is also a real number.

(9) Prove that the real numbers are closed under multiplication. (Hint: You will need to use Exercise
2 from Activity 5.)

(10) Prove that addition of real numbers is well-defined. That is, prove that for all x, y, a, b ∈ R, if
x = a and y = b, then x + y = a + b.

(11) Prove that multiplication of real numbers is well-defined. That is, prove that for all x, y, a, b ∈ R,
if x = a and y = b, then x · y = a · b.

(12) Prove that addition of real numbers is associative.

(13) Prove that addition of real numbers is commutative.

(14) Prove that there exists an additive identity in the real numbers.

(15) Prove that each real number has an additive inverse in the real numbers.

(16) Prove that multiplication of real numbers is associative.

(17) Prove that multiplication of real numbers is commutative.

(18) Prove that there exists a multiplicative identity in the real numbers.

(19) Prove that a real number x has a multiplicative inverse in the real numbers if and only if x 6= 0.

(20) Prove that multiplication distributes over addition in the real numbers.

(21) Prove that for all x ∈ R, 0x = 0.

(22) Prove that the less than (<) relation on the real numbers is well-defined. That is, prove that for
all x, y, a, b ∈ R, if x = a and y = b, then x < y implies a < b.
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(23) Let ≤ be the relation on the real numbers defined in the usual way. (That is, x ≤ y if and only if
x < y or x = y.) Show that ≤ is a partial order on R. In other words, show that:

• ≤ is reflexive: For all x ∈ R, x ≤ x.

• ≤ is transitive: For all x, y, z ∈ R, if x ≤ y and y ≤ z, then x ≤ z.

• ≤ is antisymmetric: For all x, y ∈ R, if x ≤ y and y ≤ x, then x = y.

(24) Let x be a sequence of positive real numbers, and suppose that x converges to a real number L.
Must L ≥ 0? Must L > 0? Prove your answers.

(25) (a) Prove that for any real numbers a and b with b > a, there is another real number between a
and b.

(b) Use part (a) to deduce that for any real numbers a and b with b > a, there are infinitely many
real numbers between a and b.

(26) Prove that for any real numbers a and b with b > a, there are infinitely many rational numbers
between a and b.
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Activity 8

Boundedness, Monotonicity, and
Sub-sequences

Focus Questions

• What does it mean for a sequence to be bounded above and/or
bounded below?

• What does it mean for a sequence to be monotone?

• What does it mean for one sequence to be a sub-sequence of an-
other?

Introduction

In Activity 7, we proved that every Cauchy sequence of real numbers must converge to a real number.
Thus, we discovered that one way to prove that a sequence of real numbers is convergent is to prove
that it is Cauchy. In this activity, we will explore several other important properties of sequences,
each of which can play an important role in proving or disproving the convergence of sequences of
real numbers.

Boundedness and Monotonicity

Question 8.1. Use the sequences from the Menu of Sequences in Appendix A to answer each of the
following questions.

(a) Which of the sequences are bounded above? That is, for which of the sequences is there a
real number u (called an upper bound) such that u is at least as large as every element of the
sequence?
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(b) Which of the sequences are bounded below? That is, for which of the sequences is there a
real number l (called a lower bound) such that l is at least as small as every element of the
sequence?

(c) Which of the sequences are never increasing?1 That is, which sequences x satisfy the condi-
tion that xn+1 ≤ xn for all n?

(d) Which of the sequences are never decreasing? That is, which sequences x satisfy the condi-
tion that, xn+1 ≥ xn for all n?

(e) Decide whether each of the sequences on the menu converge or does not converge. You do not
need to give formal proofs of your answers, but you should give a brief justification for each.

(f) We often say that a sequence is monotone if it is either never increasing or never decreasing.
Do your answers to parts (a)–(e) suggest any results about the convergence of sequences that
are bounded and/or monotone? Make as many conjectures as you can.

Sub-sequences

Let s be the sequence (of real numbers) defined by

sn =

{

1/n, if n is odd

7 + 1/n, if n is even
,

and consider the sequence t defined by

t1 = 1

t2 = 7 + 1/4

t3 = 1/7

t4 = 7 + 1/10

...

1Note that many texts use the terms non-increasing and non-decreasing instead of never increasing and never decreas-
ing.
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Question 8.2. Describe in a mathematically precise way the relationship between s and t.

When two sequences x and y have a relationship like that of sequences s and t from the previous
example, we often say that y is a sub-sequence of x. In other words:

Informal Definition 8.1. If x is a sequence and y is a sequence that contains only elements from x

in the same order as they appear in x, then y is said to be a sub-sequence of x.

Or, capturing the same idea in a slightly more formal manner, we could say the following:

Definition 8.1. Let x and y be a sequences of real numbers. Then y is said to be a sub-sequence of
x provided that there exists a sequence k of integers such that k1 < k2 < k3 < · · · and yn = xkn

for
all n.

Question 8.3. Consider once again the sequences s and t defined on the previous page.

(a) Is s a convergent sequence? Does s have a sub-sequence or sub-sequences that are conver-
gent?

(b) Is t a convergent sequence? Does t have a sub-sequence or sub-sequences that are convergent?

(c) Let z be any sequence. Does z necessarily have at least one convergent sub-sequence? Give
a proof or counterexample to justify your answer.

(d) Let z be a never increasing sequence. Must z be convergent? Must z have a convergent
sub-sequence? Give a proof or counterexample to justify each of your answers.

(e) Suppose that in parts (c) and (d), we had also required z to be bounded above and below. How,
if at all, would this requirement have changed your answers?
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Activity 9

The Bolzano-Weierstrass Theorem

Focus Questions

• What does the Bolzano-Weierstrass Theorem say about bounded
sequences?

• What is the supremum of a set of real numbers? What does
the Dedekind Completeness Theorem say about the existence of
suprema?

• How can the Dedekind Completeness Theorem be used to prove
the Bolzano-Weierstrass Theorem?

Introduction

In our last activity, we explored the properties of boundedness and monotonicity for sequences of real
numbers. In this activity, we will prove the Bolzano-Weierstrass Theorem, an important and useful
result about bounded sequences. Along the way, we will discover several other important theorems
about sequences, some of which you may have conjectured yourself during our initial investigations
into boundedness, monotonicity, and sub-sequences.

The Main Result and Our Proof Strategy

The main result that we will prove in this activity is the following theorem, named after Bernard
Placidus Johann Nepomuk Bolzano, an Austrian mathematician, priest, and philosopher, and Karl
Theodor Wilhelm Weierstrass, a German mathematician who has been called the “founder of modern
analysis.”
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                        (1781-1848)

Karl Theodor Wilhelm Weierstrass

                 (1815-1897) 

Theorem 9.1 (Bolzano-Weierstrass Theorem). Every bounded sequence (that is, every sequence
that is both bounded above and bounded below) has a convergent sub-sequence.

