ERRATTA

Air-Water Partition Coefficient - Chapter 8
Concepts and Theory of Chemical Property Estimation - Chapter 2
Diffusivity - Chapter 12
Octanol-Water Partition Coefficient - Chapter 9
Soil and Sediment Sorption Coefficient - Chapter 10

Concepts and Theory of Chemical property Estimation - Chapter 2
Page 11, paragraph 1, line 4, Eqn. 2.2
Now reads $\Delta \mathrm{G}=\Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{S}$
It should read $\Delta G=\Delta H-T \Delta S$

AIr water partition coefficient - Chapter 8
Page 123, paragraph 1, line 10
Now readswhere $\mathrm{V}_{\mathrm{ml}}\left(\mathrm{mol} / \mathrm{m}^{3}\right)$ is the molar volume....
It should readwhere $\mathbf{V}_{\mathrm{ml}}\left(\mathrm{m}^{3} / \mathrm{mol}\right)$ is the molar volume...

Page 130, paragraph 1, line 4, Eqn 8.10
Now reads $\log \mathrm{K}_{\mathrm{AW}}=3 \mathrm{a}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}+3 \mathrm{j}_{\mathrm{j}} \mathrm{b}_{\mathrm{Fj}}$
It should read $\log \boldsymbol{\gamma}=\mathbf{3}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}+\mathbf{3}_{\mathrm{j}} \mathrm{b}_{\mathrm{j}} \mathbf{F}_{\mathbf{j}} ; \mathbf{1} / \boldsymbol{\gamma}=\mathrm{K}_{\mathrm{AW}}$

Meylan and Howard₹ model directly estimates $1 / \mathrm{K}_{\mathrm{Aw}}$.

Page 130, Example

Now readslog $\mathrm{K}_{\mathrm{AW}}=3_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}+3{ }_{\mathrm{j}} \mathrm{b}_{\mathrm{j}} \mathrm{Fj}$

$$
=(7)(-0.1197)+(2)(0.2326)+(1)(1.0855)+(1)(3.2301)+(1)(-0.20) \ldots . .
$$

It should read $\log \gamma=\mathbf{3}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}+\mathbf{3}_{\mathrm{j}} \mathrm{b}_{\mathrm{j}} \mathbf{F j}$
$=(7)(-0.1197)+(2)(0.1163)+(1)(1.0855)+(1)(3.2301)+(1)(-0.20)$
$=3.5112$
The measured value of $\log \gamma=\log 1 / \mathrm{K}_{\mathrm{AW}}$ is $\mathbf{3 . 5 5}$
Page 131, Table 8.2
The title now reads Bond Contribution to $\log \mathrm{K}_{\mathrm{Aw}}$ at 25 EC
It should read Bond Contribution to Log γ at 25EC. See Equation 8.10

Page 132, Table 8.3

The title now reads Correction Factors for $\log \mathrm{K}_{\mathrm{Aw}}$ at 25 EC
It should read Correction Factors for Log $\boldsymbol{\gamma}$ at 25EC. See Equation 8.10

Octanol-Water Partition Coefficient - Chapter 9
Page 139, Example
Now reads

1. Identify the significant fragments found in the molecular structure.

The structure contains four CH 3 , two CH 2 , two $-\mathrm{C}^{*} \mathrm{H}<$, one $>\mathrm{C}^{*}<\ldots .$.

It should read

1. Identify the significant fragments found in the molecular structure.

The structure contains four $\mathbf{C H} 3$, two $\mathbf{C H} 2$, three $-\mathrm{C}_{\mathrm{r}} \mathrm{H}<$, three $=\mathrm{C}_{\mathrm{r}}<\ldots .$.
page 142, Example
Now reads $\log \mathrm{K}_{\mathrm{ow}}=\mathrm{a}+3_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}+3{ }_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}$

$$
\begin{aligned}
& =-0.703+(4)(0.661)+(2)(0.415)+(2)(0.104)+(3)(0.380)+(1)(0.129)+(1)(0.135) \\
& =4.25
\end{aligned}
$$

The measured value of $\log \mathrm{K}_{\mathrm{ow}}$ is 4.36. The estimate error is 2.6%......
It should read $\log \mathrm{K}_{\mathrm{ow}}=\mathbf{a}+\mathbf{3}_{\mathrm{i}} \mathbf{b}_{\mathbf{i}} \mathbf{B}_{\mathrm{i}}+\mathbf{3}_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}$
$=-0.703+(4)(0.661)+(2)(0.415)+(2)(0.104)+(3)(0.380)+(3)(0.129)+(1)(0.135)$
$=4.51$
The measured value of $\log K_{o w}$ is 4.36 . The estimate error is 3.4%.....

Page 197, EXAMPLE

3. If we assume that sorption is a linear function of solute concentration, $K_{P}=K_{d}=f_{O C}$ 政

$$
\begin{aligned}
\text { or } \mathrm{K}_{\mathrm{OC}} & =\mathrm{K}_{\mathrm{P}} / \mathrm{f}_{\mathrm{OC}} \\
\log \mathrm{~K}_{\mathrm{OC}} & =\log \mathrm{K}_{\mathrm{P}}-\log \mathrm{f}_{\mathrm{OC}} \\
& =3.21-\log 0.0270 \\
& =4.78
\end{aligned}
$$

Page 200, paragraph 1
This paragraph concerns K_{P} values, not K_{Oc} values. It should read AThe estimate of \log K_{P} is in error by 40%. However, the $\log K_{P}$ value of pentachlorophenol...

Diffusivity - Chapter 12

Page 250, Example
Now reads Estimate the diffusivity in air of carbon tetrachloride, CCl_{4}, at 25 EC and 1 atm pressure... It should read Estimate the diffusivity in air of carbon tetrachloride, CCl_{4}, at 25EC and 1 bar pressure...