We will prove the Bolzano-Weierstrass Theorem through a sequence of intermediate results, many
of which are important and significant by themselves. Our general strategy will be to first prove that
every bounded, monotone sequence must converge. We will then argue that every bounded sequence
contains a sub-subsequence that is monotone (and of course bounded), and thus convergent.

Bounded and Monotone Sequences

The first result in our journey toward the Bolzano-Weierstrass Theorem is the following lemma:

Lemma 9.2. If x is a sequence of real numbers that is both bounded and monotone, then x converges.

When thinking about Lemma 9.2, it is important to keep in mind that a sequence is bounded if
and only if it is bounded above and bounded below. Also recall that a sequence is monotone if and
only if it is either never increasing or never decreasing.

Question 9.1. Suppose that x is a never decreasing sequence, and suppose also that x does not
converge.

(a) Prove that for some ε > 0, there exists a sub-sequence xk1
, xk2

, xk3
, · · · of x such that xkn+1

>
xkn

+ ε for all n. (Hint: Use the contrapositive of the Cauchy Completeness Theorem, being
careful to correctly negate the definition of a Cauchy sequence.)

(b) Explain how your proof from part (a) implies that x is not bounded.

(c) Explain how your proof from part (a) could be modified to account for the case that x is never
increasing.

(d) Explain how your work in parts (a)–(c) establishes Lemma 9.2.

With Lemma 9.2 in hand, let’s now move on to the next step in our proof of the Bolzano-
Weierstrass Theorem. To complete the proof, we will first need to consider the notion of the least
upper bound of a set of real numbers.
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Least Upper Bounds and Dedekind Completeness

Question 9.2. Consider the set S of real numbers defined by

S = {x ∈ R : ln(x) < 1}.

(a) Find at least three different upper bounds for S.

(b) Does S have a least upper bound? That is, is there a real number u such that (i) u is an upper
bound for S (that is, u ≥ x for all x ∈ S); and (ii) if u′ is an upper bound for S, then u′ ≥ u?

The notion of the least upper bound, or supremum, of a set of real numbers is an important idea
that is closely related to our earlier investigations of Cauchy sequences and completeness. We will
formally define the supremum of a set as follows:

Definition 9.1. Let S be a set of real numbers. The supremum of S, denoted sup(S), is the smallest
real number that is an upper bound for S.

The more detailed version of Definition 9.1 is exactly the one given in part (b) of Question 9.2
above. That is, the supremum of S is a real number u such that (i) u is an upper bound for S (that is,
u ≥ x for all x ∈ S); and (ii) if u′ is an upper bound for S, then u′ ≥ u. Note that the infimum, or
greatest lower bound, of a set of real numbers can be defined in a completely analogous manner.

It’s important to note that by defining the supremum of S to be “the smallest” real number that is an
upper bound for S, we are implicitly assuming two things: first, that there is a smallest upper bound,
and second, that this smallest upper bound is unique. (Using “the” instead of “a” suggests uniqueness.)
We should not take either of these facts for granted. In fact, the reason we are discussing least upper
bounds right now is because their existence will allow us to construct the bounded, monotone sub-
sequence that we need to complete the proof of the Bolzano-Weierstrass Theorem. With that in mind,
our next step will be to prove the following existence theorem, leaving the uniqueness argument as an
exercise.

Theorem 9.3 (Dedekind Completeness Theorem). Every nonempty set of real numbers that is
bounded above has a least upper bound.

Question 9.3. Give an example to show that the assumption of boundedness is an essential part of
Theorem 9.3.
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                 (1831-1916) 

Theorem 9.3 is named after Julius Wilhelm
Richard Dedekind, a German mathematician
who is most widely known for his approach to
the construction of the real numbers using sets
called Dedekind cuts. This approach is differ-
ent, but ultimately equivalent, to our approach
using Cauchy sequences. And just as our ap-
proach led to the Cauchy Completeness Theo-
rem (which, as you will recall, states that every
Cauchy sequence of real numbers converges to
a real number), Dedekind’s approach leads to a
similar notion of completeness, one that turns
out to be logically equivalent to Cauchy com-
pleteness.

For now, we will prove only the direction of this equivalence that is necessary in order to finish our
proof of the Bolzano-Weierstrass Theorem. That is, we will use the Cauchy Completeness Theorem
(which we have already proved) to prove the Dedekind Completeness Theorem. The corresponding
reverse implication is given as an exercise at the end of this activity.

In order to prove the Dedekind Completeness Theorem, we will need one additional lemma:

Lemma 9.4. Let x be a sequence of real numbers, and suppose that x converges to a real number L.
Then every sub-sequence of x must also converge to L.

Question 9.4. Prove Lemma 9.4. (Hint: Begin by choosing an arbitrary sub-sequence y of x. Then
use the fact that x converges to L to show that y must also converge to L. This latter step can be
completed using either a direct proof or a proof by contradiction.)

To prove the Dedekind Completeness Theorem, we will begin by letting S be any nonempty set
of real numbers that is bounded above. We will then construct a Cauchy sequence that converges to a
supremum for S in the following manner: let r1 be an upper bound for S, let s1 be any element of S,
and let a1 = r1+s1

2
. Define the sequences r, s, and a recursively as follows:

• If an is not an upper bound for S, then choose sn+1 to be any element of S that is greater than
an, and let rn+1 = rn.

• If an is an upper bound for S, then let rn+1 = an and sn+1 = sn.

• In either of the above cases, let an = rn+sn

2
. (In other words, let an be the midpoint, or average,

of rn and sn.)

Question 9.5. Let r, s, and a be a defined above.
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(a) Use Lemma 9.2 to prove that both r and s converge.

(b) Use part (a) to deduce that the sequence a also converges.

(c) Suppose that r is eventually constant; that is, suppose that for some integer N and some real
number L, rn = L for all n > N . Prove that, in this case, both r and s must converge to L,
and that L must be a least upper bound for S.

(d) Suppose that r is not eventually constant. Prove that, in this case, both r and s must converge
to the same limit. (Hint: Prove that both r and s must contain a subsequence of a. Then use
Lemma 9.4.)

(e) Let u = lim
n→∞

rn = lim
n→∞

sn. Prove that u is an upper bound for S.

(f) Prove that if u′ < u, then u′ is not an upper bound for S. (Hint: Use the fact that s converges
to u to find an element x ∈ S such that u′ < x ≤ u.) Deduce that u is a least upper bound for
S.

Completing Our Proof

Now that we have established the Dedekind Completeness Theorem, we are finally able to complete
our proof of the Bolzano-Weierstrass Theorem. Recall that we are trying to show that every bounded
sequence of real numbers has a convergent sub-sequence. Thus, let x be any bounded sequence, and
define the set S as follows:

S = {z ∈ R : finitely many elements of x are less than z}

Question 9.6. Let x and S be as defined above.

(a) Argue that S is nonempty and bounded above, and thus S has a least upper bound, say u.

(b) Suppose u ∈ S. Prove that, in this case, there must exist a sub-sequence of x that converges
to u. (Hint: Begin by showing that for every ε > 0, there exist infinitely many elements of x

between u and u + ε. Then choose successively smaller values of ε.)

(c) Suppose u /∈ S. Prove that, in this case, there must also exist a sub-sequence of x that
converges to u. (Hint: In a manner similar to part (b), begin by showing that for every ε > 0,
there exist infinitely many elements of x between u− ε and u.)

(d) Explain how your work in parts (a)–(c) establishes the Bolzano-Weierstrass Theorem.

Exercises

(1) Prove that the supremum of a set of real numbers is unique.
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(2) Use the Dedekind Completeness Theorem to prove that every Cauchy sequence of real numbers
converges to a real number. Deduce that Dedekind completeness and Cauchy completeness are
equivalent properties of the real numbers.

(3) Prove that the Bolzano-Weierstrass theorem implies Lemma 9.2
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Activity 10

Preserving Convergence

Focus Questions

• What does it mean for a function to preserve convergence?

• What types of functions preserve convergence?

One way of thinking about mathematics is as the study of mathematical objects and the functions
that preserve certain features of those objects. For example, in linear algebra, linear transformations
preserve linear combinations of vectors in vector spaces. In abstract algebra, homomorphisms pre-
serve operations on elements of rings (or groups). In this activity, we will investigate what type of
functions preserve the convergence of sequences of real numbers.

For the following definitions, let D ⊆ R, and let f : D → R be a function.

Definition 10.1. Let x be a sequence of real numbers, all of which are elements of D. Then we define
the image of x under f , denoted f(x), to be the sequence y defined by

yn = f(xn)

for all n.

Definition 10.2. Let x be a sequence of real numbers, all of which are elements of D, and suppose
that x converges to some real number a. Then f is said to preserve the convergence of x provided
that a ∈ D and f(x) converges to f(a).
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Definition 10.3. The function f is said to preserve convergence at a if a ∈ D and f preserves the
convergence of every sequence of elements of D that converges to a.

Question 10.1. For each of the functions listed below, decide whether the function preserves conver-
gence at 0 and/or at 2.

(i)

g : x→
{

1
x
, x 6= 0

5, x = 0

(ii)

h : x→
{

cos
(

1
x

)

, x 6= 0

1, x = 0

(iii)

l : x→ x2 − 4

x− 2
, x 6= 2

(iv)

f : x→











x + 3, x 6= 0, x 6= 2

3, x = 0

4, x = 2.

(v)
m : x→ bxc 2

(vi)

n : x→
⌊

x +
1

2

⌋

(vii)

k : x→
{

x sin
(

1
x

)

, x 6= 0

0, x = 0

(viii)

p : x→
{

|x| , x 6= 2

2, x = 2

Question 10.2. Looking back at your work in Question 10.1, make a conjecture about the types of
functions that preserve convergence at a. What familiar property is sufficient to guarantee that a
function will preserve convergence?

2This is the “floor” or “round down” function. It returns an integer if the input is an integer; otherwise it returns the
integer immediately below it. So, for example, b2.35c = 2 and b−2.23c = −3.
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Activity 11

Continuity and Limits of Functions

Focus Questions

• What does it mean for a function to be continuous at a point?

• What is the precise definition of the limit of a function at a point?

• What is the relationship between continuity and the property of
preserving convergence?

Introduction

In our last activity, we learned about what it means for a function to preserve convergence at a point.
What you may have conjectured then is that a function f preserves convergence at a point a if and
only if f is continuous at a. In other words, the new notion of preserving convergence and the more
familiar notion of continuity turn out to be equivalent, a fact that we will explore and explain in this
activity. Along the way, we’ll formally define the limit of a function at a point and see how this formal
definition makes precise our intuitive ideas about limits.

Continuous Functions

You may recall the following definition of continuity from your first-semester calculus class:

Informal Definition 11.1. Let f be a function and let a be any real number. Then f is said to be
continuous at a if all three of the following conditions are satisfied:

• a is in the domain of f . (In other words, f(a) is defined.)

• lim
x→a

f(x) exists.

• lim
x→a

f(x) = f(a).
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The intuitive idea behind this definition is that for a function f to be called continuous at a point
a, the behavior of f near a should be similar to the behavior of f at a. As you can see, we can use
limits to make this intuitive idea more formal. However, while we have formally defined what the
limit of a sequence of real numbers is, we haven’t yet formally defined the limit of a function at a
point. To do so, we’ll start with a less formal definition, similar to our informal definition of the limit
of a sequence.

Limits of Functions

Informal Definition 11.2. Let f be a function and let a be any real number. We say that the limit of
f(x) as x approaches a is equal to L, denoted

lim
x→a

f(x) = L,

provided that f(x) can be made arbitrarily close to L (as close to L as we want) by choosing x
sufficiently close (close enough) to, but not equal to, a.

Question 11.1. Let f(x) = 7x− 4.

(a) Find a value of L for which lim
x→1

f(x) = L.

(b) Suppose you wanted f(x) to be within a distance of 0.1 from the value of L you found in part
(a). How close to 1 would x need to be in order to make this happen?

(c) Suppose you wanted f(x) to be within a distance of 0.01 from the value of L you found in
part (a). How close to 1 would x need to be in this case?

(d) Let ε > 0 be any real number. How close to 1 does x need to be in order to guarantee that
f(x) will be within a distance of ε from the value of L you found in part (a)?

(e) Use Informal Definition 11.2 to explain why lim
x→1

f(x) 6= 3.01.

Question 11.1 suggests the following formal definition of the limit of a function at a point:

Definition 11.1. Let f : D → R be a function, and let a be any real number. We say that the limit of
f(x) as x approaches a is equal to L, denoted

lim
x→a

f(x) = L,

provided that for every real number ε > 0, there exists a real number δ > 0 such that for all x ∈ D,

0 < |x− a| < δ implies |f(x)− L| < ε.
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Note that Definition 11.1 can be written symbolically as follows:

(∀ε > 0)(∃δ > 0)(∀x ∈ D)(0 < |x− a| < δ −→ |f(x)− L| < ε)

Also note that if there is no real number L for which lim
x→a

f(x) = L, then we say that the limit of f(x)

at a does not exist.

Question 11.2.

(a) Explain how each of the parts of Definition 11.1 corresponds to a part of Informal Definition
11.2.

(b) Use the symbolic form of Definition 11.1 to write down its negation.

(c) Use Definition 11.1 to prove that for any real numbers a, m, and b,

lim
x→a

(mx + b) = ma + b.

(Hint: Begin by choosing an arbitrary ε > 0. Then find a corresponding δ > 0 (which should
depend on ε) so that |(mx + b)− (ma + b)| < ε whenever 0 < |x− a| < δ. )

(d) Use Definition 11.1 to prove that for any real number a, lim
x→a

x2 = a2.

(e) Let f be defined as follows:

f(x) =

{

x2 if x 6= π

9 if x = π

Does lim
x→π

f(x) exist? If so, what is the limit equal to? Use Definition 11.1 to justify your
answer.

(f) Use the negation of Definition 11.1 to prove that lim
x→1

ex 6= 3.

Back to Continuity

Now that we understand the formal definition of the limit of a function at a point, we can adopt a
similar formal definition of continuity:

Definition 11.2. Let f : D → R be a function, and let a be any real number. Then f is said to be
continuous at a provided that a ∈ D, and for every real number ε > 0, there exists a real number
δ > 0 such that for all x ∈ D,

|x− a| < δ implies |f(x)− f(a)| < ε.

If a f is continuous at every point in some set S ⊆ D, then f is said to be continuous on S. If f is
continuous at every point in its domain, then f is simply said to be continuous.
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Question 11.3.

(a) Explain how each of the parts of Definition 11.2 corresponds to a part of Informal Definition
11.1.

(b) Why does the definition of continuity use the hypothesis that |x − a| < δ instead of 0 <
|x− a| < δ, as in Definition 11.1?

(c) Look back at parts (c)–(e) of Question 11.2. In light of Definition 11.2, rephrase what you
proved in each of these parts using the language of continuity.

Continuity and Preserving Convergence

Let’s now conclude our investigations of continuity by proving the equivalence that we suggested at
the beginning of this activity, which we can now state formally as the following theorem:

Theorem 11.1. Let f be a function and let a be any real number. Then f is continuous at a if and
only if f preserves convergence at a.

Question 11.4. Prove Theorem 11.1. (Hints: For the “only if” direction, let x be any sequence that
converges to a. Use the ε-δ definition of continuity along with the ε-N definition of convergence to
show that f(x) must converge to f(a). For the “if” direction, use a proof by contrapositive. That is,
assume that f is not continuous at a. Then use the negation of Definition 11.2 to construct a sequence
x that converges to a but for which there exists an ε > 0 such that, for all n, |f(xn)− f(a)| ≥ ε.)

In closing, note that Theorem 11.1 implies that we could have taken either definition (the more
standard definition or the preserving convergence definition) as the definition of continuity. Although
these two definitions capture the idea behind continuity in different ways, they are completely equiv-
alent and can be used interchangeably.

Exercises

(1) Let f and g be functions, let a, L, and M be real numbers, and suppose that lim
x→a

f(x) = L and

lim
x→a

g(x) = M .

(a) Let c be any real number. Prove that lim
x→a

c · f(x) = c · L.

(b) Prove that lim
x→a

[f(x) + g(x)] = L + M .

(c) Deduce from parts (a) and (b) that lim
x→a

[f(x)− g(x)] = L−M .

(d) Prove that lim
x→a

[f(x) · g(x)] = L ·M .

(e) Prove that if M 6= 0, then lim
x→a

f(x)

g(x)
=

L

M
.
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(2) Let f : D → R be a function. A point a ∈ D is said to be an isolated point of D provided
that there exists some δ > 0 such that (a − δ, a + δ) ∩ D = {a}. A point a ∈ D is said to be
an accumulation point of D provided that there exists some sequence of elements of D, none of
which is equal to a, that converges to a.

(a) Prove that a is an isolated point if and only if a is not an accumulation point.

(b) Prove that if a is an accumulation point of D and lim
x→a

f(x) exists, then the limit is unique.

In other words, prove that if a is an accumulation point of D and lim
x→a

f(x) = L and

lim
x→a

f(x) = M , then L = M .

(c) Prove that if a is an isolated point of D, then for every real number L, lim
x→a

f(x) = L.

(d) Prove that if a is an isolated point of D, then f is continuous at a.

(e) Reflecting on your work in parts (a) – (d), explain why some texts require a to be an
accumulation point in the definition of lim

x→a
f(x).

(3) Write both an informal and a formal definition of each of the following different types of limits.
Assume that a and L are real numbers.

(a) lim
x→a

f(x) =∞

(b) lim
x→a

f(x) = −∞

(c) lim
x→∞

f(x) = L

(d) lim
x→∞

f(x) =∞

(4) Let a and L be a real numbers, and let f , g, and h be functions such that

• lim
x→a

f(x) =∞

• lim
x→a

g(x) = −∞

• lim
x→a

h(x) = L

Using the formal versions of the definitions from Exercise 3, find all possible values of each of
the following limits. Prove each of your answers.

(a) lim
x→a

[f(x) + g(x)]

(b) lim
x→a

[f(x)− g(x)]

(c) lim
x→a

[f(x) + h(x)]
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(d) lim
x→a

[f(x) · g(x)]

(e) lim
x→a

[f(x) · h(x)]

(f) lim
x→a

f(x)

g(x)

(5) Prove that f(x) = xn is continuous for every positive integer n. (Hint: Use the binomial theorem.)

(6) Prove that f is continuous at a if and only if a is in the domain of f and lim
h→0

[f(a + h)− f(a)] = 0.

(7) (a) Prove that f(x) = ax is continuous for every a > 0.

(b) Prove that f(x) = sin(x) is continuous.

(c) Prove that f(x) = cos(x) is continuous.

(d) Prove that f(x) = ln(x) is continuous.

(Hint: For each of the above parts, begin by using Exercise 6. Continuity of each function on
its entire domain can ultimately be proved by proving continuity at a single point.)

(8) Suppose f and g are both continuous at a.

(a) Prove that f + g and f − g are continuous at a.

(b) Prove that fg is continuous at a.

(c) Prove that if f/g is continuous at a if and only if g(a) 6= 0.

(9) Prove that if f and g are both continuous, then f◦g (the composite function defined by (f◦g)(x) =
f(g(x))) is continuous at every point a that belongs to the domain of g and for which g(a) belongs
to the domain of f .

(10) A function f is said to be uniformly continuous on a subset S of the domain of f provided that
for every ε > 0, there exists a δ > 0 such that for all x, y ∈ S,

|x− y| < δ implies |f(x)− f(y)| < ε.

A function f is said to be Lipschitz continuous (and yes, it is pronounced how it is spelled) on a
subset S of the domain of f provided that there exists a constant K (called the Lipschitz constant)
such that

|f(x)− f(y)| ≤ K|x− y|
for all x, y ∈ S.
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Use these definitions to prove or disprove each of the following implications. Then summarize
your work by stating a theorem that relates continuity, uniform continuity, and Lipschitz continu-
ity. (Hint: You can save yourself some work if you complete the various implications in just the
right order.)

(a) If f is continuous on S, then f is uniformly continuous on S.

(b) If f is continuous on S, then f is Lipschitz continuous on S.

(c) If f is uniformly continuous on S, then f is continuous on S.

(d) If f is uniformly continuous on S, then f is Lipschitz continuous on S.

(e) If f is Lipschitz continuous on S, then f is continuous on S.

(f) If f is Lipschitz continuous on S, then f is uniformly continuous on S.
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Activity 12

Two Important Theorems about Continuous
Functions

Focus Questions

• What is a closed set?

• What does the Extreme Value Theorem say about continuous
functions defined on closed and bounded sets, and what are the
main ideas behind the proof of the Extreme Value Theorem?

• What is the intermediate value property?

• What does the Intermediate Value Theorem say about continuous
functions and the intermediate value property, and what are the
main ideas behind the proof of the Intermediate Value Theorem?

Introduction

In this activity, we will continue our investigations of continuous functions by proving two very im-
portant and hopefully familiar theorems from calculus. The first of these, the Extreme Value Theorem,
provides a set of sufficient conditions for a function to attain minimum and maximum values, or ex-
trema. The second, the Intermediate Value Theorem, captures a notion that we typically associate
with continuous functions: the absence of jumps, skips, gaps, and the like.

The Extreme Value Theorem

In first-semester calculus, you learned (probably within the context of optimization problems) that
every continuous function defined on a closed and bounded interval of real numbers attains a minimum
and a maximum value on that interval. Here, we will prove a slightly more general version of this
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result, which is typically called the Extreme Value Theorem. In order to do so, we will first need to
define a few terms.

Definition 12.1. Let f : D → R be a function.

• If a is an element of D such that f(a) ≤ f(x) for all x ∈ D, then f is said to have a global
minimum at a.

• If a is an element of D such that f(a) ≥ f(x) for all x ∈ D, then f is said to have a global
maximum at a.

When we say that f has a global minimum (or maximum) on some subset S of D, we mean that f ,
with its domain restricted to S, has a global minimum (or maximum) at some point a ∈ S. Further-
more, we sometimes use the word extremum (plural extrema) as a generic term for either a minimum
or a maximum.

Note that when a function f has a global maximum at a, it must be the case that f(a) is the
supremum of the set f(D) defined as follows:

f(D) = {f(x) : x ∈ D}

Similarly, if f has a global minimum at a, then f(a) is the infimum of f(D).

Question 12.1. For each of the following functions, with the domain of each function restricted to the
specified interval, find all of the points at which the function has either a global minimum or a global
maximum.

(a) On the interval [−1, 2]: f(x) = 1
2
x3 − 2x

(b) On the interval [−2, 2]: h(x) =

{

1− e−x2

if x 6= 0

1 if x = 0

(c) On the interval (−2, 2): k(x) = 3
√

x

(d) On the interval [−1, 1]: m(x) =

{

1 + x2 if x ≤ 0

−x2 if x > 0

(e) On the interval (−∞,∞): z(x) = arctan(x)

(f) On the interval (−∞,∞): α(x) = e−x2

(x3 − x)

The next definition we will consider generalizes the notion of a closed interval of real numbers.

Definition 12.2. A set S of real numbers is said to be closed provided that S contains the limit of
every convergent sequence whose elements belong to S.
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Question 12.2. Which of the following sets of real numbers are closed? Use Definition 12.2 to justify
each of your answers.

(a) [−3, 0]

(b) (−3, 0]

(c) [−3,∞)

(d) (−3,∞)

(e) {x ∈ R : x2 ≤ 2}

(f) {x ∈ R : x2 < 2}

(g) [−1
2
, 1

2
] ∪ [−2

3
, 2

3
] ∪ [−3

4
, 3

4
] ∪ · · ·

(h) Sn = (− 1
n
, 1

n
) ∪ (1− 1

n
, 1 + 1

n
) ∪ (2− 1

n
, 2 + 1

n
) ∪ · · ·

(i) S1 ∩ S2 ∩ S3 ∩ · · · (where each Si is as defined in part (h))

As you may have conjectured, every closed interval of real numbers is a closed set. Furthermore,
every finite set of real numbers is also closed. We leave the proofs of these facts, as well as several
other facts about closed sets, as exercises.

Now that we have defined all of the necessary terms, we are ready to formally state (and prove)
the Extreme Value Theorem:

Theorem 12.1 (Extreme Value Theorem). Let f be a continuous function defined on a nonempty,
closed, and bounded set S. Then f has both a global minimum and a global maximum on S.

Question 12.3. Let f be continuous on S, where S nonempty, closed, and bounded. Follow the steps
below to prove the Extreme Value Theorem.

(a) Prove that if f(S) is bounded. (Hint: Suppose f(S) is not bounded. Use this fact to construct
a convergent sequence x whose elements belong to S and for which f(x) does not converge.)

(b) Prove that f(S) is closed.

(c) Use parts (a) and (b) to argue that f(S) has both an infimum ` and a supremum m, and that
both ` and m belong to f(S). (Hint: Construct sequences that converge to ` and m.)

(d) Use definition of f(S) to argue that there exist points a, b ∈ S such that f(a) = ` and
f(b) = m

(e) Use part (d), along with the definition of infimum and supremum, to argue that f has a global
minimum at a and a global maximum at b.

59 Copyright c©2007
J. Hodge & C. Wells



D
R

A
FT

The Intermediate Value Theorem

Another theorem you most likely studied in first-semester calculus is the Intermediate Value Theorem.
This theorem captures the very intuitive idea that the graph of any continuous function can be drawn
without lifting one’s pencil. In other words, the graphs of continuous functions do not contain any
jumps, skips, or gaps. To make this idea more precise, we first define the following property:

Definition 12.3. Let f : D → R be a function. Then f is said to satisfy the intermediate value
property provided that for all a, b ∈ D with a < b and all k between f(a) and f(b), there exists some
number c ∈ (a, b) such that f(c) = k.

Question 12.4. Which of the functions from Question 12.1 satisfy the intermediate value property,
and which do not? Give a convincing argument to justify each of your answers.

With our formal definition of the intermediate value property, the Intermediate Value Theorem can
then be stated concisely as follows:

Theorem 12.2 (Intermediate Value Theorem1). Let f be a continuous function whose domain is a
closed interval of real numbers. Then f satisfies the intermediate value property.

Question 12.5. Prove the Intermediate Value Theorem. (Hint: Let k be a number between f(a) and
f(b), and define the set S = {x ∈ [a, b] : f(x) < k}. Let c = sup(S) and argue by contradiction that
f(c) = k.)

Question 12.6. Does the converse of the Intermediate Value Theorem hold? In other words, if f
satisfies the intermediate value property, must f be continuous? Give a proof or counterexample to
justify your answer.

Exercises

(1) Prove that every closed interval (that is, every interval that contains its endpoints) is a closed set.

(2) Prove that every set that contains only isolated points is closed. Deduce that every finite set is
closed.

(3) (a) Prove that the intersection of any (possibly infinite) collection of closed sets is also closed.

(b) Prove that the union of any finite collection of closed sets is also closed.

(4) Let S be a set of real numbers. A point p ∈ S is said to be an interior point of S provided that
there exists a δ > 0 such that (p − δ, p + δ) ⊆ S. The set S is said to be an open set if every
element of S is an interior point.

1Incidentally, the Intermediate Value Theorem is often attributed to our friend Bernard Bolzano, who first stated and
proved the theorem.
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(a) Prove that a set S is open if and only if its complement is closed.

(b) Prove that the union of any (possibly infinite) collection of open sets is also open.

(c) Prove that the intersection of any finite collection of open sets is also open.

(5) Using the definition of open set from Exercise 4, prove or disprove each of the following state-
ments:

(a) Every set of real numbers is either open or closed.

(b) A set of real numbers cannot be both open and closed.

(6) Use the Intermediate Value Theorem to prove the Brouwer Fixed Point Theorem: If f : [a, b] →
S ⊆ [a, b] is a continuous function, then there exists at least one x ∈ [a, b] such that f(x) = x.
(This value of x is called a fixed point.)

(7) Use the Intermediate Value Theorem to prove that, at any point in time, there are two antipodal
points on the earth’s surface (that is, points that are on opposite ends of a diameter of the earth) at
which the temperature is exactly the same.

(8) Solve the inequality x3 − 2x2 − 5x ≥ −6, identifying each point in your solution at which you
used the Intermediate Value Theorem.
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Activity 13

Derivatives and the Mean Value Theorem

Focus Questions

• What is the precise definition of the derivative, and what does it
mean for a function to be differentiable?

• What does the Mean Value Theorem say about the relationship
between average and instantaneous rates of change?

• What are the main ideas behind the proof of the Mean Value The-
orem?

Introduction

In this activity, we will investigate one of the central objects of study in calculus: the derivative.
However, rather than revisiting all of the ideas about the derivative that are typically studied in a first-
semester calculus course, we are instead going to focus on one of the most important theorems about
derivatives, the Mean Value Theorem.

Defining the Derivative

You should recall the following definition from your first-semester calculus course:

Definition 13.1. Let f : D → R be a function and let a ∈ D. The derivative of f at a, denoted f ′(a),
is defined to be the following limit, provided that it exists:

f ′(a) = lim
h→0

f(a + h)− f(a)

h

If this limit does exist, then we say that f is differentiable at a. Otherwise, we say that f is nondiffer-
entiable at a.
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Question 13.1. Discuss Definition 13.1 with one or two of your classmates, using your collective
knowledge of first-semester calculus to write a short explanation of the intuition behind the definition
of the derivative. Some phrases you might want to include in your definition are: secant line, tangent
line, average rate of change, and instantaneous rate of change. You may also want to draw a picture
to clarify your explanation.

Definition 13.1 defines the derivative of a function at a point, but we can also talk about the
function f ′ that maps each point x to the derivative of f at x, f ′(x). Note that we sometimes use
Leibniz notation,

d

dx
f(x) or

df

dx
,

to denote this derivative function.

Question 13.2. Use the definition of the derivative to derive the power rule for positive integer powers.
That is, prove that for every positive integer n,

d

dx
xn = nxn−1.

(Hint: Use the binomial theorem.)

Question 13.3. Find a value of a for which the following function is differentiable at a:

f(x) =

{

x2 − a2 if x ≤ a

2 sin(ax) if x > a

Question 13.4. Find the exact value of

lim
h→0

cos(π + h) · 3π+h − cos(π) · 3π

h
.

(Hint: Use Definition 13.1.)

The Mean Value Theorem

One of the most important theorems about derivatives is the Mean Value Theorem, which establishes
a relationship between average and instantaneous rates of change. The formal statement of the Mean
Value Theorem is given below:

Theorem 13.1 (Mean Value Theorem). Let f be a function that is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b). Then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Question 13.5.
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(a) Draw a picture to illustrate the Mean Value Theorem. Clearly explain your picture using the
following phrases: secant line, tangent line, average rate of change, and instantaneous rate of
change. (Sound familiar?)

(b) Demonstrate how each of the hypotheses of continuity and differentiability are essential to the
statement of the Mean Value Theorem. That is, show that the conclusion of the Mean Value
Theorem can fail to hold if either of these hypotheses are not satisfied.

The Mean Value Theorem can actually be proved using the Extreme Value Theorem. However, in
order to do so, we will first need to prove a lemma about derivatives and local extrema. We’ll begin
with the following definition:

Definition 13.2. Let f : D → R be a function, and let a ∈ D. Then:

• f is said to have a local minimum at a if there exists some δ > 0 such that for all x ∈ D ∩ (x−
δ, x + δ), f(a) ≤ f(x).

• f is said to have a local maximum at a if there exists some δ > 0 such that for all x ∈ D ∩ (x−
δ, x + δ), f(a) ≥ f(x).

As we did when we talked about global minima and maxima, we will sometimes use the phrase
local extremum as a generic term for either a local minimum or a local maximum.

Question 13.6. Find all of the local extrema of the function f(x) = |xesin(x)| on the interval [−5, 5].
Which, if any, of these local extrema are global extrema?

The following lemma should be familiar to you from your first-semester calculus course:

Lemma 13.2. Let f : D → R be a function, and suppose that f has a local extremum at some point
a ∈ D. If f is differentiable at a, then f ′(a) = 0.

Question 13.7. Prove Lemma 13.2 in the case that f has a local maximum at a. (Hint: Consider the
quantities

lim
h→0−

f(a + h)− f(a)

h
and lim

h→0+

f(a + h)− f(a)

h
.

Use the fact that f has a local maximum at a to argue that one of these quantities must be nonpositive
and one must be nonnegative. Then argue that both quantities must be equal.1)

1The so-called sided limits involved in this question can be defined precisely as follows:

• lim
h→0−

f(x) = L means that for every ε > 0, there exists a δ > 0 such that for all x ∈ D,

x ∈ (a− δ, a) implies |f(x)− L| < ε.

• lim
h→0+

f(x) = L means that for every ε > 0, there exists a δ > 0 such that for all x ∈ D,

x ∈ (a, a + δ) implies |f(x)− L| < ε.

.
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With Lemma 13.2 in hand, we are now ready to prove the Mean Value Theorem. We’ll begin with
a special case known as Rolle’s Theorem:

Theorem 13.3 (Rolle’s Theorem). Let f be a function that is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b). Suppose also that f(a) = f(b). Then there exists a
point c ∈ (a, b) such that f ′(c) = 0.

Question 13.8. Use Lemma 13.2 and the Extreme Value Theorem to prove Rolle’s Theorem. (Hint:
Consider two cases based on the location within [a, b] of the global extrema guaranteed by the Extreme
Value Theorem.)

Question 13.9. Use Rolle’s Theorem to prove the Mean Value Theorem. (Hint: For any function
f that satisfies the hypotheses of the Mean Value Theorem, define a new function g that satisfies the
hypotheses of Rolle’s Theorem. If you define g in just the right way, the conclusion of the Mean Value
Theorem (applied to f ) will follow directly from the conclusion of Rolle’s Theorem (applied to g).)

Exercises

(1) Let f and g be functions. Use the definition of the derivative to prove that if both f and g are
differentiable at a point a, then:

(a) f + g is differentiable at a, and (f + g)′(a) = f ′(a) + g′(a).

(b) fg is differentiable at a, and (fg)′(a) = f ′(a)g(a)+ f(a)g′(a). (Hint: At some point, you
will need to add and subtract the same quantity.)

(2) You may recall the following theorem from your first-semester calculus course:

Theorem 13.4. If a function f is differentiable at a point a, then f is also continuous at a.

(a) Prove Theorem 13.4. (Hint: Reason by contradiction, using the fact that f is continuous
at a if and only if a is in the domain of f and lim

h→0
[f(a + h)− f(a)] = 0.)

(b) Is the converse of Theorem 13.4 true? Give a proof or counterexample to justify your
answer.

(3) (a) Prove that if f ′(x) > 0 for all x in some interval (a, b), then f is never decreasing on (a, b).

(b) Can the result from part (a) be strengthened by changing the words “never decreasing” to
“increasing?” Give a proof or counterexample to justify your answer.

(c) Is the converse of the statement from part (a) true? If so, prove it. Otherwise, give a coun-
terexample and prove a closely related true statement.

(4) Prove that if f ′(x) = 0 for all x in some interval (a, b), then f is constant on (a, b).
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(5) Is the following statement true or false?

Let f : D → R be a function, let a ∈ D, and suppose there exists δ > 0 such that f is
increasing on (a − δ, a) and decreasing on (a, a + δ). Then f has a local maximum at
a.

If it is true, prove it. Otherwise, give a counterexample and prove a closely related true statement.

(6) Prove the following theorem, known as Cauchy’s Mean Value Theorem:

Theorem 13.5 (Cauchy’s Mean Value Theorem). Let f and g be functions, and suppose that
both f and g are continuous on the closed interval [a, b] and differentiable on the open interval
(a, b). Then there exists a point c ∈ (a, b) such that

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

(Hint: As with the proof of the Mean Value Theorem, apply Rolle’s Theorem to a conveniently
defined function.)
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Activity 14

The Riemann Integral

Focus Questions

• What is the precise definition of the Reimann integral, and what
does it mean for a function to be integrable?

• What are some sufficient conditions for integrability?

• What does the Fundamental Theorem of Calculus say, and what
are the main ideas behind its proof?

Introduction

In your first-semester calculus course, you probably ended the semester by studying the Riemann
integral. In this activity, we will consider the Riemann integral once again, but this time from a more
general, theoretical perspective. By doing so, we’ll be able to fill in some of the gaps that often remain
after an introductory treatment of integration.

Defining the Integral

In order to define the Riemann integral, we will first need to consider some preliminary definitions
and results.

Definition 14.1. Let [a, b] be a closed interval of real numbers. A partition of [a, b] is a finite set
{xk}nk=0 = {x0, x1, x2, . . . , xn} of points in [a, b] such that

a = x0 < x1 < x2 < · · · < xn−2 < xn−1 < xn = b.

For any given partition of [a, b], we typically use the notation ∆k to denote the difference between
successive points in the partition, so that ∆xk = xk − xk−1. Furthermore, if Q is a partition of [a, b]
and P ⊆ Q, then we say that Q is a refinement of P .
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Definition 14.2. Let f be a bounded function whose domain contains [a, b], and let P = {xk}nk=0 be
a partition of [a, b]. For each k, define

mk = inf({f(x) : x ∈ [xk−1, xk]})

and
Mk = sup({f(x) : x ∈ [xk−1, xk]}).

A Riemann sum is any sum of the form

n
∑

k=1

f(ck)∆xk,

where ck ∈ [xk−1, xk] for each k. The lower sum of f with respect to P is the sum

LP (f) =
n
∑

k=1

mk∆xk.

The upper sum of f with respect to P is the sum

UP (f) =
n
∑

k=1

Mk∆xk.

Question 14.1. For the partition P = {0, 0.2, 0.4, . . . , 1.0} of [0, 1] and for each of the following
functions, calculate the lower sum LP (f), the upper sum UP (f), and a Riemann sum that is neither
an upper sum nor a lower sum.

(a) f(x) = 1

(b) f(x) = x2

(c) f(x) =

{

1 if x ∈ Q

0 if x /∈ Q

(d) f(x) =

{

1 if 10x ∈ Z

x2 if 10x /∈ Z

Question 14.2. Let f be a function defined on [a, b], and let P be a partition of [a, b].

(a) Prove that if f is bounded, then there exist real numbers m and M such that

m(b− a) ≤ LP (f) ≤
n
∑

k=1

f(ck)∆xk ≤ UP (f) ≤M(b− a),

where
n
∑

k=1

f(ck)∆xk is any Riemann sum for f (with respect to the partition P ).
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(b) Prove that if Q is a refinement of P , then

LP (f) ≤ LQ(f) ≤ UQ(f) ≤ UP (f).

(Hint: First consider the case where Q is formed by adding one additional point to P .)

(c) Prove that for any partition Q of [a, b], LQ(f) ≤ UP (f). (Hint: Use part (b), and consider the
partition P ∪Q.)

Now that we understand partitions and Riemann sums, we can formally define the Riemann inte-
gral as follows:

Definition 14.3. Let f be a bounded function defined on [a, b]. Then the lower integral of f on [a, b]
is denoted and defined as follows:

∫ b

a

f(x) dx = sup{LP (f) : P is a partition of [a, b]}

The upper integral of f on [a, b] is denoted and defined as follows:
∫ b

a

f(x) dx = inf{UP (f) : P is a partition of [a, b]}

If the value of the lower and upper integrals of f are equal, then f is said to be Riemann integrable
on [a, b], and the common value of the lower and upper integrals is called the Riemann integral of f
on [a, b], denoted

∫ b

a

f(x) dx.

Question 14.3. How is the definition of the integral given above similar to the one that you learned
in your first-semester calculus course? How is it different? Be specific and precise.

Question 14.4. Which of the functions from Question 1 above are Riemann integrable? For those
that are, find the value of the Riemann integral. For those that are not, show that the corresponding
upper and lower integrals are not equal.

Georg Friedrich Bernhard Riemann

                  (1826 - 1866)

Incidentally, the Riemann integral is named
after Georg Friedrich Bernhard Riemann, a
German mathematician whose research on the
geometry of space influenced much of the de-
velopment of modern theoretical physics. Rie-
mann was one of the first to formalize the no-
tion of the integral, which was introduced by
Cauchy in the early 1800s. Riemann’s formu-
lation of the integral is the one most commonly
taught in college calculus courses. There are,
however, more general versions due to mathe-
maticians such as Lebesgue, Stiltjes, and Dar-
boux.
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Conditions for Riemann Integrability

Many interesting questions surround the notion of integrability. The first question that we will con-
sider concerns finding sufficient conditions for Riemann integrability (that is, conditions that, if sat-
isfied, will guarantee that the function in question is Riemann integrable). Though the conditions
themselves are relatively straightforward and not terribly surprising, their proofs can be slightly more
challenging, partly because of the complexity of the definition of the Riemann integral.

The two main results we will prove in this section are the following:

Theorem 14.1. If a function f is monotone and defined for all x ∈ [a, b], then f is Riemann integrable
on [a, b].

Theorem 14.2. If a function f is a continuous on [a, b], then f is Riemann integrable on [a, b].

In order to prove these results, we will need the following lemmas:

Lemma 14.3. Let f be a function that is defined and bounded on [a, b]. Then f is Riemann integrable
on [a, b] if and only if for every ε > 0, there exists a partition P such that UP (f)− LP (f) < ε.

Question 14.5. Prove the “if” direction of Lemma 14.3. That is, prove that if for every ε > 0, there
exists a partition P such that UP (f)− LP (f) < ε, then f is Riemann integrable on [a, b].
(

Hint: Note that LP (f) ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤ UP (f).

)

If you completed the exercise on uniform and Lipschitz continuity from the Continuity and Limits
of Functions activity, then you should recognize the next lemma. Stated concisely, it says that every
continuous function defined on a closed and bounded interval is uniformly continuous.

Lemma 14.4. Let f be a function that is continuous on [a, b]. Then for every ε > 0, there exists δ > 0
such that for all x, y ∈ [a, b], |x− y| < δ implies |f(x)− f(y)| < ε.

Question 14.6. Prove Lemma 14.4. (Hint: Use a proof by contradiction to construct two sequences
x and y such that, for all n, |xn−yn| < 1/n but |f(xn)−f(yn)| ≥ ε. Apply the Bolzano-Weierstrass
Theorem and the “preserving convergence” property of continuity to these sequences in order to arrive
at the desired contradiction.)

We are now ready to prove Theorems 14.1 and 14.2. The next two questions suggest strategies for
each.

Question 14.7. Suppose f is increasing and defined for all x ∈ [a, b].

(a) Using the assumption that f is increasing on [a, b], explain why f must be bounded on [a, b].

(b) Use part (a) to argue that for every ε > 0, there must exist a real number K > 0 such that

f(b)− f(a) <
ε

K
.
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(c) Choose a partition P = {xk}nk=0 of [a, b] such that ∆k < K for all k. Explain why such a
partition must exist.

(d) Argue that for the partition P you chose in part (c), UP (f) − LP (f) < ε. (Hint: Expand

UP (f)− LP (f), keeping in mind that f is increasing. Also note that K · ε

K
= ε.)

(e) Explain how your work in parts (a)–(d) establishes Theorem 14.1 for increasing functions.

(f) Explain how your argument from parts (a)–(e) could be modified to prove the same result for
decreasing functions.

Question 14.8. Suppose f is continuous on [a, b].

(a) Argue that for every ε > 0, there exists δ > 0 such that for all x, y ∈ [a, b],

|x− y| < δ implies |f(x)− f(y)| < ε

b− a
.

(b) Choose a partition P = {xk}nk=0 of [a, b] such that ∆k < δ for all k. Explain why such a
partition must exist.

(c) Explain why for each k ∈ {1, 2, . . . n}, there must exist sk and tk in [xk−1, xk] such that
mk = f(sk) and Mk = f(tk). (Hint: Apply a theorem we proved in a previous activity.)

(d) Use parts (a)–(c) to argue that for each k ∈ {1, 2, . . . n},

f(tk)− f(sk) <
ε

b− a
.

(e) Use part (d) to argue that UP (f)− LP (f) < ε.

(f) Explain how your work in parts (a)–(e) establishes Theorem 14.2.

The Fundamental Theorem of Calculus

The results we have considered thus far have given us conditions under which the Riemann integral is
guaranteed to exist. These results, however, have not told us anything about how to actually calculate
the value of the Riemann integral of a function. In fact, the formal definition of the integral is so
complex that it is almost always of no practical value when it comes to solving problems that involve
actually evaluating integrals.

If you remember nothing else from your first-semester calculus class, you should remember the
following theorem, which beautifully ties together differentiation and integration in a way that makes
evaluation of Riemann integrals a much more practical task. We will end our investigations of inte-
gration in this activity by proving this very important theorem.
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Theorem 14.5 (Fundamental Theorem of Calculus). Let f be a function that is continuous on [a, b],
and let F : [a, b]→ R be any function such that F ′(x) = f(x) for all x ∈ [a, b]. Then

∫ b

a

f(x) dx = F (b)− F (a).

Question 14.9. Suppose f is continuous on [a, b], and let P = {xk}nk=0 be any partition of [a, b].

(a) Apply the Mean Value Theorem to the function F on each subinterval [xk−1, xk] of P . Begin
your conclusion as follows: There exists ck ∈ (xk−1, xk) such that . . .

(b) Let S be the Riemann sum defined by

S =
n
∑

k=1

f(ck)∆k,

where each ck is as specified in the conclusion of the Mean Value Theorem from part (a).
Argue that S = F (b)− F (a).

(c) Use part (b) to argue that for any lower and upper sums, say LP (f) and UP (f), respectively,

LP (f) ≤ F (b)− F (a) ≤ UP (f).

(d) Use part (c) and Theorem 14.2 to finish the proof of the Fundamental Theorem of Calculus.

Exercises

(1) Are the sufficient conditions from Theorems 14.1 and 14.2 also necessary conditions? That is, if
a function is Riemann integrable on [a, b], must f be monotone on [a, b]? Must f be continuous
on [a, b]? Give proofs or counterexamples to justify your answers.

(2) Prove that if f is continuous and nonnegative on [a, b], and if

∫ b

a

f(x) dx = 0,

then f(x) = 0 for all x ∈ [a, b].
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Appendix A

A Menu of Sequences

(1) Let s be the sequence defined by applying Newton’s method to

p(x) =
4

3
x2 − 4,

with starting point x0 = 7
4
.

(2) Let g(x) = 1
2

cos(πx), and define the sequence s by

s1 = g(1), s2 = g′(1), s3 = g′′(1), . . . , sn = g(n−1)(1), . . . .

(3) Let f(x) = 3 sin(αx), and define the sequence s by

s1 = f(1), s2 = f ′(1), s3 = f ′′(1), . . . , sn = f (n−1)(1), . . . .

where:

(a) α = π
2

(b) α = π
3

(c) α = π
4

(4) Let h(x) = 1
2
x + 3

2
x−1. Define s by

s1 = 2,

sn+1 = h(sn), for all n ≥ 1.

(5) Define s by sn = cos(n).

(6) Let s be the sequence defined by applying Newton’s method to

q(x) =
5

2
x2 + 5,

with starting point x0 = 2.
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(7) Define s by

sn =
n
∑

k=1

(−1)k+1 1

k
.

(8) Define s by

sn =
n
∑

k=1

1

k
.

(9) Define s by

sn =
n
∑

k=1

1

k2
.

(10) Define s by

s1 = 6.1,

s2 = 4.6,

sn+2 =
7

4
sn+1 −

3

4
sn, for all n ≥ 1.

(11) Define s by

sn = 1− 1

2

n
∑

k=1

1

2k2 + k
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